IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng....

74
IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application to Photonic Integrated Circuits

Transcript of IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng....

Page 1: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture1

Tetsuya MIZUMOTO

Dept. of Electrical and Electronic Eng.

Tokyo Institute of Technology

Optical Isolator:Application to Photonic Integrated Circuits

Page 2: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 2

Bulk optical isolatormagneto-optic (Faraday) effectoperation principle

Waveguide optical isolatorTE-TM mode conversion isolatornonreciprocal loss (active) isolatornonreciprocal phase shift isolatorintegration (direct bonding)

Non-magneto-optic approach

Outline

Page 3: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 3

Photon injection photon-generated carrier disturbs carrier distribution (amplitude-noise) carrier-induced index change (phase-noise)

What happens?

Isolator

Page 4: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 4

Magneto-optic material

Requirement

- large magneto-optic (MO) effect --> 1-st order MO effect (Faraday rotation)

- low optical absorption

- temperature insensitive

Rare earth iron garnet (R3Fe5O12)

Y3Fe5O12 (YIG)

--> (Y3-xBix)Fe5O12, (Y3-xCex)Fe5O12

enhancement of Faraday rotation

Page 5: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 5

M. Gomi, et al., J. Appl. Phys., 70(11), 7065-7067 (1991).

Characteristics of Y3-xCexFe5O12 (Ce:YIG)

Spectra of Faraday coefficient Spectra of optical absorption

Page 6: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 6

Bulk isolator, in either beam interface or fiber interface, uses rotation of polarization.

Bulk isolator

Basic configuration

Polarizer

Polarizer

45degFaraday rotator

H

Polarizer

Polarizer

45degFaraday rotator

H

Polarizer

Polarizer

45degFaraday rotator

Reciprocal rotator

H

Input and output : same polarization

Namiki

Page 7: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 7

Bulk isolator

Input fiber

Output fiber

Lens

Birefringent crystal

Birefringent crystal

/2 plate45deg Faraday rotator

H

Fiber in-line isolator --> Walk-off

T.Matsumoto (NTT), Trans. IECE, J62-C, 505-512 (1979).

birefringent plates polarization independent operation

FDKIsolation>35dB, IL<0.6dB

KyoceraIsolation>30dB, IL<2.5dB

Page 8: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 8

Translate Faraday isolator into waveguide one.

TE-TM mode conversion type

Polarizer

Polarizer

45degFaraday rotator

Reciprocal rotator

H

TE-TM mode conversion Isolation:12.5 dB, l=1150 nm Length: 6.8 mm

K. Ando, T. Okoshi and N. Koshizuka (present AIST), Appl. Phys. Lett., 53(1), 4 (1988).

Faradaypart

Cotton-Mouton part

Modeselector

Magnetoopticwaveguide

M

qm

Page 9: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 9

TE-TM mode conversion

Faraday rotation in a birefringent medium

Phase matched: d=bTE-bTM=0 )( Fq

zE

zE

zE

zE

FTE

TM

FTE

TE

sin)0(

)(

cos)0(

)(

Phase mismatched: 0

z

E

zE

zjzE

zE

F

F

F

TE

TM

F

F

FTE

TE

22

22

22

22

22

sin)0(

)(

sincos)0(

)(

Birefringence-free (phase matching)is essential to isolator operation.

rotates in a linearly polarized state

Page 10: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 10

Waveguide isolators

type mechanism

mode conversion

filed shift

guided TE / guided TM(Faraday & Cotton-Mouton)

transversely radiated TE / guided TM(with TM nonreciprocal phase shift)

guided TE / radiated TM(semi-leaky)

nonreciprocal phase shift(interferometer)

nonreciprocal loss(active)

p-electrode

n-electrode

n+ InP sub.

