エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・...

85
感染症伝染ダイナミクスの数理モデル初歩 A First Step into Mathematical Model on The Epidemic Dynamics of Infectious Disease 瀬野裕美 Hiromi SENO 東北大学大学院情報科学研究科 Graduate School of Information Sciences, Tohoku University, Sendai, Japan [email protected] FOR: 明治大学 MIMS 現象数理学拠点リモートセミナー 14:30–16:00, 6 August, 2020

Transcript of エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・...

Page 1: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

感染症伝染ダイナミクスの数理モデル初歩A First Step into Mathematical Model on The Epidemic Dynamics of Infectious Disease

瀬野裕美Hiromi SENO

東北大学大学院情報科学研究科Graduate School of Information Sciences, Tohoku University, Sendai, Japan

[email protected]

FOR: 明治大学 MIMS 現象数理学拠点リモートセミナー14:30–16:00, 6 August, 2020

Page 2: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

OutlineOutline

Prologue: Epidemic dynamics of infectious disease

Epidemic dynamics modelGeneric SIR modelKermack–McKendrick SIR modelBasic reprodution number R0

Kermack–McKendrick SIRS modelForce of infection

Epilogue: Various factors on the epidemic dynamics

Page 3: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Prologue:

Epidemic dynamics of infectious disease

Prologue:

Epidemic dynamics of infectious disease

Page 4: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics of infectious diseaseEpidemic dynamics of infectious disease

S → E → I → R → S

Susceptible

S

Removed/Recovered

R

Infective

I

Latent/Incubation

E

Page 5: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics of infectious diseaseEpidemic dynamics of infectious disease

S → E → I → R → S

Susceptible

S

Removed/Recovered

R

Infective

I

Latent/Incubation

E

Infectious

Page 6: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics of infectious diseaseEpidemic dynamics of infectious disease

S → I → R → S

Susceptible

S

Removed/Recovered

R

Infective

I

Latent/Incubation

E

Infective

I

Page 7: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics of infectious diseaseEpidemic dynamics of infectious disease

S → E → I → R → S

Susceptible

S

Removed/Recovered

R

Infective

I

Latent/Incubation

E

Page 8: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics of infectious diseaseEpidemic dynamics of infectious disease

S → E → I → R

Susceptible

S

Removed/Recovered

R

Infective

I

Latent/Incubation

E

Page 9: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics of infectious diseaseEpidemic dynamics of infectious disease

S → I → R

Susceptible

S

Removed/Recovered

R

Infective

I

Latent/Incubation

E

Infective

I

Page 10: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Page 11: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

Page 12: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

Susceptible

S

Removed/Recovered

R

Infective

I

Latent/Incubation

E

Infective

I

Page 13: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

dS(t)dt

= B − ΛS(t)− µSS(t)

Page 14: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

dS(t)dt

= B − ΛS(t)− µSS(t)

Λ = Λ(S, I, R): Force of infection

Page 15: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

dS(t)dt

= B − ΛS(t) − µSS(t)

dI(t)dt

= ΛS(t)− qI(t)− µII(t)

Page 16: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

dS(t)dt

= B − ΛS(t) − µSS(t)

dI(t)dt

= ΛS(t)− qI(t)− µII(t)

dR(t)dt

= qI(t)− µRR(t)

Page 17: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

dS(t)dt

= − ΛS(t)

dI(t)dt

= ΛS(t)− qI(t)

dR(t)dt

= qI(t)

Page 18: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

dS(t)dt

= − ΛS(t)

dI(t)dt

= ΛS(t)− qI(t)

dR(t)dt

= qI(t)

ddt

{S(t) + I(t) + R(t)

}= 0

Page 19: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Generic SIR model

dS(t)dt

= − ΛS(t)

dI(t)dt

= ΛS(t)− qI(t)

dR(t)dt

= qI(t)

S(t) + I(t) + R(t) = N(time-independent constant total population size)

Page 20: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

Page 21: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

Λ ∝ I

Page 22: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

Λ ∝ I

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

dR(t)dt

= qI(t)

Page 23: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

I

RS

time

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

I

S0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

q

β

Page 24: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

dR(t)dt

= qI(t)

Page 25: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

dR(t)dt

= qI(t)

Page 26: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

Page 27: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

dS(t)dt

+dI(t)

dt− q

β

1S(t)

dS(t)dt

= 0

Page 28: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

ddt

{S(t) + I(t)− q

βlog S(t)

}= 0

Page 29: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

S(t) + I(t)− qβ

log S(t) = const.

