(II) FFECTIVE FIELD THEORIES FOR HOT AND DENSE …theor.jinr.ru/~dm2008/lectures/blaschke2.pdf ·...

17
E FFECTIVE FIELD THEORIES FOR HOT AND DENSE MATTER (II) NJL MODEL AND ITS RELATIVES David Blaschke Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia NJL Model and its Polyakov-Loop Extension: Mesonic correlations - Mott Effect Polyakov-Loop NJL Model Nonlocal, separable NJL Model 3D Formfactors, 4D Formfactors and Phase Diagram Rank-2 Extension - Schwinger-Dyson type Approach Summary / Outlook to a Unified Quark-Hadron Approach Literature: Hansen et al., Phys. Rev. D75, 065004 (2007); Gomez Dumm et al., Phys. Rev. D73, 114019 (2006); arXiv:0807.1660; Blaschke et al., arXiv:0705.0384; Schmidt et al., Phys. Rev. C50, 435 (1994); Zablocki at al., arXiv:0805.2687 HISS D UBNA, DM 2008

Transcript of (II) FFECTIVE FIELD THEORIES FOR HOT AND DENSE …theor.jinr.ru/~dm2008/lectures/blaschke2.pdf ·...

EFFECTIVE FIELD THEORIES FOR HOT AND DENSE MATTER (II)NJL MODEL AND ITS RELATIVES

David Blaschke

Institute for Theoretical Physics, University of Wroclaw, Poland

Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia

•NJL Model and its Polyakov-Loop Extension:

– Mesonic correlations - Mott Effect

– Polyakov-Loop NJL Model

•Nonlocal, separable NJL Model

– 3D Formfactors, 4D Formfactors and Phase Diagram

– Rank-2 Extension - Schwinger-Dyson type Approach

•Summary / Outlook to a Unified Quark-Hadron Approach

Literature: Hansen et al., Phys. Rev. D75, 065004 (2007); Gomez Dumm et al., Phys. Rev.D73, 114019 (2006); arXiv:0807.1660; Blaschke et al., arXiv:0705.0384; Schmidt et al., Phys.Rev. C50, 435 (1994); Zablocki at al., arXiv:0805.2687

HISS DUBNA, DM 2008

1

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

NICA − MPD

HISS DUBNA, DM 2008

2

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

Model

Field Theory

Quark

Chiral

NICA − MPD

HISS DUBNA, DM 2008

3

CHIRAL MODEL FIELD THEORY FOR QUARK MATTER

•Partition function as a Path Integral (imaginary time τ = i t)

Z[T, V, µ] =

DψDψ exp

∫ β

V

d3x[ψ[iγµ∂µ −m− γ0(µ + λ8µ8 + iλ3φ3]ψ −Lint + U(Φ)]

Polyakov loop: Φ = N−1c Trc[exp(iβλ3φ3)]

•Current-current interaction (4-Fermion coupling)Lint =

M=π,σ,...GM(ψΓMψ)2 +∑

DGD(ψCΓDψ)2

•Bosonization (Hubbard-Stratonovich Transformation)

Z[T, V, µ] =

DMMD∆†DD∆D exp

−∑

M,D

M 2M

4GM−

|∆D|2

4GD+

1

2Tr lnS−1[MM, ∆D,Φ] + U(Φ)

•Collective quark fields: Mesons (MM) and Diquarks (∆D); Gluon mean field: Φ

•Systematic evaluation: Mean fields + Fluctuations

– Mean-field approximation: order parameters for phase transitions (gap equations)

– Lowest order fluctuations: hadronic correlations (bound & scattering states)

– Higher order fluctuations: hadron-hadron interactions

HISS DUBNA, DM 2008

4

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (I)

SU(Nc) pure gauge sector: Polyakov line

L (~x) ≡ P exp

[

i

∫ β

0

dτ A4 (~x, τ )

]

; A4 = iA0

Polyakov loop

l(~x) =1

NcTrL(~x) , 〈l(~x)〉 = e−β∆FQ(~x).

