III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

download III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

of 25

Transcript of III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    1/25

    The Sommerfel d free-electro n theor y o f metals

    1. Q u an tum th eory of the free-electrongas 7 7

    2.

    Ferm i-D irac d is tr ibu tio function and chem ica p o ten tia 8 2

    3.

    E lectro ni specific he at i n m et als and ther m od yn am ifunctions 8 6

    4.Therm ioni emission from m eta ls 8 8

    A pp en di A . O utline of st a tis tic a ph ysics and th er m o d yn am ire la tions 8 9

    A l .

    M icrocanonicaensembl and therm od yn am iq uantit ies 8 9

    A2.Ca non ica ensem bl and the rm od yn am iq u an tit ies 9 1

    A3.G ra nd cano nica ens em bl and th er m o dy n am iq uan tit ies 9 3

    Ap pen di B . Ferm i-Dirac and Bo se -Ein steis ta tis tic for ind ep en de n pa rtic les . 9 5

    Ap pe nd i C . Modified Fe rm i-D irac sta tis tic i n a m od e of cor relatio effects . . . 9 8

    Fu rth e read ing 10 0

    In th is ch apte w e dis cu s the free-elec tronth eo ry o f m eta ls origin ally develope b y

    Som merfel and oth er s T he free-electronm od el w ith its pa ra bo li en erg y-w avevec to

    disp ersio cu rve prov ides a re as ona blde sc rip tio for con du ctio ele ctr on i n sim ple

    m et als i t als o m ay giv e use fu gu ide lines fo r o th er m eta ls w it h m ore co m pU cated

    co nd uc tio b an d s Be caus of the sim plic ity of t he m od e and its de ns ity-o f-st ate sw e

    can work out exphcitly thermodynam ipro p ert ie s and i n p art ic u la the spec ific heat

    and the th er m io ni em iss ion I n the Appe ndice w e sim om ariz for a gen er a q u an tum

    sy stem the th erm od yn am ifu nc tions o f m ore frequentuse i n sta tis tic a ph ys ics T h e

    Ferm i-D irac and Bo se-E in st e i d is tr ib ution func tions fo r ind epen den ferm ions an d

    bo so n are disc ussedfinally we ob ta in the mod ified Fe rm i-D ir ac dis tr ib u tio fun ctio n

    in a m od e case of c or re la tio am ong elect ro n i n loc alized st a te s

    1 Q u an tu m theor y o f th e free -elec tro n ga s

    An ele ct ron i n a cr ys ta feels th e p o te nti a en ergy due t o al l the nu clei and al l th e

    o th er elec tro ns T he de te rm in a tio o f t he cr ys tal lin p o te n tia i n specific m ateria ls i s

    a ra th er de m an din pr ob lem (see C h ap te r I V and V ) . How ever i n seve ra m et als i t

    tu rns out reas on ab l t o ass ume th at th e co nductio elec tro ns feel a p o te n ti a which

    is co ns tan th ro u g h ou th e sa m ple th is m od el sug ge ste b y So mmerfel i n 1928, i s

    77

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    2/25

    78

    II I TH E SOMMBRFEL D FREE-ELECTRO N THEOR Y O F METAL S

    Ef

    ^vac

    Ep+

    ^c-^

    vacuum

    vacuum

    ' ' ' ' ' . . ' . ' . ' . ' ' . ' . ' .

    meta

    S^^^m^^t

    W

    ^ F ^ c

    E ( k ) = E c + ^

    2m

    -k.

    (a)

    (b)

    kp k z

    F ig. 1 (a ) Th e Sommerfel model for a meta l Th e energy Ec denote the bo ttom o f the

    conductio ban d ^vac denote the energy of an elec tron at rest in the vacuum the electron

    affinity i s x = ^vac

    Ec Th e Fermi energy i s denoted b y EF, and the work function W

    equals x ~ ^F - (b ) Free-electro energy dispersio curve along a direc tion say /c^, in the

    reciproca space At T = 0 all the states with k < kp are occupie by two electron of e ith er

    spin

    still o f value fo r a n orienta tive und er st an d in o f a nu m ber o f p ro pe rtie o f sim ple

    m eta ls

    I n the Sommerfel mo del t he Sc hrod ing e equ at ion for co nduc tio elec tro n inside

    the me tal takes the sim ple form

    p + F

    2^^^'^

    ^{T) = E^{V),

    (1)

    whe re Ec de no tes a n ap p ro pr ia t co n st an specific o f t he me tal im der inv es tiga tio

    (see Fig. 1) . Th e nu m be o f free elec tron s o f the m et al i s as sm ne t o co rres po n

    to th e nu m ber o f ele ctro ns i n th e m ost ex te rn a she ll o f t he co m po sin ato m s Fo r

    in sta nc i n alka li m eta ls w e ex pe c on e free elec tron per at o m, since an alkali a tom

    has ju st on e ele ctr on i n the m ost ex te rn a sh ell. I n alum in um (atom ic co nfigu ratio

    l5^,25^2p^,3s^3p^w e ex pec th ree free elec tro n per ato m.

