IGNITION: BASIC ISSUE IN ALL COMBUSTION SYSTEMS · spark events to ignite most burners ignition •...

54
Flame ignition and propagation T. Poinsot, IMF Toulouse, CNRS and INPT P. Wolf, F. Duchaine, G. Staffelbach, L. Gicquel, CERFACS, Toulouse Copyright Dr T. Poinsot 2013 1 IGNITION: BASIC ISSUE IN ALL COMBUSTION SYSTEMS IGNITE AND REIGNITE COMBUSTORS AVOID IGNITION IN OTHER CASES (SAFETY): EXPLOSIONS 2

Transcript of IGNITION: BASIC ISSUE IN ALL COMBUSTION SYSTEMS · spark events to ignite most burners ignition •...

Flame ignition and propagation

T. Poinsot, IMF Toulouse, CNRS and INPTP. Wolf, F. Duchaine, G. Staffelbach, L. Gicquel, CERFACS, Toulouse

Copyright Dr T. Poinsot 20131

IGNITION: BASIC ISSUE IN ALL COMBUSTION SYSTEMS

•IGNITE AND REIGNITE COMBUSTORS

•AVOID IGNITION IN OTHER CASES (SAFETY): EXPLOSIONS

2

IGNITION IN A TURBULENT BURNER:

3

EM2C turbulent burner : steady regime

FUEL + AIR+ SWIRL

IGNITION IN A TURBULENT BURNER:

4

EM2C turbulent burner : spark ignition

IGNITION IN A TURBULENT BURNER:

5

EM2C turbulent burner : spark ignition

Ignition is not deterministic. It usually takes quite a few spark events to ignite most burners

IGNITION

• A CHAMBER CAN HAVE WONDERFUL COMBUSTION EFFICIENCY FOR NOMINAL REGIMES (CO, NO, SOOT, EFFICIENCY)

• AND BE ALMOST IMPOSSIBLE TO IGNITE ! (OR REQUIRE TOO MUCH ENERGY)

• ESPECIALLY CRITICAL ISSUE FOR:

➡AIRCRAFT ENGINE ALTITUDE RELIGHT

➡HELICOPTER ALTITUDE IGNITION

6

LATE IGNITION CAN ALSO MEAN «VIOLENT» IGNITION

• IF A CHAMBER DOES NOT IGNITE FAST ENOUGH, IT GETS FILLED WITH REACTANTS WHICH MIX WITHOUT BURNING. WHEN IGNITION FINALLY OCCURS, THIS LEADS TO A VIOLENT IGNITION EVENT AND A LARGE PRESSURE EXCURSION. EXAMPLES:

➡ ROCKET ENGINES

➡ BUILDING SAFETY

7Vinci [1]!

4.2 m!

IGNITION DOES NOT NECESSARILY LEAD TO STABILIZATION

8

➡ A KERNEL CAN BE IGNITED IN A CHAMBER AND AT LATER TIMES BE QUENCHED OR CONVECTED OUTSIDE THE CHAMBER. IN THIS CASE, THERE IS NO FLAME STABILIZATION EVEN THOUGH ‘IGNITION’ TOOK PLACE

➡ THE FLOW REGIMES AND THE SPARK LOCATIONS WHERE A SPARK WILL LEAD TO ‘IGNITION’ OR TO ‘STABILIZATION’ ARE DIFFERENT

➡ THE IGNITION OF THE FIRST KERNEL DEPENDS ON THE LOCAL FLOW PROPERTIES AND ON THE SPARK CHARACTERISTICS

➡ THE FLAME STABILIZATION DEPENDS ON THE GLOBAL FLOW PROPERTIES

OUTLINE

• IGNITION OF A METHANE JET IN AIR: WHERE SHOULD THE SPARK BE ?

• IGNITION IN GAS TURBINE CHAMBERS: PROPAGATION OF THE FLAME FROM BURNER TO BURNER

• IGNITION IN ROCKET ENGINES: VIOLENT EVENTS

• IGNITION IN BUILDINGS (SAFETY): COMPUTING THE OVER PRESSURE

• SPARK MODELING: THE DIFFICULT PART

9

OUTLINE

• IGNITION OF A METHANE JET IN AIR: WHERE SHOULD THE SPARK BE ?