ZNc symmetric phase: 〈l(~x)〉 = 0 =⇒ ∆FQ → ∞: Confinement !Polyakov loop field:

Φ(~x) ≡ 〈〈l(~x)〉〉 =1

NcTrc 〈〈L(~x)〉〉

Potential for the PL-meanfield Φ(~x) =const., which fits quenched QCD lattice thermodynamics

U(

Φ, Φ;T)

T 4= −

b2 (T )

2ΦΦ −

b36

(

Φ3 + Φ3)

+b44

(

ΦΦ)2

,

b2 (T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

+ a3

(

T0

T

)3

.a0 a1 a2 a3 b3 b4

6.75 -1.95 2.625 -7.44 0.75 7.5

HISS DUBNA, DM 2008

5

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (II)

Temperature dependence of the Polyakov-loop potential U(Φ, Φ;T )

0

1

2

3

4

5

-1.5-1

-0.5 0

0.5 1

1.5Re Φ

-1.5

-1

-0.5

0

0.5

1

1.5

Im Φ

-2-1 0 1 2 3 4 5

U( Φ ) / T4

T = 0.26 GeV< T0

“Color confinement”

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1.5-1

-0.5 0

0.5 1

1.5Re Φ

-1.5

-1

-0.5

0

0.5

1

1.5

Im Φ

-3-2.5

-2-1.5

-1-0.5

0 0.5

U( Φ ) / T4

T = 1.0 GeV> T0

“Color deconfinement”

Critical temperature for pure gauge SUc(3) lattice simulations: T0 = 270 MeV.

HISS DUBNA, DM 2008

6

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (III)

Lagrangian for Nf = 2, Nc = 3 quark matter, coupled to the gauge sector

LPNJL = q(iγµDµ − m + γ0µ)q +G1

[

(qq)2 + (qiγ5~τq)2]

− U(

Φ[A], Φ[A];T)

,

Dµ = ∂µ − iAµ; Aµ = δµ0A0 (Polyakov gauge), with A0 = −iA4

Diagrammatic Hartree equation: = +>

S0(p) = = −(p/−m0 + γ0(µ− iA4))−1 ; S(p) = = −(p/−m + γ0(µ− iA4))

−1

Dynamical chiral symmetry breaking σ = m−m0 6= 0? Solve Gap Equation!

m−m0 = 2G1T Tr

+∞∑

n=−∞

Λ

d3p

(2π)3−1

p/−m + γ0(µ− iA4)

= 2G1NfNc

Λ

d3p

(2π)32m

Ep[1 − f+

Φ (Ep) − f−Φ (Ep)]

With the modified quark distribution functions

f±Φ (Ep) =

(

Φ + 2Φe−β(Ep∓µ))

e−β(Ep∓µ) + e−3β(Ep∓µ)

1 + 3(

Φ + Φe−β(Ep∓µ))

e−β(Ep∓µ) + e−3β(Ep∓µ)

HISS DUBNA, DM 2008

7

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (IV)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4T @GeVD

0.2

0.4

0.6

0.8

1XΨ

Ψ\XΨ

Ψ\T=0

F

0 0.5 1 1.5 2T/T

c

0

0.2

0.4

0.6

0.8

1 nq/T

3

µ=0.6 Tc

Grand canonical thermodynamical potential

Ω(T, µ; Φ,m) =σ2

2G− 6Nf

d3p

(2π)3Ep θ

(

Λ2 − ~p 2)

− 2Nf T

d3p

(2π)3

Trc ln[

1 + L e−(Ep−µ)/T]

+ Trc ln[

1 + L† e−(Ep+µ)/T]

+ U(

Φ, Φ, T)

Appearance of quarks below Tc largely suppressed:

ln det[

1 + L e−(Ep−µ)/T]

+ ln det[

1 + L† e−(Ep+µ)/T]

= ln[

1 + 3(

Φ + Φe−(Ep−µ)/T)

e−(Ep−µ)/T + e−3(Ep−µ)/T]

+ ln[

1 + 3(

Φ + Φe−(Ep+µ)/T)

e−(Ep+µ)/T + e−3(Ep+µ)/T]

.

Accordance with QCD lattice susceptibilities! Example:

nq (T, µ)

T 3= −

1

T 3

∂Ω (T, µ)

∂µ,

Ratti, Thaler, Weise, PRD 73 (2006) 014019.