    At first s ight i t co uld app ear surp ris ing th at th e co nd uc tion elec tro ns i n actu al

    met a ls (o r i n any ty pe o f solid) feel a n ap pr o xim at el co ns tan po te n tia l a s st ro ng

    sp atia variations of t he cr yst al lin po te n ti a occur near the nu clei Ho wever the co n-

    du ction ele ctrons are hard ly sens itiv to the region close to the nuc lei becaus of the

    orthogonalizat ioeffects due to the co re e le ctron s ta tes th us the effective p o te n tia l

    or pseudopotential(se e Sec tion V-4 ) fo r co nductio e lectro ns m ay ind eed beco me

    a sm oo th l vary ing qu an tity eve ntua ll ap pr ox im ate w ith a c on sta ntthese are the

    un de rly in rea so ns fo r th e succes o f t he free-ele ctro m od el (o r o f th e nearly-free

    ele ctr on im ple m en tat ion si n a nu m be of a ctu a m eta ls

    T he eigen functio n o f t he Schro dinge equati on (1 ) , no rm aliz e to one in the volu me

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    3/25

    SOLID STAT E PHYSIC S 7 9

    V o f the m eta l are the plane waves

    V;{k,r) = - ^ e * ' ;(2 )

    the p la ne waves are ju st a p art ic u la case of Bloch fu nctio ns w hen the period ic mod-

    u la ting p a rt i s co ns ta ntT h e eigen value of E q. (1 ) a re

    For sim plic ity th ro u g h o u th is chapte r w e set the ze ro of ener gy at the bo t tom Ec of

    the con duct io band and th us take Ec = 0 ; wheneve necessarywe can re in s ta t the

    ac tu a va lue of Ec by an app ro pria t shift i n the en ergy scale [I n some sit ua tio n sfor

    in sta nc i n the discus sio of p hoto e lectro em iss ion i t can be mo re co nv en ien t o set

    the zero of energy at the vacuum level, i.e. Evac = 0 ; in oth er pro ble m s for in sta nc i n

    the discu ss io of m any-b od effects th e ze ro of en er gy is ge ne ra ll taken at t he Fer mi

    level i.e. Ep = 0 ; of c our se any choice i s lawful, pro vided on e keeps i n m ind which

    choice has b eendone]

    Co ns ide no w a n elec tron gas w ith N fre e elec tro ns i n a vo lume V , and elec tron

    de ns it n = N/V. T o specif the electron de ns it of a me ta it is cu st o m ar to co ns ide

    the dim ens ionlesp ar am et e r ^ co nn ec te t o n b y the re lat ion

    w he re as = 0.529 A i s the Bohr rad iu s Vsasrepr es en t the ra d ius of t he sph ere that

    conta in i n ave ra ge one electron

    We eva luate r ^ fo r alkali m eta ls (fo r insta nc e) Li , Na , K , R b have bcc st ru ct u re

    w ith cube edge a equa t o 3.4 9 A , 4.23 A , 5.2 3 A an d 5.5 9 A , respectively I n th e

    vo lume a^ we have two at o ms and tw o conductio e lectrons From E q. (4 ) w e ob ta in

    (4/3 )7rrf a| = a^/2 an d th us

    as 2 yirj

    the va lues for r ^ ar e 3 .25, 3.94, 4.87 and 5.2 0 for Li , Na , K and R b, resp ec tive ly A

    sim ila re as onin can be do ne for o th er crys ta ls For insta nce the cry st a s tr u c tu r of

    Al i s fee, w ith la tt ice co nsta n a = 4 .0 5 A. I n the vo lume a^ we ha ve four a to ms and

    twelve co ndu ct io elec tro ns from Eq. (4 ) we ha ve {4:/3 )Trr^a %= a^ /12 and

    Vg

    = 2.07.

    M eta llic de ns itie of c on du ctio ele ctro n occin mo stly i n the ra nge 2 ksT th e

    dis tribu tio function app roach e un ity; i f f j - / i > fc^T, f{E) fall s exp one ntiall t o

    ze ro w ith a B oltz m ann ta il. A t T = 0 the F erm i-D irac d is tr ib u tio fun ction be co m es

    the st ep fu nctionQ{IJLQ

    E), wh ere /i o de no tes the Fermi energy a t T = 0 ; at zero

    t emp er a t u r eal l t he s ta tes w ith ener gy lower t h an/X Qa re oc cu pie a nd al l t he s ta tes

    w ith en er gy hig her th an /i o are em pty A t finite te m p e ra tu r T , f{E) de viat e s fro m

    the st ep function on ly i n the th erm a energy range of ord er fcjgT aro und /x(T) .