Page 30: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

Conserved quantity of Kermack–McKendrick SIR model

S(t) + I(t)− qβ

log S(t) = S(0) + I(0)− qβ

log S(0)

Page 31: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

Conserved quantity of Kermack–McKendrick SIR model

S(t) + I(t)− qβ

log S(t) = S(0) + I(0)− qβ

log S(0)

I

RS

time

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

I

S0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

q

β

Page 32: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

Conserved quantity of Kermack–McKendrick SIR model

S(t) + I(t)− qβ

log S(t) = S(0) + I(0)− qβ

log S(0)

I

S0 q

β

Page 33: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

Conserved quantity of Kermack–McKendrick SIR model

S(t) + I(t)− qβ

log S(t) = S(0) + I(0)− qβ

log S(0)

I

RS

time

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

I

S0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

q

β

Page 34: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

I

S0 q

β

Final size equation for Kermack–McKendrick SIR model

S∞ − qβ

log S∞ = S(0) + I(0)− qβ

log S(0)

Page 35: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

I

S0 q

β

Page 36: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

S(0) >qβ

⇒ I(t) increases in the early periodof disease invasion;

S(0) ≤ qβ

⇒ I(t) monotonically decreases.

Page 37: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

β

qS(0) > 1 ⇒ I(t) increases in the early period

of disease invasion;

β

qS(0) ≤ 1 ⇒ I(t) monotonically decreases.

Page 38: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

β

qS(0) > 1 ⇒ I(t) increases in the early period

of disease invasion;

β

qS(0) ≤ 1 ⇒ I(t) monotonically decreases.

Basic reproduction number for Kermack–McKendrick SIR model

R0 :=β

qS(0)

Page 39: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIR model

R0 > 1 ⇒ I(t) increases in the early periodof disease invasion;

R0 ≤ 1 ⇒ I(t) monotonically decreases.

Basic reproduction number for Kermack–McKendrick SIR model

R0 :=β

qS(0) ⪅ R0 :=

β

qN

Page 40: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

Page 41: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

In the biological context, the basic reproduction number

R0 is defined as the expected number of new cases of

an infection caused by an infective individual, in a pop-

ulation::::::::::::::::::::::::::::::::::::::::::consisting of susceptible contacts only.

Page 42: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

In the biological context, the basic reproduction number

R0 is defined as the expected number of new cases of

an infection caused by an infective individual, in a pop-

ulation::::::::::::::::::::::::::::::::::::::::::consisting of susceptible contacts only.

※ The definition is independent of the epidemic situation in the population!

Page 43: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

In the biological context, the basic reproduction number

R0 is defined as the expected number of new cases of

an infection caused by an infective individual, in a pop-

ulation::::::::::::::::::::::::::::::::::::::::::consisting of susceptible contacts only.

※ The definition is independent of the epidemic situation in the population!

R0 > 1 ⇒ The number of infectives (likely) increases;

R0 < 1 ⇒ The number of infectives decreases.

Page 44: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

In the biological context, the basic reproduction number

R0 is defined as the expected number of new cases of

an infection caused by an infective individual, in a pop-

ulation::::::::::::::::::::::::::::::::::::::::::consisting of susceptible contacts only.

※ The definition is independent of the epidemic situation in the population!

The number of infectives increases. ⇒ R0 > 1;

The number of infectives decreases. ⇒ R0 < 1 (likely)

Page 45: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

Kermack-McKendrick SIR model

dS(t)dt

= −βI(t)S(t)

dI(t)dt

= βI(t)S(t)− qI(t)

Page 46: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

Kermack-McKendrick SIR model

dI(t)dt

= βI(t)S(t)− qI(t)

Page 47: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

Kermack-McKendrick SIR model

dI(t)dt

= q{ β

qS(t)− 1

}I(t)

Page 48: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

Kermack-McKendrick SIR model

dI(t)dt

= q{ β

qS(t)− 1

}I(t)

β

qS(t) > 1 ⇒ I(t) increases;

β

qS(t) < 1 ⇒ I(t) decreases.

Page 49: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

Kermack-McKendrick SIR model

dI(t)dt

= q{ β

qS(t)− 1

}I(t)

Effective reproduction number Rt for Kermack–McKendrick SIR model

Rt :=β

qS(t)

Page 50: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Basic reproduction number R0

Kermack-McKendrick SIR model

dI(t)dt

= q{ β

qS(t)− 1

}I(t)

Effective reproduction number Rt for Kermack–McKendrick SIR model

Rt :=β

qS(t) ≤ R0 :=

β

qN

Page 51: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

William Ogilvy Kermack Anderson Gray McKendrick(26 April 1898 – 20 July 1970) (8 September 1876 – 30 May 1943)

References: Davidson, J. N. (1971) ”William Ogilvy Kermack. 1898-1970”. Biographical Memoirsof Fellows of the Royal Society, 17: 399–429. doi:10.1098/rsbm.1971.0015;http://www-history.mcs.st-and.ac.uk/Biographies/McKendrick.html