GaInAsP MQWs

Al2O3 Fe

TiO2

H

Ce:YIG

LiNbO3

θ c-axis

NOG

Faradaypart

Cotton-Mouton part

Modeselector

Magnetoopticwaveguide

M

θ m

Page 11: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 11

T. Shintaku (NTT), Appl. Phys. Lett., 73(14), 1946 (1998).

Nonreciprocal radiation (TM phase shift)

Mode conversion: transversely leaky mode

Performance: - Isolation: 27 dB (l=1535 nm, L=4.1 mm) - wavelength sensitive (7 dB at l=1515 nm)

(TE)

(TM)

cx

cy

11by

11fy

11x

rx

Radiation modes

Propagation constant diagram

Film thickness

Pro

paga

tion

cons

tan

t

cx

cy

ay

ax

TM mode

TE mode

tatc

11x

11fy

11by

ta tc

w

Page 12: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 12

Semi-leaky isolator: operation principle

LiNbO3 mode conversion reciprocalMagneto-optic mode conversion nonreciprocal (changes its sign for F/B)

Anisotropy of LiNbO3

Semi-leaky waveguide

unidirectional mode conversion

Ce:YIG

LiNbO3

c-axis

NOGTE mode

2.143

1.9382.200

H

TE mode

Ce:YIG

LiNbO3

c-axis

NOGTM mode

2.210

1.9382.200

H

TM mode

Forward -k(Ce:YIG)+k(LiNbO3)=0Backward k(Ce:YIG)+k(LiNbO3)≠0

guided

radiated Semi-leaky isolator is attractive;- relaxed fabrication tolerance - simple mono-section structure- easy control of magnetization

- but, uniform and tight LiNbO3 / garnet contact is needed.

direct bonding

S.Yamamoto, et al (Osaka U.), IEEE QE, 12, 764 (1976).

Page 13: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 13

p-electrode

n-electrode

n+ InP sub.

GaInAsP MQWs

Al2O3 Fe

TiO2

H

H.Shimizu and Y.Nakano (U.Tokyo), JLT, 24, 38-43 (2006).

Nonreciprocal loss (active) isolator

Real neff

Imag

inar

y (L

oss)

kef

f

Backward

Forward

0

SOA gain

Active group:U.Tokyo, AIST, Ghent U.

Isolation: 14.7 dB/mmInsertion loss: 14.1 dB/mm (I=150 mA)

Page 14: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 14

4 dB isolation at l=1543.8 nm

4 dB

15OC

Integration with active devices

nonreciprocal loss (active) excellent compatibility to active devices

p-electrode

n-electrode

n+ InP sub.

GaInAsP MQWs

Al2O3 Fe

TiO2

H

H. Shimizu and Y. Nakano (U.Tokyo), IEEE PTL, 19, 1973-1975 (2007).

active isolator0.7 mm

DFB LD0.3 mm

90mA150mA

compatible waveguide structure material & dimensions

Page 15: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 15

p-electrode

n-electrode

n+ InP sub.

GaInAsP MQWs

Al2O3 Fe

TiO2

H

type Passive Active

Integration type dependent excellent

Noise none ASE

Power consumption

none current injection to SOA

Polarization dependence

yes, but can be overcome

yes

Comparison: passive and active isolators

Page 16: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 16

Waveguide isolator: nonreciprocal phase shift

Interferometer type - Isolation: 19 dB (l=1540 nm, L=8.0 mm) J. Fujita, M. Levy and M. Osgood, Jr. (U.Columbia), Appl. Phys. Lett., 76(16), 2158 (2000).

- Isolation: 25 dB (l=1600 nm, L=4.0 mm) Y. Shoji and T. Mizumoto (Tokyo Tech), Optics Express, 15, 13446 (2007).

- wavelength insensitive designed to cover both 1.31/1.55 mm in a single chip Y. Shoji and T. Mizumoto (Tokyo Tech.), Optics Express, 15, 639 (2007). - polarization independent not by polarization diversity scheme Y. Shoji and T. Mizumoto (Tokyo Tech.) et al, JLT, 25(10), 3108-3113 (2007).