    We conside now th e prop ert ies o f the function {df/dE). A t T = 0 w e have

    {df/dE)= S{E / io) . A t f in it e tem pe ratu r T < ^ Tp , i t holds approxim atel

    that{df/dE) 6{E

    /i) (see Fig. 4) . I n fact, a t finite te m p er a tu r th e func tion

    {df/dE)i s very steep w ith its m axim um at E = / i a nd differs sig nif ica ntl from ze ro

    in the energy ra nge of the ord er of fc^ T ar ou nd /i . I t i s easy to verify t h at{df/dE)

    is an ev en fun ction o f E aro und / i a nd va nis he ex po nen tia llfo rIE *

    / i | fc^T; w e

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    7/25

    SOLID STAT E PHYSIC S

    83

    (iU=*'=* '

    J

    i i

    . i l l

    H

    9E/T;^ i i

    Fig. 4 Th e Ferm i-Dirac distr ibu tion function f{E) an d energy derivative{-df/dE)a t

    T = 0 and at a finite tem pe raturT , with T

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    8/25

    8 4

    II I

    T H E S OM ME RF EL D F RE E-E LE CT RO N T HE OR Y O F M ETAL S

    inse rtin th is expressio into Eq. (14), and using Eq. (13 ), we ob ta in

    Odd powersof{E-/x )inthe expansio have been om itted becaus they give zero

    contributionThe coefficien o f G {^ )can be written as

    1 C^ ^ 8f 1

    /*

    JE-fj,)/kBT 1

    -2L ( ^ - ^ - a l ' ^ - L ..,ii-ST ^

    ^0

    r+00

    (e^+1)2'

    (in the last passag

    we

    have denote by x the dimensionlesvariabl

    x

    = {E ^i)/kBT).

    To perform the integra in thexvariable we notice that

    0J o

    -2x

    \dx

    _

    ( 1 1 1 \ _ 7r2

    This explains the numerica coefficien i n front of G {^)i n expressio (15). Successiv

    terms in expansio (15) can be calcu late i n

    a

    sim ila way.

    Equation (15 ) i s known as the Som m erfeld

    expansion.

    T o appreciat the fact th at

    it isarapidl convergen expansio forT

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    9/25

    SOLID STAT E PHYSIC S 8 5

    Temperature dependence of the chemical potential

    T he ch em ica p o te nt ia /i d ep en d (slightly on the te m p era tu rein the stu dy of se vera

    t ransporpro pert ie s the te m p era tu r dep en de nc of the ch em ica po te n tia (w ha tev e

    sm al i t m ig ht app ear a t first sigh t) has qu ite im p o rt an co ns eq ue nc esa nd now w e

    wo rk out ex pl ic itly the beh av iou o fIJL{T).

    Let D{E) b e the (single-pa rticle den sity-of-sta tefo r bo th sp in d irections for th e

    metallic sam ple of volu me V; no p ar tic u la as su m pt io on D{E) o r on the co nd uc tio

    ba nd en ergy jB(k ) i s do ne a t thi s st ag e Le t N b e th e to tal n u m ber o f co nd uc tion

    electron o f th e sam ple A t an y tem pe ratu r T , w e have th at / i (T ) i s determ ined

    (im phci tly en forc ing the equal ity

    /

    + 0 0

    D{E) f{E) dE .

    -oo

    Such an in te gra has in gene ra a ra th e co m plex s tr u ctu re Ho wever i f T

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    10/25

    86 II I TH E SOMMERFEL D FREE-ELECTRO N THEOR Y O F METAL S

    3 E le ctroni c specifi c hea t i n m e ta l s a n d t he rm odynam i c func tion s

    T he hea t cap acityat con stantvolumeof a sam ple i s def ined b y

    w he re 8Q i s the am ou n o f he at tran sfe rre fro m th e ex ter na wo rld t o the syste m

    and dT i s the co rre sp on din ch an ge i n te m p e ra tu r o f the sys tem ke pt a t co ns ta n

    vo lume V. T h e h eat ca pa city i s an exte ns iv qu an tity i.e. a q u an tity pr op or tio na t o

    the volu me of t he sam ple for th is re ason depend in on the nat inre of the system u nder

    investigat ioni t may beco me preferabl t o in tr o du c the specificheat per m ole, or th e

    specifi heat per un it vo lu m e or per u n it ce ll, or p er co m po sin a to ms or elec trons

    W e can ex pr ess the he at capacity (22 ) i n co nv en ien al te rn at ive forms. From th e

    first la w of therm ody nam icsw e kn ow th at th e ch an ge dU o f t he in te rn a en ergy of a

    sy ste m i n a tra nsfo rm at io i n which an infin ites im a q u an ti ty o f h eat 6Q i s received

    by the system and 8L i s the work do ne on t he system by exte rna forces i s given by

    dU = 6Q^6L.