Page 52: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack, W, McKendrick, A (1991) Contributions to the mathematicaltheory of epidemics – I. Bulletin of Mathematical Biology, 53(1-2): 33–55.doi:10.1007/BF02464423.Reprinted fromthe Proceedings of the Royal Society, Vol. 115A, pp. 700–721 (1927)

Kermack, W, McKendrick, A (1991) Contributions to the mathematicaltheory of epidemics – II. The problem of endemicity. Bulletin ofMathematical Biology, 53(1-2): 57–87. doi:10.1007/BF02464424.Reprinted fromthe Proceedings of the Royal Society, Vol. 138A, pp. 55–83 (1932)

Kermack, W, McKendrick, A (1991) Contributions to the mathematicaltheory of epidemics – III. Further studies of the problem of endemicity.Bulletin of Mathematical Biology, 53(1-2): 89–118.doi:10.1007/BF02464425.Reprinted fromProceedings of the Royal Society, Vol. 141A, pp. 94–122 (1933)

Page 53: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Page 54: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

I

RS

time

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

I

S0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

q

β

Page 55: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

H. Inaba, Age-Structured Population Dynamics in Demography andEpidemiology, Springer, Singapore, 2017.

齋藤保久・佐藤一憲・瀬野裕美, 数理生物学講義【展開編】 ー数理モデル解析の講究ー, 共立出版, 東京, 2017.

日本数理生物学会 (編), 『数』の数理生物学 (瀬野裕美 責任編集), シリーズ数理生物学要論, 第1巻, 共立出版, 東京, 2008.

稲葉寿, 感染症の数理モデル, 培風館, 東京, 2008.

稲葉寿, 数理人口学, 東京大学出版会, 東京, 2002.

Page 56: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model

Page 57: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model

Susceptible

S

Removed/Recovered

R

Infective

I

Latent/Incubation

E

Infective

I

Page 58: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model

dS(t)dt

= −βI(t)S(t) + ωR(t)

dI(t)dt

= βI(t)S(t)− qI(t)

dR(t)dt

= qI(t)− ωR(t)

Page 59: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model

dS(t)dt

= −βI(t)S(t) + ωR(t)

dI(t)dt

= βI(t)S(t)− qI(t)

dR(t)dt

= qI(t)− ωR(t)

S(t) + I(t) + R(t) = N

Page 60: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model R0 :=β

qN

dS(t)dt

= −βI(t)S(t) + ωR(t)

dI(t)dt

= βI(t)S(t)− qI(t)

dR(t)dt

= qI(t)− ωR(t)

S(t) + I(t) + R(t) = N

Page 61: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model R0 :=β

qN

dS(t)dt

= −βI(t)S(t) + ω{

N − S(t)− I(t)}

dI(t)dt

= βI(t)S(t)− qI(t)

Page 62: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model R0 :=β

qN

R0 ≤ 1 ⇒ (S(t), I(t)) →t→∞

(N, 0)

R0 > 1 ⇒ (S(t), I(t)) →t→∞

(qβ

, I∗)

Page 63: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model R0 :=β

qN

R0 ≤ 1 ⇒ (S(t), I(t)) →t→∞

(N, 0)

R0 > 1 ⇒ (S(t), I(t)) →t→∞

(qβ

, I∗)

I∗ =1 − 1/R0

1 + q/ωN

Page 64: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model R0 :=β

qN

R0 ≤ 1 ⇒ (S(t), I(t)) →t→∞

(N, 0) 【感染症不在平衡状態】disease-free equilibrium state

R0 > 1 ⇒ (S(t), I(t)) →t→∞

(qβ

, I∗)

I∗ =1 − 1/R0

1 + q/ωN

Page 65: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model R0 :=β

qN

R0 ≤ 1 ⇒ (S(t), I(t)) →t→∞

(N, 0) 【感染症不在平衡状態】disease-free equilibrium state

R0 > 1 ⇒ (S(t), I(t)) →t→∞

(qβ

, I∗) 【感染症定着平衡状態】endemic equilibrium state

I∗ =1 − 1/R0

1 + q/ωN

Page 66: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Kermack-McKendrick SIRS model

I

I

R

R

S

S

time

time

I

S

I

S

R0 = 2.5;

q = 17 ;

ω = 0.1, 0.5;

(S(0), I(0), R(0))= (0.99N, 0.01N, 0.0).