Page 17: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 17

-/2 - j/ 2 21 /

21 /

21 /

21 /

j/ 2

Output

Reflected

Input

Forward (constructive interference)

Backward (destructive interference)

2-1 /

21 /

21 /

21 /

/2 phase bias

/2

Single polarization operation

→ No need for phase matching

→ Fabrication tolerant Simple in-plane magnetization

Interferometric isolator: operation principle

Interferometric isolator

Page 18: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 18

Nonreciprocal phase shift = (b+-b-) (m-1)

Nonreciprocal phase shift

1st–order MO effect

2

222'2

2

'2

2'2

23

3

1

1

3

3

1

1

2

'2

3

3

1

1'2

)tan(

y

zy

yy

n

nn

nn

ppppq

ppq

qd

linear in b

y z

x

2

2

2

2

0

00

0

j

j

Page 19: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 19

Nonreciprocal phase shift = (b+-b-) (m-1)

Nonreciprocal phase shift

0 0.2 0.4 0.6 0.8 10

1.0

2.0

Thickness of Ce:YIG guiding layer [mm]

NP

S/(p

/2)

[mm

-1] l=1550nmTM0 mode d (CeY)3Fe5O12

SGGG (n=1.94)

SiO2 (n=1.45)

cutoff

Page 20: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 20

1.45 1.5 1.55 1.6 1.65

0

0.1

0.2

0.3

0.4

0.5

Wavelength (mm)

For

war

d lo

ss (

dB)

Interferometric isolator: calculated performance

1.45 1.5 1.55 1.6 1.65

0

10

20

30

40

50

Wavelength (mm)

Bac

kwar

d lo

ss (

dB)

Page 21: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 21

Cancellation of wavelength dependences in backward propagationY.Shoji and T.Mizumoto (Tokyo Tech.), Appl. Opt., 45, 7144 (2006).

l dependences : MO effect waveguide dispersion

Interferometric isolator: wideband operation

wideband design

Ph

ase

shift

qR

ll0

qN(backward)

qN (forward)

q (backward)p

/2p

- /2p

3 /2p

2p q (forward)

0

Conventional design

Ph

ase

shift

qR

ll0

qN(backward)

qN (forward)

q (backward)p

/2p

- /2p

q (forward)0

Page 22: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 22

Larger isolation in wider wavelength range

1500 1550 1600 1650

30

20

10

0

Wavelength (nm)

atte

nuat

ion

(dB

)

forward backward

1500 1550 1600 1650

30

20

10

0

Wavelength (nm)

atte

nuat

ion

(dB

) forward backward

Conventional designWideband design

Wideband design: experimental results

Y. Shoji and T. Mizumoto (Tokyo Tech.), Optics Express, 15, 13446 (2007).

• measured with a reference of   straight waveguide (5 d B loss)

Page 23: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 23

930m

493m

26m 300m

665m

2.0m

3.0m

L/2

665m

Wideband design covers fully 1310 nm / 1550 nm bands and more.

Isolation > 40 dB :

@ 1260-1650 nm

1.3 1.4 1.5 1.6

50

40

30

20

10

0

Wavelength [mm]

atte

nua

tion

[dB

]

1.55 mm Forward

1.31-1.55 mm Forward1.55 mm Backward

1.31-1.55 mm Backward

Ultra-wideband design

Y. Shoji and T. Mizumoto (Tokyo Tech.), Optics Express, 15, 639 (2007).

Page 24: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 24

Photonic integrated circuit: device and material

- photonic integrated circuit waveguide alignment lithography process materials to be grown (deposited) on a common platform

LD, SOAIII-V semiconductor

modulator, SWLiNbO3,

III-V semiconductor

l-MUX/DeMUXSilica

IsolatorMagneto-optic material

Page 25: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 25

Common semiconductor guiding layer (selective growth & mask process)