    I n the case the exte rn a forces are only m echanic a forces exert ing a pre ssur p on the

    syste m w e ha ve 8L =

    pdV\

    i f t he vo lume V o f t he sy st em i s ke pt co nst an during

    the tra ns fo rm at io th en 6L = 0; it follows dU = 6Q and

    C . = ( f ) ^ . (23 a )

    I n th e case o f reversibl tra ns for m atio nst h e second la w o f therm od yn am ics ta tes

    t h at 6Q = T dS ,w he re S i s the entropy o f t he syst em W e ha ve th us

    C=T{

    (23b )

    W e now calcula t the h eat capacit of an ele ctron gas using Eq. (2 3 a). The in te rn a

    energy o f t he Fermi gas i s

    /

    + 00

    ED{E)f{E)dE

    -oo

    = ED{E) dE + ^klT^[Difx) + tiD'{^)] + 0{T^) , (24 )

    w he re the s ta n d ar So mmerfe l ex pa nsio (17 ) has been us ed B y diffe ren tiatin w it h

    res pe c t o the tem p er a tu r b o th m em be rs o f Eq . (24) , and keep ing only th e m ost

    re lev an am ong the te rms co nt ainin (d // /d T ), we ha ve

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    11/25

    S O LI D S T A T E PH Y SIC S

    87

    Fig. 5 Electronic con trib utio Cv{T) t o the heat capacit of a meta at cons tan volume as

    a function o f tem pe raturethe same expressio holds for the electroni contributio t o the

    entropy

    Using Eq. (19) , and re placingD{IJL)w ith JD(/xo)j we o b ta in

    CviT) = -klTD{^o)

    (25)

    Prom Eq. (2 3 b), i t can be no ticed th at ex pres sio (25 ) repre sen talso the entr opy of

    the electron syste m

    The specific h eat p er u n it vo lume cy = Cy/V b ecom e s

    cv{T)= ^klT

    DJtM))

    V

    iT,

    where

    1

    KQ

    V

    (26a)

    (26b)

    T he co n trib ut io t o the specific he at from co nd uc tio ele ctr ons i s pr o po rtion at o T

    for al l te m p era tu re o f in te re st since T i s alw ays m uch less th an Tp- T h e ele ctr on ic

    con trib utio bec om e the lead ing one at sufficientl low te m p era tu re sw here it preva ils

    over the T^ D eb y e co n tributio orig in at ed b y the lat tice vib ra tions (see Se ction IX -

    5).

    W e also no tice th at th e kno wledge o f th e de ns ity-o f-sta teD{f io) a t th e Fermi

    en ergy /i o co m ple tel de te rm ine Cy ; th is gives a first ins ight o n the imp or ta nc o f

    the electro ni s ta tes a t o r near th e Fe rmi surface i n me ta ls I n disc ussin tr an sp o r

    phenomenaim p u ri ty screen ing e tc. w e will fu rth er see the bas ic role play ed b y th e

    electron i s ta tes lyin g i n th e th er m a interv al o f th e ord er ksT ar ou n d th e Ferm i

    en ergy

    I t i s inte res tin t o specify Eq . (25 ) fo r th e case o f t h e free-electrongas , where

    D{fjLo

    = (3 /2 ) N/fio ac co rding to E q. (11 ) . W e have

    7r2 T

    Cv{T) = -jkBN.

    (27)

    For com pa ris on w e rec al th at th e cla ss ica s ta tis tic a m ec ha nic wou ld give the ex-

    press io Cv = iS/2)kBNfo r the he at cap ac it of a gas of

    TV

    no n- in te ra ct in pa rtic les

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    12/25

    88 II I -TH E SOMMERFEL D FREE-ELECTRO N THEOR Y O F METAL S

    T he co rre c resu l (27 ) c an be in te rp re te not ic ing th at on ly t he elec tro n in t he ther-

    m al in te rv a ksT aro und the Fe rmi en er gy/X Q= ksTp ca n va ry th e ir energ y and th us

    the effective nu m ber o f elec tron w ith classica be ha vio ur i s not N b u t ra th er th e

    fraction T/Tp o f N.

    4 Th erm io ni c em issio n fro m m eta l s

    W e can ap ply th e Ferm i-D irac s ta tis tics t o st u dy un der ve ry simp lified con ditio ns

    the ther m ion ic em ission from m et als i.e. th e em ission o f e lec tron from a m etal i n

    the vac uum bec au se o f t he effect o f a finite te m p e ra tu re Fo r our sem i-q uan tit a tiv

    considerat ionsw e do n ot co ns ide i n det a i po ss ib l reflection o f ele ct ro n im ping ing

    at the su rfac e w e sim ply as sume th at al l t he e le ctron th at arr ive at the su rface wit h

    an en er gy sufficien t o overcome th e surface b arr ier ar e tra nsfer re t o th e vac uum

    (a nd sw ept aw ay by some sm al app hed elect ric field w ithout accim iu la tio o f space

    charge)T he m od e elect ro ni s tr u c tu r of t he m eta l with e lectron affinity x s^nd work

    fun ction W , i s illu str at e i n Fig. 1 ; we wish to ob ta in the num be o f elec tro n which

    es cap from the m eta l ke pt a t te m pe ra tu r T .

