IGTI GT2016-56698 - LinkedIn

17
Dependence of Film Cooling Effectiveness on 3D Printed Cooling Holes Presented By: Paul Aghasi GT2016-56698, June 14 th 2016 Paul Aghasi, MSc Ephraim Gutmark, PhD David Munday, PhD Authors, University of Cincinnati:

Transcript of IGTI GT2016-56698 - LinkedIn

Page 1: IGTI GT2016-56698 - LinkedIn

Dependence of Film Cooling Effectiveness on 3D Printed

Cooling HolesPresented By:Paul Aghasi

GT2016-56698, June 14th 2016

Paul Aghasi, MScEphraim Gutmark, PhD

David Munday, PhD

Authors, University of Cincinnati:

Page 2: IGTI GT2016-56698 - LinkedIn

GT2016-56698 2Outline

• Experimental Approach and Motivation• Relevant Previous Work• Data Quality and Facility Validation• Experimental Results• Discussion and Conclusion • Backup Slides

Page 3: IGTI GT2016-56698 - LinkedIn

GT2016-56698 3

Supply System and Wind Tunnel

Facility Capabilities:Air Mass flow: up to 3.0 lbm/sCoolant Mass flow: up to 0.05 lbm/sMainstream Mach: up to 0.8Available Air at Highest Mass Flow: 30 mins

Page 4: IGTI GT2016-56698 - LinkedIn

GT2016-56698 4Film Hole Geometry

• (a) CNC Aluminum • (b) SLA • (c) PolyJet• (d-f) FDM, 200-250-

300μ build layer resolutions

1Schroeder R. P., and Thole K. A., 2014. "Adiabatic Effectiveness Measurements For A Baseline Shaped Film Cooling Hole," in Proceedings of ASME Turbo Expo, Düsseldorf, Germany,

1

Objective:Similar performance?

If not why?

Page 5: IGTI GT2016-56698 - LinkedIn

GT2016-56698 5

Roughness and Diffusers• Ra/D = 0.005• Added roughness

caused:– Flow separation

prevention– BL thickening at the

throat and effective divergence angle reduction

1Persh and Bailey B. M., 1954."Effect of Surface Roughness Over the Downstream Region of a 23° Conical Diffuser," NACA TN 3066,

1

u/U

Page 6: IGTI GT2016-56698 - LinkedIn

GT2016-56698 6Factors Affecting Part Quality• Stair stepping effect• Build orientation• Surface roughness is method

dependent• 90° build angle surface roughness can

be related to the 60° build angle surface roughness – True for SLA and FDM– Inverted for PolyJet

30°

1Ahn D., Kim H., and Lee S., 2009. "Surface roughness prediction using measured data and interpolation in layered manufacturing," Journal of Materials Processing Technology, 209, pp. 664-671, 2Kim G. D., and Oh Y. T., 2008. "A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost," Journal of Engineering Manufacture, 222 (2), pp. 201-215,

2

2

1

2

Page 7: IGTI GT2016-56698 - LinkedIn

GT2016-56698 7Data Quality – PSP Validation

1Baldauf S., Schulz A., and Wittig S., 2001. "High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling," ASME Journal of Turbomachinery, 123 (4), pp. 758-765,

δ/D = 0.4

δ/D = 0.1

Page 8: IGTI GT2016-56698 - LinkedIn

GT2016-56698 8

Experimental Flow Conditions

• Mainstream Mach 0.3 for all cases• Approach Rex= 9 X 105 > 5 X 105 • CO2 as coolant, density ratio = 1.5

– Mass transfer analogy• Test conditions:

Blowing Ratio (BR) 1.0 1.5 2.0 2.5 3.0 3.5Momentum flux ratio (I) 0.58 1.18 1.85 2.52 3.16 3.76

Page 9: IGTI GT2016-56698 - LinkedIn

GT2016-56698 9

Roughness Measurements-Bruker Contour GT-K1 3D Optical Microscope-White and green light interferometry

Page 10: IGTI GT2016-56698 - LinkedIn

GT2016-56698 10

Roughness measurementsBuild Layer

Thickness (μm)

Manufacturing

Technique (qty.)

Material Roughness

Ra/D

Observed

Liftoff (BR)

N/A CNC (1)Bare Al

Painted Al

0.00038

0.006502.5

25 (0.010D) PolyJet (3) RGD525 0.00927 2.0

25 (0.010D) SLA (1) Photo-polymer 0.00545 2.0

200 (0.08D) FDM (1) ABS Plastic 0.00896 >3.5

250 (0.10D) FDM (1) ABS Plastic 0.01077 3.0

300 (0.12D) FDM (1) ABS Plastic 0.01288 3.5

1Ahn D., Kim H., and Lee S., 2009. "Surface roughness prediction using measured data and interpolation in layered manufacturing," Journal of Materials

Page 11: IGTI GT2016-56698 - LinkedIn

GT2016-56698 11

Discharge Coefficient• PolyJet Cd < FDM Cd• Highest Cd -> aluminum CNC • FDM roughness correlating

with Cd

FDM 300FDM 250FDM 200 PolyJet SLA Aluminum0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

1.01.52.02.53.03.5

Disc

harg

e Co

effici

ent

BR:

1.0 1.5 2.0 2.5 3.0 3.50.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AluminumSLAPolyJetFDM 200FDM 250FDM 300

BR

Disc

harg

e Co

effici

ent

Roughness: coarse smooth

Page 12: IGTI GT2016-56698 - LinkedIn

GT2016-56698 12

Comparison of various test coupons at BR = 2.0, 1.85

Comparison of various test coupons at BR = 1.5, I = 1.18

Full Field Effectiveness

Page 13: IGTI GT2016-56698 - LinkedIn

GT2016-56698 13

Comparison of various test coupons at BR = 3.5, I = 3.76

Full Field η

0 0

0 0

0 0

Page 14: IGTI GT2016-56698 - LinkedIn

GT2016-56698 14

Lift off 2.5

Lift off >3.5

Lift off 2.0Lift off 2.0

Lift off 3.0 Lift off 3.5

Span Averaged Results

0 0 0

0 0 0

Page 15: IGTI GT2016-56698 - LinkedIn

GT2016-56698 15

Discussion and Conclusion• OSP increased Ra for aluminum • Major differences in η and η̅ for 3D printed coupons

– Care needs to be taken when testing 3D printed film holes.• In-hole coolant separation was delayed for rougher parts

– Most likely due to boundary layer thickening at the diffuser section1

– The exception is the PolyJet coupon • Rougher test coupons showed higher η̅ at BR of 3.5

– Due to the film diffusion on the rough surface that prevents it from penetrating into the mainstream2

• At this scale the roughness produced by additive manufacturing is not comparable to the less rough, standard CNC machined parts.

1Persh and Bailey B. M., 1954."Effect of Surface Roughness Over the Downstream Region of a 23° Conical Diffuser," NACA TN 3066, 2Goldstein, R. J. Eckert, E. R. G. Chiang, H. D. and Elovic, E. 1985. "Effect of Surface Roughness on Film Cooling Performance," Journal of Engineering for Gas Turbines and Power , 107, pp. 111-116,

Page 16: IGTI GT2016-56698 - LinkedIn

GT2016-56698 16

Future Work

• Build orientation• Roughness effects from the paint• Hot wire measurements

– Oversized holes• Metal 3D printing and its effect

– Its build orientation• Assess CFD validation

Page 17: IGTI GT2016-56698 - LinkedIn

GT2016-56698 17

Thank you!