HISS DUBNA, DM 2008

8

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (V)

Mesonic currents

JaP (x) = q(x)iγ5τaq(x) (pion) ; JS(x) = q(x)q(x) − 〈q(x)q(x)〉 (sigma)

... and correlation functions

CPPab (q2) ≡ i

d4xeiq.x〈0|T(

JaP (x)J b†P (0))

|0〉 = CPP (q2)δab

CSSab (q2) ≡ i

d4xeiq.x〈0|T(

JS(x)J †S(0)

)

|0〉

Schwinger-Dyson Equations, T = µ = 0

CMM(q2) = ΠMM (q2) +∑

M ′

ΠMM ′(q2)(2G1)C

M ′M(q2)

One-loop polarization functions

ΠMM ′(q2) ≡

Λ

d4p

(2π)4Tr (ΓMS(p + q)ΓM ′S(q))

Hartree quark propagator S(p)

HISS DUBNA, DM 2008

9

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (VI)

Example of the pion channel:

ΠPP (q2) = −4iNcNf

Λ

d4p

(2π)4m2 − p2 + q2/4

[(p + q/2)2 −m2][(p− q/2)2 −m2]= 4iNcNfI1 − 2iNcNfq

2I2(q2)

Loop Integrals:

I1 =

Λ

d4p

(2π)41

p2 −m2; I2(q

2) =

Λ

d4p

(2π)41

[(p + q)2 −m2] [p2 −m2]

With pseudoscalar decay constant (fP ) and gap equation for I1

f 2P (q2) = −4iNcm

2I2(q2) ; I1 =

m−m0

8iG1mNcNf,

One obtains ΠPP (q2) = m−m0

2G1m+ f 2

P (q2) q2

m2 ; ΠSS(q2) = m−m0

2G1m+ f 2

P (q2)q2−4m2

m2 . In the chiral limit(m0 = 0), the correlation functions

CMM (q2) = ΠMM (q2) + ΠMM (q2)(2G1)CMM (q2) =

ΠMM (q2)

1 − 2G1ΠMM (q2), M = P, S ,

have poles at q2 = M 2P = 0 (Pion) and q2 = M 2

S = (2m)2 (Sigma meson) =⇒ Check !

HISS DUBNA, DM 2008

10

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (VII)

Finite T, µ: p = (p0, ~p) → (iωn + µ− iA4, ~p) ; i∫

Λd4p

(2π)4→ −T 1

NcTrc

n

Λd3p

(2π)3

I1 = −i

Λ

d3p

(2π)31 − f(Ep − µ) − f(Ep + µ)

2Ep

I2(ω, ~q) = i

Λ

d3p

(2π)31

2Ep2Ep+q

f(Ep + µ) + f(Ep − µ) − f(Ep+q + µ) − f(Ep+q − µ)

ω − Ep+q + Ep

+i

Λ

d3p

(2π)31 − f(Ep − µ) − f(Ep+q + µ)

2Ep2Ep+q

(

1

ω + Ep+q + Ep−

1

ω −Ep+q − Ep

)

(1)

For a meson at rest in the medium (~q = 0)

I2

(

ω,~0)

= −i

Λ

d3p

(2π)31 − f(Ep + µ) − f(Ep − µ)

Ep

(

ω2 − 4E2p

)

which develops an imaginary part

=m (−iI2(ω, 0)) =1

16π

(

1 − f(ω

2− µ

)

− f(ω

2+ µ

))

ω2 − 4m2

ω2×Θ(ω2−4m2)Θ(4(Λ2+m2)−ω2)

with the Pauli-blocking factor: N(ω, µ) =(

1 − f(

ω2− µ

)

− f(

ω2

+ µ))

HISS DUBNA, DM 2008

11

POLYAKOV-LOOP NAMBU–JONA-LASINIO MODEL (VIII)

Spectral function

FMM (ω, ~q) ≡ =mCMM(ω + iη, ~q) = =mΠMM (ω + iη, ~q)

1 − 2G1ΠMM (ω + iη, ~q).

FMM (ω) =π

2G1

1

π

2G1=mΠMM(ω + iη)

(1 − 2G1<eΠMM (ω))2 + (2G1=mΠMM(ω + iη))2 . (2)

For ω < 2m(T, µ), =mΠ = 0: decay channel closed → bound state!

FMM(ω) =π

2G1δ(

1 − 2G1<eΠMM (ω))

4G21

∂<eΠMM

∂ω

ω=mM

δ(ω −mM) .