    I n the m eta l the elec tro n are d is tr ib u te i n en er gy ac co rd ing to the F erm i-D ir ac

    stat ist icsLet us in dic at w ith z the d irection n o rm a to the su rfa ce the curre n density

    of e sc ap in ele ctr on i s given by

    w he re Vz = hkz /m. Not ic e th at ex pres sio (28) , i n the case Vz is ju st rep laced b y a

    drift velo city v in dep en den o n k (an d th e int egra tion over kz extends from oo t o

    -hoc , wo uld give the s ta nd ar de ns ity Js = {e)nv.Th e Um itation i n Eq. (28 ) fo r

    the int eg ra tion o n kz i s ju st t o m ake sure th at th e es ca ping elect ro ns have enough

    kinetic en ergy fi?kl/2m> x i n ^^z dir ec tion to leave the m et a l

    I n ord er t o pe rfo rm th e in te gra (28) , let us notice th at

    Sin ce i n gen era the work funct ion V F > fc^T , we can safely neglec the im ity i n the

    Fe rm d is tri bu tio fun ction i n Eq. (28) . W e th us o b ta in

    _ ( - e ) h T ^ / kzdkz / dkx / dkyexD

    oo o o

    W e now use the stan d ar re su lt for G au ss ia fun ct ions

    hHkl +k l+kp

    ksT2mkBT

    L

    + 0 0

    dkxexp

    2mkBT

    y/2'KmkBT

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    13/25

    SOLID STATE PHYSICS 8 9

    T ab le 1 Experimen ta values of the work function W for some meta ls

    meta

    Li

    N a

    K

    Cs

    Ag

    A u

    W(eV)

    2.49

    2.28

    2.24

    1.81

    4.3

    5.2

    meta

    Al

    Ga

    Sn

    Pb

    Pt

    W

    W(eV)

    4.2

    4.1

    4.4

    4.0

    5.6

    4.5

    and obtain

    * 5 = ^ 2 T~ / k^dk^exp /^

    ft2fc2

    ksT2mkBT

    The integra can be easily pe rforme wit h the ch an ge of va ria b le (ft^fc^/2m

    /x = a:,

    and w e ar rive at th e R icha rd so ex pressio

    T he abso lu t va lue of the nu m er ica fac tor i n the R ichard so law (29 ) i s

    ^ ^ = 120.4 a mp

    c m '

    .

    K '^ , (30 )

    in many m eta ls m easure va lues are in de ed i n the ra n ge 5 0

    120 amp

    cm~^

    K~^.

    A q u an ti ta ti v tr ea tm en o f t he elec tron em iss io from m eta ls requ ires a num be of

    ref inementof t he sim plified m ode here co nsider edI n the m od e of Fig. 1 , the m e t a l-

    va cu um bo u n d ar i s re pr es en te by an a b ru p disc ont in ui t i n the po te n tia lI n re al ity

    an elect ron ou ts ide the m etal feels a n a tt racti ve im age p o te n ti a (t o b e dete rm in ed

    in prin cip le q u an tiun m ech an ically w it h con sequ en ceo n th e reflec tion coefficient

    of es ca pin ele ct ro ns T h e im age po te n tia also lea ds t o a re d uction o f t he ap pare n

    work fun ction i n th e pres en c o f ap plied ele ctr ic fields (S ch ot tky effect). T h e work

    fu nction i s also sensit iv to various effects fo r in stance surface im purit ies and charge

    m od ification a t th e su rface Obs erved va lues o f t he work fun ction fo r some m eta ls

    are rep o rted i n Ta ble 1 ; for a m ore co m ple te Us t see for insta nce H . B . Mich ae lson

    H an db oo of C he m is tr and Ph ys ics ed ited by R. C . We as (CR C Pr es s Cleve land

    1962); D . E. E a s tm a n P h ys Re v. B2, 1 (1970) and refe ren ce q uoted th ere in

    A P P E N D IX A . Outlin e o f sta tis tic a l physic s a nd the rm odynam i c

    relations

    A l.

    Microcanonical ensemble and the rmody nam i q uan tities

    T he ba sic pr in ciples o f c la ss ic a and quantimr s ta tis tics ca n b e foim d i n st an d ard

    te x tb o o k on sta tis tic a ph ys ics the pu rp o s of t his ap p en di i s sim ply to sum m ariz

    the rec ipes for the co nn ec tio be tw een st at is tic and th erm od yn am ic s

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    14/25

    90 II I TH E SOMMERFELD FREE-ELECTRON THEOR Y OF METAL S

    Let

    US

    co nsid e a p hysica system co m pose by N identica pa rt ic les confin ed w it h in

    a volu me V. Q u an tum mechanic pro vid es for th is co nfined system discre tiz e energy

    levels

    we labe w ith an integ e nu m b e m al l the d is tin c eige ns tate of t he sy stem i n

    increasin energy order Em {--- < Em < Em-\-i . {A23 )

    rrifS

    Fo llow ing m u ta tis m u ta n d is th e rea so nin do ne i n the A pp en dix A2 , we can easi ly

    est ab lis th at the gra nd ca non ica p o te n ti a eq ua ls

    g r a nd = C / - T 5 - i V / i = - f c ^ T h i Z g , a n d ( T F , / i) {A24)

    wh ere U i s th e m ean inte rnal energy an d N i s th e m ean particle nu m ber i n th e

    gra nd canonica d is tr ib ution R ela tion (^424) i s the basic re sul of the gra nd canonic a

    ap p ar a t u sall the oth er the rm od yn am irelat io nsh ip follow from it .

    From the first and se co nd prin ciples of th erm o dyn am icw e have

    dU = TdS-p dV -]'fidN.