• IGNITION IN GAS TURBINE CHAMBERS: PROPAGATION OF THE FLAME FROM BURNER TO BURNER

• IGNITION IN ROCKET ENGINES: VIOLENT EVENTS

• IGNITION IN BUILDINGS: COMPUTING THE OVER PRESSURE

• SPARK MODELING: THE DIFFICULT PART

10

Copyright Dr T. Poinsot 2013

Ignition of a CH4 jet into air(expt by Ahmed and Mastorakos)

Air

Spark

CH4

G. Lacaze, E. Richardsons and T. Poinsot. Large Eddy Simulation of spark ignition in a turbulent methane jet. Combustion and Flame 156, 6, 1993-2009.

11

Prototype of problem for multiple combustion cases

AirCH4

• For safety: make sure you dont ignite • In engines: make sure you ignite• To first order, the ignitor is usually powerful enough

to create a first ignition spot. The question is to know if the flame will propagate upstream. Compare the flame speed and the flow speed -> use the ‘stoichiometric’ velocity (Mungal et al)

12

Ignition spot

13

TRIPLE FLAMES: THE STRUCTURE WHICH SEPARATES IGNITED FROM NON IGNITED DIFFUSION LAYERS

Oxidizer

FuelDiffusion flameRich premixed flame

Lean premixed flame

Premixing zone

Kioni  flame

Fuel

Oxidizer

T T

MIXING  STATE BURNING  STATE

14

TRIPLE FLAME POINTS IN A z diagram:

Oxidizer

FuelDiffusion flameRich premixed flame

Lean premixed flame

Premixing zone

Infinitelyfast  chemistry

Mixing  lines

1/ TRIPLE FLAMES PROPAGATE. 2/ THEY PROPAGATE FASTER THAN PREMIXED FLAMES

• A TRIPLE FLAME SPEED SCALES LIKE:

15

sTriple = s0L

�ρ1ρ2

Stoechiometric  laminar  flame  speed

Density  ra:o

z = zst

z = 0

The ‘stoichiometric velocity’ ust

16

Defined as the flow speed at points wherePoints along the stoichiometric line are propagating at the fastest speed (the triple flame speed).Stabilization will occur if:

ust is a strange quantity which depends on mixing and velocity fields

z = 1

ust

ust < sTriple = s0L�ρ1/ρ2

sTriple

The stoichiometric velocity

17

1/ Since the stoichiometric surface closes downstream of the jet exit, igniting this jet too far downstream wont work because the flame speed there will be too small.

The stoichiometric velocity does not exist there

zux

z = zstux = sTriple

WHAT ABOUT THE JET SIDES ?:

18

Velocity profile Mixture fraction profile

y

yy

No stabilization here...

ust

ux = sTriple

A SPECIAL CASE: IGNITION OF A JET IN A CO FLOW

19

ux

Velocity profiley

If the co flow velocity is larger than the triple flame speed, the flame will NEVER stabilize (it

may ignite but it will be blown off)

AIRCH4AIR

DOMAINS OF SUCCESSFULL IGNITION

20

Flame speed is too small

Flame speed is too small

Flame speed is too small

Flow speed is too large

Copyright Dr T. Poinsot 2013

Three examples with different locations for the spark:

C3 C1 C0

21

Copyright Dr T. Poinsot 2013

LES result for ignition at C3 (close to rim)

Isolines= mixture fraction (flammability limits)22

Copyright Dr T. Poinsot 2013

Ignition without stabilization at Co:

Isoline = stoechiometric line23

Copyright Dr T. Poinsot 2013

Case C1: succesful but marginal ignition. Comparison of LES and experiment

Experiment

LES

24

Copyright Dr T. Poinsot 2013

Quantitative comparison of leading point positions

60

50

40

30

20

10

0

Zf/

Dj

8006004002000 Time [ms]

Exp. LESC0 C1 C2 C3

C3 C1C0

25

OUTLINE

• IGNITION OF A METHANE JET IN AIR: WHERE SHOULD THE SPARK BE ?