Our approach: integration of isolator and LD

Direct bonding

H. Yokoi and T.Mizumoto (Tokyo Tech.), Electron. Lett., 33, 1787 (1997).

LD integrated with isolator

compatible waveguide structure material & dimensions

Single polarization operation

Page 26: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 26

III-V waveguide isolator

Page 27: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 27

Nonreciprocal phase shift = (b+-b-) (m-1)

Nonreciprocal phase shift

1

221'

1

3'11

3

3

3'

1

1

2

2

'113

3'

1

1

2)tan(

pppq

ppq

qd

linear in b

y z

x

1st–order MO effect

1

1

1

1

0

00

0

j

j

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

GaInAsP thickness (m)

Non

reci

proc

al p

hase

shi

ft (m

m-1

)Q1.42 (n=3.45)

Q1.25 (n=3.36)

=1.55mTM0mode

qF=-4500deg/cm

Page 28: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 28

Bonding garnet on III-V

III-V MO garnet

crystal structure zinc blende garnet

lattice constant (A) 5.869 (InP) 12.54

thermal expansion (K-1) 4.56 X 10-6 (InP) 9.20 X 10-6

refractive index 3.2 – 3.5 2.2

n(garnet) < n(III-V) Evanescent field is to be used in MO garnet.

direct bonding with no gap in-between

garnet

InP

GaInAsP

Challenging: epitaxial growth of III-V on garnet done by Dr. M. Razeghi (Thomson), JAP, 59, 2261 (1986) and Dr. J. Haisma (Philips), J. Cryst. Growth, 83, 466 (1987)

Page 29: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 29

Surface activated bonding

Surface activation in vacuum chamber

Page 30: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 30

Direct bonding: garnet on GaInAsP/InP waveguide

Bonding strength Fracture in an InP substrate at a tensile > 0.5 MPa

Ce:YIG / GaInAsP

T.Mizumoto, et al, ECS Meeting, 1258 (2006).

Ce:YIG

GaInAsP

Low temperature heat treatment

Page 31: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 31

Si-waveguide isolator

L=364mm

MMI

R=2.5mm

Page 32: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 32

Nonreciprocal phase shift (NPS):Db = b+ - b-

External magnetic field

SiO2

Ce:YIG

Si Ce:YIG

SiSiO2

xy

z

Ex External magnetic field

TM mode

Lp/2 (Min) ~300mm @0.2-mm-thick

CeY2Fe5O12 (Ce:YIG) : QF = -4500 deg/cm

H.Yokoi, et al (Tokyo Tech.)., Applied Optics, 42, 6605-6612 (2003)

0 0.2 0.4 0.6 0.8 110-1

100

101

Thickness of guiding layer (m)

Non

reci

proc

al p

hase

shi

ft (m

m-1

)

Ce:YIG on SOI

Ce:YIG on GaInAsP (n=3.45)

=1.55m, TM0mode

Nonreciprocal phase shift in SOI WG

Page 33: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 33

Si-waveguide optical isolator

4.0mmSOI

Ce:YIG

Rib waveguide for reducing propagation loss (trial fabrication)

Bonding condition  Anneal: 250 oC Press: 5 MPa, 1 hour

H.Yokoi, et al (Tokyo Tech.)., Applied Optics, 42, 6605-6612 (2003)

300Si

SiO2

Si 2mm10nm

Ce:YIG

300nm

Si rib waveguide

Ce:YIG

SGGG

Page 34: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 34

3-pole magnet --> anti-parallel magnetic field (S-N-S or N-S-N)

2X2 optical SW --> reverses propagation direction (CWCCW)

ASE source

N

S

S

Spectrum Analyzer

PMF PMF

TM mode

IR cameraTV

monitor

Polarizer

lens

Optical switch

CW

CCW

Sample

Measurement setup

Page 35: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 35

First demonstration of Si waveguide isolator !

The interference reverses as the propagation direction is reversed.