    By diffe rentia tin grand and using the above ex press ionwe obtain

    dfigrand = dC/ ~ TdS - SdT - Wdfi - ^idN = -SdT - pdV - Ndfi .

    It follows:

    'T , /x

    J^_ _ / ^ ^ g r a n d \

    'T ,V

    N = -( ^IH^I^. (A27 )

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    19/25

    SOLID STAT E PHYSIC S 9 5

    R ela tion (^425) p ro vid e the en tr op of the sy ste m re la tion (^426) pro vide the eq uation

    of Sta te; rela tion (^427) p ro vides th e m ean n um ber o f part ic le s al l oth er therm ody

    n amic fun ctio ns can b e eas ily o bta in ed from the eq uation so far establis hed

    A P P E N D IX B . Fe rm i -D i ra c an d Bose -E inste i n s ta tis tic s fo r

    independent particle s

    Fermi-Diracstatistics

    W e co ns ide a ph ys ica sy st em com po se b y N ide nt ical p artic les confined wit h in a

    vo lm ne V. T h e part ic les of the system are re g ard e as no n-in teracting(exce pt for a n

    ar bi tra r sm all intera ctio n t o en su re th er m od yn am iequ ilib riu m ) W e th us dis cu ss

    the energy levels of the m any-b od system in te rms of in dependenone-partic lesta tes.

    Q u an tum m ec hanics pro vides fo r a sin gle pa rt ic le confined with in th e vo lume V

    disc retize en ergy leve ls we labe w ith an in tege num be i all the d is tin c eigen st ates

    of en ergies e^, o f t he sin gle-par tic l q u an tum pro blem Since the part ic les are non-

    in te ra ctin g th e to tal en ergy o f t he many-b o d s ys tem i s the sum o f t he en erg ies of

    the in dividu a parti c les

    i

    w here n^ de note the num be of p art ic les w ith en ergy e ; the to tal n um be of p art ic les

    is

    Ar = ^ n i. {B 2)

    i

    W e now c onside specificall a system of id entic a Fermi p art ic le s as a co ns eq uen c

    of t he Pa u li pr inc iple the possibl values o f t he oc cu pa tio nu m be rs Ui are eit her 0

    or 1 . T he mo st gen era accessib l s ta te fo r th e sy stem o f ind istin gu ish ab lpa rtic les

    is defined b y a set o f n um bers {n^ } (i.e. any sequ enc of in tege n um be rs equa to 0

    or 1) . Th e g ra nd part iti on fun ction {A21) fo r a q u an tum sys tem o f n on -in ter ac tin

    fe rm io ns becom es

    T h is sum can be ca rr ied o ut exactly and giv es

    i

    T he pa ss ag from E q. (S 3 ) t o E q. (B 4 ) can be do ne for in stance w ith the following

    reasoningC onside first the part ic u la s it u ati on of a sys tem w ith a singleon e-elec tro

    level say 1 ; in th is case the sum i n Eq. {B3) prov ides Z i = 1 -h exp[ ^(e

    /x)].

    Consid e th en the pa rt ic u la s it uati on of a sy stem with only two levels say1a nd 2;

    the sum defined i n Eq. ( S 3) pro vid es Z = Z1 Z2 . Sim ilarly for a sy stem w ith n levels

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    20/25

    96

    II I T H E SOMMERFEL D FR EE-ELECTRO N THEOR Y O F METAL S

    i,

    2,

    .

    ,

    ^n, the sum dej&ned in Eq. ( 5 3 ) pro vid es Z = Z1Z 2 . .. ^n and for a s ystem

    w ith any n m nbe o f levels w e o b ta in E q. {B4),

    Now t h at the gra nd canonic a p ar ti t ion fu nction i s know n we can calc ula t w hate ve

    desired the rm od yn am iq uan tit y For ins ta nc we can ca lcu la t the av erage oc cup atio

    num be f{ei) o f a given st a te {. W e ha ve

    fisi) =

    {rii

    = J2 ^i

    -PE^ji^j-t^)

    gra nd

    {nj}

    T he sum over th e co nfig ura tion {rij} ca n b e easily ca rried ou t following, m u ta tis

    m u ta n dis the proced ur do ne for the ca lcu la tio o f Zgrand W e ha ve

    - / 3 ( i - M )

    ^ e r a nd . . ^ L J 1

    'g ra nd

    Ji^i)

    ^ g - ^ ( e i - / i )

    We th us recove im m ed iate l the F erm i-D irac s ta tis tics

    f{ei) =

    1

    el3(ei-n)+ 1

    (B5)

    W e can ob ta in the ex press io o f the free ene rgy and o f the entr opy of a system of

    non-in te ra ctin ferm ions W e st a r from the ex pres sio of the grand ca nonica p o te n ti a

    a

    grand = ^keTIn Zgran d =

    ^ B T

    J] I n [1+

    e-^(^^-^

    ] .