• IGNITION IN GAS TURBINE CHAMBERS: PROPAGATION OF THE FLAME FROM BURNER TO BURNER

• IGNITION IN ROCKET ENGINES: VIOLENT EVENTS

• IGNITION IN BUILDINGS: COMPUTING THE OVER PRESSURE

• SPARK MODELING: THE DIFFICULT PART

26

27

• “Real life”: multi sector (10 to 24) combustion chambers

• Labs: most studies (CFD or experiment) addressing combustion issues are limited to single burners

Ignition of gas turbines chambers:annular geometry

28

Ignition sequence• A successful ignition sequence requires three phases [1]:

➡Energy deposition

➡Flame ignition

➡Propagation

[1] Lefebvre, A.H., Gas Turbines Combustion, Taylor & Francis, 1999

Ignitors are stopped and the flame stabilizes

29

30

LES of an ignition sequence

• Ignition is a critical phase for all aero gas turbines: a fast and reliable lightup is needed for a wide range of altitudes

• Many aspects are still not understood: for example, propagation of the flame from one sector to another

• High altitude => low pressure, low temperature and poor atomisation can lead to ‘no ignition’ or ‘no propagation’ events => it is possible to add igniters and even fuel injectors but this is costly and heavy

31

No need for expensive tests ?:

BUT EXPENSIVE TESTS ARE GOING ON:

32

Air Air

CH4

I

1 2 3 4 5

Ignition experiments by Renou et al (CORIA)

Five sector set up of KIAI

HIGH-SPEED VISUALIZATION

33

Air Air

CH4

I

1 2 3 4 5

AS WELL AS EXPENSIVE LES

34

So…

• It seems that we can predict the ignition in a gaseous jet

BUT

• What about two-phase flow combustion ?

• What if the flow is swirled ?

• What if this is a real gas turbine flow ?

35

36

injectioncone

AIRstarting injector

Torchflame

KEROSENE

Real configuration

engine axis

injector axis

Single sector ignition using burnt gases

37

BURNT GASESHOT JET

injectioncone

AIRKEROSENE

Single sector ignition using burnt gases

38

BURNT GASESHOT JETS

The ideal ignition: one ignitor in each sector !We will begin with this case

39

kerosene injection

Main air inlet (swirled jet)

hot jet

No slip walls

Periodicity

Outlet

Primary holes

Primary holes

1 sector: Description of run

Operating point => starting conditions- p = 1.18 bar- T = 273 K- SMD = 100 microns- Phi = 1.85

40

Failed ignition: the hot jets flow rate is too small

41

Successful ignition with stronger jets:

42

Ideal case : 1 sector / 1 ignitor

43

Conclusions on ideal case : 1 sector / 1 ignitor

• Injecting hot gases is not enough: we need a minimum flow rate for these jets• Recover the classical notion of ‘minimum energy’ (here ‘minimum power’): even if we have one ignitor per sector, ignition may fail

44

Ignition in a 3-sector domain• Objective : see propagation from one main burner to its neighbours• Only one igniter for three burners• Periodic domain

45

LES of ignition sequence in full chamber• A gas turbine demonstrator: 18 airblast swirled injectors + 2 ignition

devices similar to jets injecting hot burnt gases

Burnt gas

Burnt gas

46

Ignitors

Ignition in a gaseous case

47

Ignition in a gaseous case

48

49

Ignition with liquid fuel injection

50

Ignition with liquid fuel injection

51

Ignition with liquid fuel injection• Temperature field and flame front (iso-reaction

rate) on a developed surface

52

Ignition with liquid fuel injection

• Leading point to track the azimuthal position of the flame front

Leading Point (LP)

53

54

• Leading point to track the azimuthal position of the flame front:

Ignition with liquid fuel injection

55

Azimuthal flame speed

Note: Sl=1 m/s

Flame is carried from burner to burner by:- the mean swirling motion- the turbulence- the dilatation of the burnt gases.

DILATATION: BACK TO BASICS

56

Ch. 2, Sec 2.7.3Balance equation for the total mass of burnt gas M:

The mass of burnt gas increases because of the burnt gas produced at the flame:

so that the flame front moves at:

M =4

3πr3ρ2

dr

dt=

ρ1ρ2

sl

dM

dt= 4πr2ρ1sL

Copyright Dr T. Poinsot 2013 57

The flame front moves faster than the flame speed by a factor of the order of 6 to 10 (density ratio). This is the

major contribution to acceleration in the gas turbine too.