First demonstration of Si-waveguide isolator

Y. Shoji, T. Mizumoto (Tokyo Tech), et al. APL, 92, 071117 (2008).

The interference reverses as the magnetic field directions are reversed.

1530 1540 1550 1560 1570-70

-60

-50

-40

Wavelength (nm)

Tra

nsm

ittan

ce (

dB)

w/o H field

CCW

CW

Mag: N-S-NMag: N-S-N

1530 1540 1550 1560 1570-70

-60

-50

-40

Wavelength (nm)

Tra

nsm

ittan

ce (

dB)

Isolation: 21dB

CW

CCW

Mag: S-N-SMag: S-N-S

N-S-N

S-N-S

Page 36: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 36

(a) Coupling loss between fiber and waveguide x2 : 37 dB(b) Propagation loss : 4 dB Si waveguide (2.5 dB / 4 mm) + Absorption of Ce:YIG (0.2 dB) + reflection at bonding boundary (0.65 dB x2) (c) Excess loss of MZI : 4 dB

Insertion loss of the isolator ((b)+(c)) : 8 dB

Si-waveguide isolator: insertion loss

MZI

Single WG

Ce:YIG upper clad

2.0 mm4.0 mm1530 1540 1550 1560 1570

-70

-60

-50

-40

wavelength (nm)

tra

nsm

ittan

ce (

dB) (a)

(b)(c)

21dB Isolation

Page 37: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 37

Non-magneto-optic approach

“Indirect photonic transition”

Zongfu Yu and Shanhui Fan (Stanford), Nature Photonics, 3, 91-94 (2009).

Backward: Mode-1 (w1, -k1) is coupled to mode-2 (w2, -k2).

(-k1 - q = -k2 , w2-w1=W : phase-matched) --> transition

mode-2 (w2, -k2) filtered out

Forward: Mode-1 (w1, k1) is uncoupled to mode-2 (w2, k2).

(k1 - q > k2 , phase-mismatched) --> no transition

-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

kz (2p/q)

w(2

pc/

a) W

w1

w2

k1

k2

-k1

-k2

Page 38: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 38

Non-magneto-optic approach

Traveling wave (dynamic) modulation

Z. Yu and S. Fan (Stanford), Nature Photonics, 3, 91-94 (2009).

Backward: effective coupling e(z,t)=d cos( W t - (-q)z) -k1 - q = - k2

w2-w1=W

Example (l=1550 nm): /d e=5x10-4, f=20 GHz w=0.27 mm, L=2.19 mm

0-th 1-st

z

t0t0+t

Mod

ulat

ion

-

0

0 2/q

Page 39: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 39

Summary

Optical isolators for photonic integrated circuits

★ Mode conversion isolator requirement of phase matching limited fabrication tolerances

★ Interferometric isolator single polarization operation no need for phase matching ultra-broad band operation (1.31/1.55 mm in a single chip)

integration with active devices Ce:YIG/ III-V, Ce:YIG/ Si low-temperature direct bonding

first demonstration of Si waveguide isolator 21 dB isolation

★ Non-magneto-optic approach attractive (less restricted by material), but still challenging

Page 40: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 40

Page 41: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 41

Page 42: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 42

Semi-leaky isolator: performance

Measured isolation : 20.2 dB / 1.5 mm=13.5 dB/mm

20.2 dB

W=3 mm

1.5 mm

4.5 mm

Externalmagnetic field(Electromagnetic Coil)

PowermeterPMF

Tunable laserl=1550 nm

PM

F

Polarizer

constant coupling loss (-15 dB/facet)

T.Mizumoto et al, IEICE Trans, J89-C, 423 (2006).T.Mizumoto et al, OFC2007, OThU4 (2007).