    F rom E q. {A24 ) w e have for t he free en er gy

    -P{ei-ti)

    (S6)

    (S7)

    F rom Eq. ( ^ 2 5 ), w e have for the en tropy

    i i

    W e use the id enti ty

    /3(i ~ /x ) = I n

    where fi denotes by b rev ityf{ei).W e o b t a in

    S=kBY^

    - l n ( l - / i ) + / i l n

    l-fi

    fi

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    21/25

    S OL ID S T AT E P H Y S IC S

    97

    amd finally

    S = -kB Yl [fi I n /i + ( 1 - fi) l n ( l - fi)]

    (58)

    which i s the de sired exp ress io for t he en tr opy of non-in te ra ctin fermion s

    A noth e im p o rt an ex pre ss io can be prov ed for the to ta nu m be of p arti cl es Fr om

    Eq. (i427), we have

    N

    ^ _ f d n ^\

    ^ ^ B T T - ^

    ln [ l +

    e-^^^-'^)

    g - / 3 ( e i - / x )

    2^

    1 -f- e-/5(et-M)i

    Fin al ly for t he equation of s ta te (^ 2 6) w e have

    E/^-

    p =

    T he en ergy eigenvalue o f a parti cle confined i n a cu bic box of v olu me V L^ ar e

    given by

    ^ = ^ ( l ) ('^ x + 'iy + ^ z) n ^,n j n ^ = 1 ,2 ,3 , . . .

    W e ha ve th us de/dL = 2e/L and also

    ae _ a e a L _ _ 2

    dV~dLdV~ZV

    Exp ress io (B 9 ) th us be co m es

    (BIO)

    and then

    P V = -U .

    (511)

    Bo se-E insteinstatistics

    I n th is ca se diflFerently fro m th e pre vio us tr e a tm e n tth e sequ enc { n j ca n con tain

    any integ er from zero to infin ity. T h e gra nd pa rti ti on func tion fo r a system o f non-

    in te ra ctin bosons i s st ill given by ex pressio ( 5 3 ) , keep ing i n m ind th at rii can now

    take any in tege va lue from ze ro to infin ity. T h e sum (J53) can be carr ied out exactly

    and gives for b osons

    2grand(T, F, / i) = J J ^ _ -0{e,-n) '

    (B12)

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    22/25

    98

    II I TH E SOMMERFEL D FREE-ELECTRO N THEOR Y O F METAL S

    T he pas sa g from Eq. ( 5 3 ) t o Eq. {B12 ) ca n be do ne (as before co ns ide rin first th e

    p art ic u la ca se of a sin gle on e- par tic l leve l, say ei. I n th is case the sum i n Eq. ( 5 3 )

    become

    n i = 0

    -/3(ei-M)

    1 _ e - / 3 ( 6 : i - M )

    For a s ys tem wi th a rb it ra ry nu m be o f on e- pa rtic l levels we th us o b ta in E q. ( 5 1 2 ) .

    T he g ra nd ca no nic a p o te n tia for a sy st em of ind ep en denbosons i s

    a

    rand = ^ B T l n Z g ra n d = fc^ T^ ^ln [ l - e'^^^^^) ]

    (513)

    W e can now ob tain all the th er m od yn am iqu an tit ies o f in te res fo r a system o f non

    in te ra ctin bos ons T he av erage occupatio num be of a given st a te i s given by

    m)

    1

    e0(^i-fi) - 1

    Sim ila rly the entr opy o f a system of n on-in te ra ctin bosons i s given by

    S = -kBY ^[fi Infi - ( 1 + fi) hi(l -f fi)]

    (514)

    (515)

    A P P E N D I X C . M o d ifie d Fe rm i -D i ra c statistic s i n a m o d e l o f

    correlation effect s

    I n the pre vious A pp en dix we have co ns ider e a p hy sica system co m pos e by N in dis-

    t inguishabln on-in te ra ctin ferm ion s con fined wit h in a vo lume V. Sup po se th at th e

    on e-elec tro H am ilt o n ian do es not rem ove the spin de ge ne racy i n the ind ep enden

    part icle app roxim ationt he occu patio prob ab iUt of the spaceorbital (of en ergy e^),

    regardlessof the spin deg eneracy ,i s th en given by

    w here the factor 2 account for t he spin de ge ner ac of t he orb ita leve l.

    In Ch ap te X II I , i n the stu dy of d op ed sem icond uctorsw e ne ed to kn ow n ot on ly

    the oc cu pa tio pro ba bility o f valence and co ndu ct io st a tes (de sc rib ed b y s ta n d ard

    deloca lize Bloch wave func tions)b ut also the oc cu pa tio p ro b ab ih t o f im pu rity lo-

    ca hzed st a tes i n the en ergy gap. I n se ve ra s ituation (fo r insta nce fo r do nor levels)

    the Coulo mb repuls ion betw een electro ns m ay preventdouble occupationof a given

    loca lizedorbital. W e now dis cu ss how th is effect (whic h i s th e sim ples exam ple o f

    cor re la tio be yo nd th e on e-e lec tro ap pro x im atio n modifies th e F erm i-D irac d is tr i-

    b u tion fun ctio n

    For sake of c larity consid e a b and sta te i n an allowed energy region of the cry sta

    and de sc rib e b y a Bloch wavefu nc tion a b and level can b e em pty o r oc cu pied b y

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    23/25

    S OL ID ST A T E PH Y S IC S

    99

    E=0

    N=0

    4-

    N=l

    E = E i

    N = l

    E = 2 e j

    N=2

    case (a)

    E=0

    N=0

    4 -

    E=ei

    N=l

    E=ei

    N=l

    case (b)

    4

    E=ei

    N=l

    N=l

    44^

    N=2

    case (c)

    Fig. 6 Schemati illustratio of possibl occupatio of a given spa tia orb ita of energy {.