dr

dt=

ρ1ρ2

sl Ch. 2, Sec 2.7.3

CONCLUSION

• IN AN ANNULAR CHAMBER, THE FLAME PROPAGATION IS DRIVEN BY DILATATION. CHANGING THE OUTLET SHAPE FOR EXAMPLE WILL CHANGE THE IGNITION SPEED

• HOWEVER, THE ‘DETAILS’ OF THE PROPAGATION REMAIN IMPORTANT

• NEED FOR NEW EXPERIMENTS: SEE EM2C EXAMPLE

58

IGNITION IN ANNULAR CHAMBERS

59The EM2C annular rig

Copyright Dr T. Poinsot 2013

IGNITION IN ANNULAR CHAMBERS

60

!"#$%&'"()*+,'"%-.%&'-&#$"%#$/%#)'%

01%23)'4%)$5"6+-'2%

%%%788%((%

%%988%((%

:-3"'%;%<8%=>%%%%%?(@)"$+%&'"22,'"%

OUTLINE

• IGNITION OF A METHANE JET IN AIR: WHERE SHOULD THE SPARK BE ?

• IGNITION IN GAS TURBINE CHAMBERS: PROPAGATION OF THE FLAME FROM BURNER TO BURNER

• IGNITION IN ROCKET ENGINES: VIOLENT EVENTS

• IGNITION IN BUILDINGS: COMPUTING THE OVER PRESSURE

• SPARK MODELING: THE DIFFICULT PART

61

ROCKET IGNITION

6254

Test  rig  M3[1]    operated  at  DLR  (Germany)  :

[1]  V.  Schmidt,  U.  Wepler,  O.  Haidn  and  M.  Oschwald,  CharacterizaAon  of  the  Primary  IgniAon  Process  of  a  Coaxial  GH2/LOX  Spray,  AIAA-­‐2004-­‐1167,  42nd  AIAA  Aerospace  Sciences  MeeAng  and  Exhibit,  Reno,  Nevada,  2004.

Coaxial  injector

Exhaust  nozzle

Aim  of  experiment:  study  of  igni$on  and  flame  propaga$on  in  a  rocket-­‐like  configuraLon  by  opLcal  diagnosLcs  (OH*  emission  and  Schlieren).  

63

Delayed  igni:on:  prior  to  laser  pulse,  a  long  injec:on  phase  leads  to  a  par:ally  premixed  mixture  in  the  chamber  =>  strong  pressure  peak.

Time  (s)

N2  purge H2  flow

O2  flow

-­‐1   0 0.007 0.370

Experiment  procedure  :Igni=on

IgniLon

Introduc*on ConclusionPart  I Part  II Part  III Part  IVIGNITION SEQUENCE:

Very  large  over  pressure

IGNITION  DELAY  (premixing  increases)

64

Ini:ally,  chamber  full  of  N2  at  atmospheric  pressure.  

•  Cold  flow  condi:ons  obtained  aFer  intake  phase  computa:on  

•  Reac:ve  computa:on  aFer  laser  igni:on  of  the  cold  flow

t0  ms 370  ms

             Mixing  H2  /  O2  /N2                                      Laser  igni=on                                        Combus=on

Non-­‐reacLng ReacLng

Introduc*on ConclusionPart  I Part  II Part  III Part  IV

65

Nb  of  nodes  :  796  000Nb  of  cells  :  3  500  000H2  injecLon  dome  (used  

because  of  back-­‐flow)

Chamber

Atmosphere

Introduc*on ConclusionPart  I Part  II Part  III Part  IVLES MESH AND SETUP:

66

Black line : Vx = 0 m/s

Laser point

Introduc*on ConclusionPart  I Part  II Part  III Part  IVFLOW STATE AT IGNITION TIME

67

Black line : Vx = 0 m/s

Laser point

Introduc*on ConclusionPart  I Part  II Part  III Part  IV

68

Balck line : Vx=0 m/s

Laser point

(Φ)

Introduc*on ConclusionPart  I Part  II Part  III Part  IV

69

Balck line : Vx=0 m/s

Laser point

(Φ)

Introduc*on ConclusionPart  I Part  II Part  III Part  IV

70

Introduc*on ConclusionPart  I Part  II Part  III Part  IV

A  significant  part  of  combus:on  takes  place  when  the  flame  is  close  to  the  walls.  General  rule  in  confined  vessels  (piston  engines  for  example)