The meson mass mM is the solution of

1 − 2G1<eΠMM (mM) = 0

The decay width (inverse lifetime) is

ΓM = 2G1=mΠMM (mM)

HISS DUBNA, DM 2008

12

PION CORRELATIONS IN THE PHASE DIAGRAM

0 100 200 300 400µ [MeV]

0

50

100

150

200

250

300

T [

MeV

]

2SC

Γπ>50 MeV

χSB

ηD

= 1.00

Γπ=0

0 200 400 600 800 1000ω [MeV]

0

50

100

150

200

250

300

ρπ(ω

) [a

rb.

un

its]

T = 0T = 200 MeVT = 215 MeVT = 250 MeV

0 200 400 600 800 10000

1

2

3

4

5

mπ µ = 0η

D = 1.0

Zablocki, D.B., Anglani, arXiv:0805.2687 [hep-ph]

HISS DUBNA, DM 2008

13

COLOR NEUTRALITY IN THE PNJL PHASE DIAGRAM

Color neutrality constraint: µ = µ1 + µ8λ8 + iφ3λ3 ; ∂ΩMF/∂µ8 = n8 = nr + ng − 2nb = 0

Gap equations: ∂ΩMF/(∂σ, ∂∆, ∂φ3) = 0

0 50 100 150 200 250 300 350 4000

50

100

150

200

250

With colorneutrality

T [ M

eV

]

µ [ MeV ]

Without colorneutrality

0 100 200 300 400 5000

50

100

150

200

250

0 100 200 300 400 5000

50

100

150

200

250

∆ [ M

eV

]

µ [ MeV ]

T = 0 T = 50 MeV T = 100 MeV

First order transition Second order transition Smooth crossover

2SCχSB - 2SC

EP

T [ M

eV

]

µ [ MeV ]

χSB

NQM

Gomez-Dumm, D.B., Grunfeld, Scoccola, arXiv:0807.1660

HISS DUBNA, DM 2008

14

NONLOCAL POLYAKOV LOOP CHIRAL QUARK MODEL

0 0.1 0.2 0.3 0.4T, GeV

0

0.25

0.5

0.75

1

md

/ mdvac

and Φ

D.B., Buballa, Radzhabov, Volkov,arXiv:0705.0384

0.18 0.19 0.20temperature T[GeV]

10

20

30

40

susc

epti

bil

itie

s

dΦ(Τ)/dTdm

u,d(T)/dT

dms(T)/dT

0.1 0.15 0.2temperature T[GeV]

Nf=2+1

w/o Polyakov loopw Polyakov loop

Nf=2+1

D.B., Horvatic, Klabucar, in prep.

HISS DUBNA, DM 2008

15

COMPLEX MASS POLE FIT TO LATTICE PROPAGATOR

0.0 1.0 2.0 3.0 4.0p (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

BHAGWAT, PICHOWSKY, ROBERTS,TANDY, PHYS. REV. C68 (2003)015203

S(p)−1 = i/pA(p2)+ B(p2) ,

M(p2) = B(p2)/A(p2)

Z(p2) = 1/A(p2)

S(p) sum of N pairs of complex conj. mass poles

S(p) =N

i=1

1

Z2

zii/p +mi

+z∗i

i/p +m∗i

= −i/pσV (p2) + σS(p2)

Representation of the scalar amplitude

σS(p2) =

N∑

i=1

Z−12

zimi

p2 +m2i

+z∗i m

∗i

p2 +m∗i2

“Derivation” of the equivalent separable model (inFeynman-like gauge) Dµν(p− q) = δµν D(p, q) and

D(p, q) = f0(p2) f0(q

2) + f1(p2) p · q f1(q

2)

f1(p2) =

A(p2) − 1

a; f0(p

2) =B(p2) −mc

b

b2 =16

3

∫ Λ

q

[B(q2) −mc]σs(q2)

a2 =8

3

∫ Λ

q

[A(q2) − 1]q2

4σv(q

2)

HISS DUBNA, DM 2008

16

NUCLEONS IN THE NONLOCAL CHIRAL QUARK MODEL

Zfluct =

D∆†D∆ exp−|∆|2

4GD− Tr lnS−1[∆,∆†]

Cahill, Roberts, Prashifka: Aust. J. Phys. 42 (1989) 129, 161Cahill, ibid, 171; Reinhardt: PLB 244 (1990) 316; Buck, Alkofer, Reinhardt: PLB 286 (1992) 29

HISS DUBNA, DM 2008

17