    (a) The given level can accep tw o electron of eith e sp in (this i s the common situation for

    band states (b ) T he given level can accep only one electro of either spin (th is situ ation

    is common for donor impurity levels i n sem iconductors(c ) T h e given level can accom

    modat one or two electro ns hut not ze ro (this situation i s common for accepto levels in

    semiconductors)

    one electron o f e ith er sp in, or by tw o electro n of opposit spin; the four poss ib ilit ie

    are illu stra te i n Fig. 6a. Co ns ide now an imp urity s ta te wi th in the ene rgy gap and

    de sc ribe b y a loca lized wavefu nc tion a do nor leve l, for in sta n ce can b e em pty, o r

    occu pie b y one ele ctron o f eit her sp in, bu t no t b y tw o elec tro ns o f opposit spin,

    be ca us of the penal ty in the ele ctro sta tirep uls io en ergy the si tu ation i s ill ustra te

    in Fig. 6b.

    We calcu late fo r bo th s it ua tio ns th e av erage num ber o f elec tro ns i n th e st a te {

    (re ga rd les of the sp in dir ection) the average nu m be i s given by

    {rii)

    (3{Em,N-fiN)

    (C2)

    In the ca se of F ig. 6a, Eq. (C 2 ) gives

    (rii)

    M ) ]

    [i4-e-/3( i-M)]^'^7^^

    1 + e-/5(^

    as ex pe cte d the res ul ( C I ) i s reco vere

    /^)-hl

    (C3)

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    24/25

    100

    II I T H E SO MM ERFEL D FR EE-ELEC TRO N THEOR Y O F METAL S

    4f(e)

    F ig. 7 Average occup atio nu mbe (dashed line) for an orbita of energy e th at can accep

    up to two electron of eithe spin (sta nd ar Fermi-D irac statis tic s)T he average occu pa tio

    num be (so lid line) for an o rb ita of en ergy e that can accep only one elec tron of eithe spin

    is also reported For e

    fi ^ ks T th e two curves coincide

    In the case of F ig. 6b, w e have inste ad

    g- /3 (e i- / x) _| _ g-/3 (et - /x)

    {rii)

    I -| _ g -/ 3 (e i- /x) _| _ ^-f3{ei-tM)

    le/3(ei-M) + 1

    (C4)

    T he oc cu rre nc of the fac tor 1/ 2 i n E q. (C 4 ) , can be eas ily un d ers to o qu ali tat ive ly

    in the lim it ing case of a B o lt zm ann ta il (see Fig. 7 ) .

    For sake of com plet en es swe consid e also the st a ti s ti c of the ac cepto leve ls wh ose

    electro ni s tr u c tu r i s st ud ied i n C h a p te X III . A n ac ce pto level can be oc cu pie by

    two pa ir ed electrons or one of ei th e sp in b ut ca n no be em p ty be ca us of the pe na lty

    in electrostatirep uls ion ener gy betw een the two holes the s it u ation i s sc hem atic al l

    ind ica te i n Fig. 6c. T he ap plic atio of E q. (C 2 ) gives

    1 g-^(e,-M + 1

    If we indica te by {pi) 2

    (rii) the m ean nm nb e o f ho les we o b ta in

    1

    (Pi) =

    l e / 3 ( M - i) - f 1

    (C5)

    (C6)

    Further readin g

    N.W. As hcrof and N . D. Me rm in Solid S ta te Phys ics (Holt, Ri n eh ar and W in sto n

    New Y ork 1976)

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    25/25

    SOLID STAT E PHYSIC S 10 1

    H. B . Callen Th erm od yn am ic and a n Int ro du cti o t o Th erm os tat ics(Wiley , New

    York 1985, seco n ed itio n)

    K . Hua ng S ta tistica M ec han ics (W iley , Ne w Yo rk 1987, seco nd edition)

    C. Kit tel Ele m en tar Sta tis tic a Ph ys ics (Wiley , New York 1958)

    R. K ubo S ta tis tic a M ec ha nic s (N or th -H oll an d A m ste rd am 1988, seve nt ed ition

    A. Miinster Sta tistic a Th er m od yn am ic sVols . I and H (Spr ing er Berl in 1969)

    R. K . Pa thr ia S ta tis tic a Mec ha nic s (P er gam on Pre ss Oxford 1972 )

    L. E . Re ich A M od ern Coin-se in S ta tis tica Phy sics (A rn old, Lo nd on 1980)

    A . H . W ilson Th e T h eory o f M eta ls ( Cam brid ge Unive rs ity P ress 1954)