71

•  Mixture  is  correct  before  igni:on•  Mass  fluxes  at  inlets  and  outlet  are  well  represented  •  Overall  consump:on  rate  is  correct

10

8

6

4

2 Cha

mbe

r pre

ssur

e [b

ar]

543210 Time after ignition [ms]

DLR experiment LES

Introduc*on ConclusionPart  I Part  II Part  III Part  IVCOMPARING EXPT AND LES: P traces

10  bars=  danger

72

35  µs 250  µs 680  µs

LES

35  µs 250  µs 680  µsTime  aMer  igni=on:

Experiment  (DLR)

Time  aMer  igni=on:

Schlieren  images

Numerical  Schlieren  images

Introduc*on ConclusionPart  I Part  II Part  III Part  IVCOMPARING EXPT AND LES: Schlieren

OUTLINE

• IGNITION OF A METHANE JET IN AIR: WHERE SHOULD THE SPARK BE ?

• IGNITION IN GAS TURBINE CHAMBERS: PROPAGATION OF THE FLAME FROM BURNER TO BURNER

• IGNITION IN ROCKET ENGINES: VIOLENT EVENTS

• IGNITION IN BUILDINGS: COMPUTING THE OVER PRESSURE

• SPARK MODELING: THE DIFFICULT PART

73

IGNITION IN BUILDINGS• When there is a gas leak in a building (for example an offshore platform),

the consequences can be dramatic

• The overpressure which can be accepted for the building structure is not very large: designing buildings which do not lead to large overpressures and can survive explosions is a critical question

74

EXPLOSION ISSUES:

• AVOID LEAKS OF GAS...

• IF THERE IS A LEAK, ADD AN INHIBITOR (AN INERT GAS OR A POWDER) AND MIX IT WITH THE GAS/AIR MIXTURE FAST ENOUGH TO PREVENT ANY FLAME DEVELOPMENT -> DIFFICULT (THE INHIBITION PRODUCT SHOULD NOT KILL PEOPLE IN THE BUILDING)

• DESIGN BUILDINGS WHICH DO NOT LEAD TO LARGE OVERPRESSURES IN CASE OF EXPLOSIONS: «Venting chamber test cases»

75

76

Context:  what  is  a  ven*ng  chamber?

Dorofeev,  S.B.  Proc.  Combust.  Inst.  (2011)  

Patel,  S.  et  al.    Proc.  Combust.  Inst.  (2002)  

Makarov,  D.  et  al.  Int.  Journal  Hydrogen  Energy.  (2010)  

Kent,  J.  et  al.  5th  Asia-­‐Pacific  Conf.  Combust.  ,  Adelaide,  Australia  (2005)

⇒Applica=on  :  Safety  aspects  related  to  explosions  in  industrial  buildings

77

Ven*ng  chambers  have  much  in  common  with…  

*  Boileau  et  al.,  Combus*on  and  Flame  (2008)**  Vermorel  et  al.,  Combus*on  and  Flame  (2009)

Helicopter  Combus$on  Chamber  *   Piston  Engine  [2]  **

- Complex  geometry  and  confined  areas  - Strongly  unstaConary  phenomena- ReacCve  mulC-­‐species  mixture- Turbulent  combusCon

78

Ven*ng  chambers  are  also  new  test  cases  for  LES  models  for  turbulent  combus*on:1)  Turbulent  bombs  or  piston  engines

Ven$ng  chambers  do  not  have  these  problems  !:

Issue  :  how  to  generate  the  iniCal  turbulence  field?

2)  Steady  burners

•The  flame  is  ini=ated  in  a  stagnant  flow:  No  mean  flow  and  no  turbulence  iniCally•No  injec=on:  boundary  condiCons  are  very  simple

⇒ Ideal  situa$on  to  test  LES  models  for  turbulent  combus$on

Issue  :  how  to  specify  the  boundary  condiCons  (injecCon  profile)?

79

A.R. Masri et al., Industrial & Engineering Chemistry Research, 2012

 A  really  good  turbulent  combus:on  model  should  work  at  all  scales  without  changing  any  parameter...