Page 67: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Force of infection

Page 68: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Force of infection

Kermack–McKendric model

Λ = βI

Page 69: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Force of infection

Kermack–McKendric model

Λ = βI = γ · IN

· cN

Page 70: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Force of infection

Kermack–McKendric model

Λ = βI = γ · IN

· cN

Frequency/Ratio-dependent force of infection

Λ = λIN

Page 71: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Force of infection

Kermack–McKendric model

Λ = βI = γ · IN

· cN

Frequency/Ratio-dependent force of infection

Λ = λIN

= γ · IN

· C

Page 72: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Force of infection

Vector-borne disease transmission (mass-action type)

Λ = βHV

Page 73: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Force of infection

Vector-borne disease transmission (mass-action type)

Λ = βHV = γ · VM

· cM

Page 74: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

Force of infection

Vector-borne disease transmission (mass-action type)

Λ = βHV

Susceptible

S

Removed/Recovered

RInfected

I

V

U

Non-carrier vector

Carrier vector

Page 75: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

A model for the vector-borne disease transmission

dS(t)dt

= −βHV(t)S(t) + ωR(t)

dI(t)dt

= βHV(t)S(t)− qI(t)

dR(t)dt

= qI(t)− ωR(t)

dU(t)dt

= Q − βMI(t)U(t)− δU(t)

dV(t)dt

= βMI(t)U(t)− δV(t)

Page 76: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

A model for the vector-borne disease transmission

dS(t)dt

= −βHV(t)S(t) + ω{

N − S(t)− I(t)}

dI(t)dt

= βHV(t)S(t)− qI(t)

dV(t)dt

= βMI(t){ Q

δ− V(t)

}− δV(t)

Page 77: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epidemic dynamics modelEpidemic dynamics model

A model for the vector-borne disease transmission

dS(t)dt

= −βHV(t)S(t) + ω{

N − S(t)− I(t)}

dI(t)dt

= βHV(t)S(t)− qI(t)

dV(t)dt

= βMI(t){ Q

δ− V(t)

}− δV(t)

Basic reproduction number

R0 :=(

βHN · 1δ

)︸ ︷︷ ︸human infection bya carrier vector

×(

βMQδ

· 1q

)︸ ︷︷ ︸production of carriervectors by an infective

Page 78: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Epilogue:

Various factors on the epidemic dynamics

Epilogue:

Various factors on the epidemic dynamics

Page 79: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Various factors on the epidemic dynamicsVarious factors on the epidemic dynamics

Route of disease transmission;

Condition of public health;

Condition of medical treatment;

Cultural/social custom in the daily life;

Social response under the cultural/political/economicbackground.

Page 80: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Various factors on the epidemic dynamicsVarious factors on the epidemic dynamics

Route of disease transmission;

Condition of public health;

Condition of medical treatment;

Cultural/social custom in the daily life;

Social response under the cultural/political/economicbackground.

Page 81: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Various factors on the epidemic dynamicsVarious factors on the epidemic dynamics

Route of disease transmission;

Condition of public health;

Condition of medical treatment;

Cultural/social custom in the daily life;

Social response under the cultural/political/economicbackground.

Page 82: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Various factors on the epidemic dynamicsVarious factors on the epidemic dynamics

Route of disease transmission;

Condition of public health;

Condition of medical treatment;

Cultural/social custom in the daily life;

Social response under the cultural/political/economicbackground.

Page 83: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Various factors on the epidemic dynamicsVarious factors on the epidemic dynamics

Route of disease transmission;

Condition of public health;

Condition of medical treatment;

Cultural/social custom in the daily life;

Social response under the cultural/political/economicbackground.

Page 84: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

Various factors on the epidemic dynamicsVarious factors on the epidemic dynamics

Route of disease transmission;

Condition of public health;

Condition of medical treatment;

Cultural/social custom in the daily life;

Social response under the cultural/political/economicbackground.

Page 85: エカタ ノナチタ タ・、・ハ・゚・ッ・ケ、ホソ ・ …seno/koukaifiles/MIMS2020...Outline Prologue: Epidemic dynamics of infectious disease Epidemic dynamics model

H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology,Springer, Singapore, 2017.

齋藤保久・佐藤一憲・瀬野裕美, 数理生物学講義【展開編】 ー数理モデル解析の講究ー, 共立出版, 東京, 2017.

瀬野裕美, 数理生物学講義【基礎編】 ー数理モデル解析の初歩ー, 共立出版, 東京, 2016.

L.J.S. Allen, 生物数学入門 ― 差分方程式・微分方程式の基礎からのアプローチ ―, 共立出版, 東京, 2011. (竹内・佐藤・守田・宮崎 監訳)

関村利朗・山村則男(編), 理論生物学の基礎, 海游舎, 東京, 2012.

日本数理生物学会 (編), 『数』の数理生物学 (瀬野裕美 責任編集), シリーズ数理生物学要論,第1巻, 共立出版, 東京, 2008.

稲葉寿, 感染症の数理モデル, 培風館, 東京, 2008.

瀬野裕美, 数理生物学 ― 個体群動態の数理モデリング入門 ―, 共立出版, 東京, 2007.

稲葉寿, 数理人口学, 東京大学出版会, 東京, 2002.