Ven*ng  chambers  allow  a  varia*on  in  scales  which  is  unseen  in  other  systems

Sydney  Explosion  Chamber  [1]  

• Box  :  – 0.05  x  0.05  x  0.25  m3  (small-­‐scale)– 0.3  x  0.3  x  1.5  m3  (medium-­‐scale)

• Fully  filled  with  Fuel/Air  mixture  

• Fuels  :  C3H8  or  CH4  or  H2

• One  central  square  obstrucLon

• 3  turbulence  generaLng  grids  (removable)

• Laser  igniLon  at  the  closed  end  of  the  chamber  in  the  iniLally  quiet  mixture

80[1]  Masri,  A.R.  Al-­‐Harbi,  A.  Meares,  S.  and  Ibrahim,  S  .“A  ComparaAve  Study  of  Turbulent  Premixed  Flames  PropagaAng  Past  Repeated  Obstacles”,  Industrial  &  Engineering  Chemistry  Research  (2012)

0grid 2grids1grid 3grids

Different  configura=ons  studied:

Test-­‐CaseGeometry

g3

g2

g1

Same setup - three sizes:

81

X 1

X 6

X 24

SCALE VOLUME

X 1

X 216

X 13824

Masri  setupUniversity  of  Sydney

Scaled-­‐up  reproduc:on  of  Masri  setup  (x24)  -­‐  6,1mExperiments  by  

GEXCON

Scaled-­‐up  reproduc:on  of  Masri  

setup  (x6)  -­‐  1,5mExperiments  by  

GEXCON

82

Maximum  overpressure

Test-­‐CaseProblem  DescripLon

Comparison  with  experimental  data:

• Flame  structure

• Flame  posiLon

• Maximum  overpressure

• Influence  of  adding/removing  grids

Experimental  images  of  flame  propaga=on  [2]:

[2]  Gubba,  S.R.  et  al.,  Combust.  Sci.  Tech.  (2008).

Complex  problem  mixing:

• IgniLon

• Laminar  phase  propagaLon

• TransiLon  to  turbulence

• Turbulent  propagaLon

• RelaminarisaLon8ms 10ms 11ms 12ms11,5ms

83

SPARK

ComputaLonal  domain:  The  atmosphere  is  meshed

Meshes:

• Tetrahedra• Cell  size  in  the  chamber  :

–  small  scale  :  0.5mm– Medium  scale  :  3  cm

• Total  cell  number  :  20  millions• CPU  *me    (BlueGene  /P  :  Babel  (Idris)):  

– Small  scale  100  000h– Medium  scale  150  000h

84

Results  –  Small  Scale  ChamberFlame  PropagaLon

• Long  laminar  phase  controls  the  flame  shape  and  speed  before  it  touches  the  obstacles

• Fast  acceleraLon  when  flame  becomes  turbulent• AcousLc  oscillaLons  at  the  end  of  combusLon

85

LES  images  of  Config2  with  AVBP:

Experimental  images  of  Config2  [2]:

Results  –  Small  Scale  ChamberFlame  Structure

Good  agreement  between  LES  and  experiments:

• Laminar  spherical  flame

• “finger”  flame

• InteracLon  flame/obstacle

• Turbulent  structures

• Flame  acceleraLon

[2]  Gubba,  S.R.  et  al.,  Combust.  Sci.  Tech.  (2008).

86

Overpressure  [m

bar]

• Over-­‐es=ma=on  of  the  maximum  overpressure  reached  by  Charle\e’s  model.

• Colin’s  model  gives  the  right  behavior.

Colin  [1] CharleSe  [2]  

Turbulent  combus=on  model  for  small  scale  chamber  simula=ons:  Colin

Time  (ms) Time  (ms)

Results  –  Small  Scale  ChamberChoice  of  the  turbulent  combusLon  model

[1]  Colin  et  al,  Physics  of  fluids,  2000[2]  Charlebe  et  al,  CombusKon  and  Flame,  2002[3]  Masri,  et  al,  Industrial  &  Engineering  Chemistry  Research,  2012

g3

g2

g1

[3]

87

➞ Good  esCmaCon  of  overpressure  magnitude➞ Post-­‐maximum  pressure  oscillaCons  accurately  

captured  

➞ Grids  influence  on  overpressure  correctly  predicted  by  LES

Results  –  Small  Scale  ChamberInfluence  of  the  number  of  grids  :    

[1]  Masri,  et  al,  Industrial  &  Engineering  Chemistry  Research,  2012

—    :  Experiments  mean  [1]            :  Experiments  envelope      -­‐  -­‐    :  LES  -­‐  Colin

1  grid

2  grids

3  grids

Results  –  Small  Scale  ChamberInfluence  of  the  fuel  type  :  Response  to  flame  properLes  Sl0,  dl0

88

⇒ Fuel  influence  on  overpressure  correctly  predicted  by  LES• CH4  generates  a  lower  overpressure  than  C3H8

• H2  generates  a  much  higher  overpressure  than  C3H8  and  CH4

⇒ May  mainly  be  related  to:• Laminar  flame  speeds  :  Sl0  (CH4)  <  Sl0  (C3H8)  <<  Sl0  (H2)

[1]  Masri,  et  al,  Industrial  &  Engineering  Chemistry  Research,  2012

—    :  Experiments  mean  [1]            :  Experiments  envelope      -­‐  -­‐    :  LES  -­‐  Colin

CH4

C3H8

H2

89

Masri  setup25cm

Scaled-­‐up  reproduc*on  of  Masri  setup  (x6)1,5m

x6

Scaling  things  up:  by  6

90

Results  –  Medium  Scale  ChamberFlame  PropagaLon

LES

Experiments

91

Overpressure  [m

bar]

Now:• Under-­‐esCmaCon  of  the  maximum  overpressure  reached  by  Colin’s  model.• CharleSe’s  model  gives  the  right  behavior.

Colin  [1] CharleSe  [2]  

Turbulent  combus:on  model  for  medium  scale  chamber  simula:ons:  CharleZe?

Time  (ms) Time  (ms)

[1]  Colin  et  al,  Physics  of  fluids,  2000[2]  CharleSe  et  al,  CombusCon  and  Flame,  2002

g3

g2

g1

Results  –  Medium  Scale  ChamberChoice  of  the  turbulent  combus:on  model

ImplicaLons  for  turbulent  combusLon  models

• In most engines, no change of scale comparable to the present one has ever been performed.

• Going from a volume of 1 to a volume of 24^3= 13000 shows that a given model with fixed coefficients has problems to work for all cases

• Dynamic formulation where coefficients change dynamically developed now (Wang et al Comb. Flame 2013)

92

THE  OTHER  PATH:  ADD  POINTS  !

93

• Grid refinement can replace models !

• Adding more points when the scale increases is a simple but expensive way of solving the problem

• This requires very large computers. Example: the INCITE BG machines

1  billion  cell  LES:

94

OUTLINE

• IGNITION OF A METHANE JET IN AIR: WHERE SHOULD THE SPARK BE ?

• IGNITION IN GAS TURBINE CHAMBERS: PROPAGATION OF THE FLAME FROM BURNER TO BURNER

• IGNITION IN ROCKET ENGINES: VIOLENT EVENTS

• IGNITION IN BUILDINGS: COMPUTING THE OVER PRESSURE

• SPARK MODELING: THE DIFFICULT PART

95

Copyright Dr T. Poinsot 2013

THE HIDDEN PROBLEM OF ALL SIMULATIONS OF IGNITION

• MODELING THE INITIAL INSTANTS OF THE INTERACTION BETWEEN A SPARK (OR A LASER) AND THE FLOW IS THE MOST DIFFICULT PART

• TODAY THE MODELS REQUIRED FOR THIS PHASE OF THE IGNITION PROCESS ARE STILL UNCLEAR. IN 3D CODES, TWO USUAL MODELS:

➡ IGNITION = DEPOSITION OF ENERGY IN A SPHERE

➡ IGNITION PHASE IS FORGOTTEN AND REPLACED BY A KERNEL OF BURNT GASES OF MORE OR LESS ARBITRARY SHAPE AND TEMPERATURE

96

SPARK IGNITION: NEED TO TALK ABOUT ELECTRICAL CIRCUIT

97

98

The  Energy  deposiLon  model  (ED)

Spark  =  addiLonal  term  in  the  energy  transport  equaLon:

εi    :  total  amount  of  energy  transferred  to  the  gas  [J]

σr  :  characterisLc  size  of  the  deposiLon  [m]

σt  :  duraLon  [s]

Introduc*on ConclusionPart  I Part  II Part  III Part  IV

1D  IGNITION  (Lacaze  PhD  2009):

99

SOME IGNITION ISSUES AND MODELS:

• MINIMUM IGNITION ENERGY (CHAMPION et al CF 1986, KELLEY et al CF2009)

• DO WE NEED TO MODEL THE PLASMA PHASE ?

• DO WE NEED TO MODEL THE ELECTRICAL CIRCUIT ?

• HOW MUCH ENERGY IS LOST TO THE ELECTRODES: A LOT !

• HOW MUCH DOES THE SPARK MOVE ? (COUPLING WITH THE FLOW): WHAT HAPPENS IF THERE IS A STRONG FLOW AT THE SPARK ?

• CAN THE SPARK CREATE MORE THAN ONE DISCHARGE ?

100

MINIMUM IGNITION ENERGY:

101

Temp!

Abscisse!T1!

T2!Tc!

2 !!• THE SPARK MUST CREATE A SPHERE OF BURNT GAS :

➡ LARGER THAN TWO FLAME THICKNESSES TO AVOID DIFFUSION TO KILL THE FLAME RIGHT AWAY

➡ WARMER THAN THE IGNITION TEMPERATURE WHICH IS CLOSE TO THE ADIABATIC FLAME TEMPERATURE

MINIMUM IGNITION ENERGY:

102

Temp!

Abscisse!T1!

Tc!

D>2 !!

Energie nécessaire!

E= 4/3 " !3 # Cp (T2-T1)!Application numérique à 1 bar et 300 K pour CH4/air:!!=0.5 mm!Cp=1200 J/kgK!T2-T1=2000 K!#=1.2 kg/m3$

E= 1 mJ !

Ignition energy

If P= 1 bar and T1=300 K for CH4/air:δ=0.5 mmCp=1200 J/kgKT2-T1=2000 Kρ=1.2 kg/m3E = 1 mJ

MEASUREMENTS OF MIE (CH4/AIR):

103

PHUOC, T., AND WHITE, F. Laser induced spark ignition of ch4/air mixtures. Combustion andFlame119 (1999), 203–216.

104

Electrical spark

Shock wave losses Radiative losses Conduction losses

(electrodes)

Energy deposited in the gas

Maly and Vogel 1978

- ≈ 5% of Etot ≈ 65% of Etot ≈ 30% of Etot

Teets and Sell 1989

≈ 70% of Etot ≈ 5% of Etot ≈ 15% of Etot ≈ 10% of Etot

Laser spark

Shock wave losses

Radiative losses Energy deposited in the gas

Phuoc and White 2002

60-70% of Etot ≈ 10-20% of Etot ≈ 10% of Etot

Introduc*on ConclusionPart  I Part  II Part  III Part  IVHow  much  energy  Etot  needed  in  the  electrical  circuit  to  have  1  mJ  in  the  gas  ?  This  depends  on  the  losses  and  they  are  large:

IN PRACTICE:• MOST SPARKS WILL DEPOSIT MUCH MORE THAN 1 mJ

• NOT A PROBLEM EXCEPT IF YOU WANT TO BUILD A PREDICTIVE MODEL... BECAUSE THE SPARK ENERGY CONTROLS THE FLAME GROWTH LONG AFTER IGNITION:

• KELLEY ET AL

105

ENERGY DEPOSITION

• ED MODEL USED IN MULTIPLE SIMULATIONS: ASSUME SLOW (O(ms)) DEPOSITION OF ENERGY UNTIL FLAME STARTS. TEMPERATURE REMAINS SMALL (LESS THAN 5000 K). FLAME STARTS WHEN TEMPERATURE IS LARGE ENOUGH

• DO WE AGREE ON THE IGNITION PROCESS ITSELF ? THERE ARE OTHER VIEWS: THE ENERGY DEPOSITION IS SO SHORT THAT COMBUSTION IS FROZEN. TEMPERATURE GOES UP TO 10000K, A SHOCK WAVE IS FORMED. COMBUSTION STARTS ONLY LATER...

106Lee  et  al.  1969

Shock  wave  

IGNITION SCENARII: Energy deposition

107

Time

Total energy deposited from spark to gas Maximum temperature

Reaction rate

2500 K

Copyright Dr T. Poinsot 2013

IGNITION SCENARII: Shock

108Time

Total energy deposited from spark to gas

Maximum temperature

Reaction rate

2500 K