Page 43: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 43

Part-1: Bulk nonreciprocal devicesmagneto-optic effect (Faraday rotation)operation principle of isolators and circulators

Part-2: Waveguide isolators operational principles, design and characterization

TE-TM mode conversion isolatorsNonreciprocal loss isolatorInterferometric isolatorSemi-leaky waveguide isolator

Part-3: Waveguide circulators

Part-4: Non-magneto-optic approach

Outline

Page 44: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 44

z

r

r

j

j

00

0

0

0

Faraday effect

jEE jiE )(0 r rk0

jEE jiE )(0 r rk0

Faraday rotator

Hx

y

z

Dielectric tensor

Circular polarization

CW:

CCW:

Page 45: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 45

Faraday effect

ztzEEx 2cos

2cos0

ztzEEy 2cos

2sin0

Linearly polarized wave --> two circular polarized components

CW circular polarized CCW circular polarized

Faraday rotator

H

2

coscos22

coscos2

00 ztztE

zttztE

jiji

zk

z

rr

F

)(2

2

0

Page 46: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 46

Faraday rotator

Hx

y

z

Faraday rotator

HBackward

Faraday rotator

HForward

Faraday effect

Hx

y

z

Reversal of H-field

FrrF

k )(

20

H

xy

z

Reversal of propagation direction

Page 47: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 47

Waveguide Faraday rotator

E. Pross, et al. (Philips) , APL, 52(9), 682 (1988).

N. Sugimoto, et al. (NTT) , APL, 63(9), 2744 (1993).

Page 48: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 48

Isolator

Isolator - two-port device - includes loss mechanism

#1 #2

01

00S

10

00*tSS non-unitary matrix --> lossy

Page 49: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 49

Part-1: Bulk nonreciprocal devicesmagneto-optic effect (Faraday rotation)operation principle of isolators and circulators

Part-2: Waveguide isolators operational principles, design and characterization

TE-TM mode conversion isolatorsNonreciprocal loss isolatorInterferometric isolatorSemi-leaky waveguide isolator

Part-3: Waveguide circulators

Part-4: Non-magneto-optic approach

Outline

Page 50: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 50

Circulator

Circulator - many-port device - lossless device

#1 #2

#3

010

001

100

S

100

010

001*tSS unitary matrix --> lossless

Page 51: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 51

Optical circulator

H.Iwamura, et al, Electron. Lett., 15, 830-831 (1979).

- uses rotation of polarization- polarization independent operation

Page 52: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 52

Part-1: Bulk nonreciprocal devicesmagneto-optic effect (Faraday rotation)operation principle of isolators and circulators

Part-2: Waveguide isolators operational principles, design and characterization

TE-TM mode conversion isolatorsNonreciprocal loss isolatorInterferometric isolatorSemi-leaky waveguide isolator

Part-3: Waveguide circulators

Part-4: Non-magneto-optic approach

Outline

Page 53: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 53

TE-TM mode conversion

TE-TM mode conversion

Faradaypart

Cotton-Mouton part

Modeselector

Magnetoopticwaveguide

M

θ m

Faraday rotation

sin)0(

)(

sincos)0(

)(

q

κj

E

zE

qj

E

zE

*

TE

TM

TE

TE

zzqz

jn

kj

F

F

2

TMTE222

0

TMTE

2

2

2

qF : Faraday rotation, G : field confinement factor

Phase mismatch

Page 54: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 54

Part-1: Bulk nonreciprocal devicesmagneto-optic effect (Faraday rotation)operation principle of isolators and circulators

Part-2: Waveguide isolators operational principles, design and characterization

TE-TM mode conversion isolatorsNonreciprocal loss isolatorInterferometric isolatorSemi-leaky waveguide isolator

Part-3: Waveguide circulators

Part-4: Non-magneto-optic approach

Outline

Page 55: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 55

Nonreciprocal phase shift

Nonreciprocal phase shift

y z

x

00

000

00

j

j

MO perturbation

dSHn

dSHxn

dS

dSHxn

dS

dSEx

dS

dS

y

y

z

y

z

x

z

2

2

2

4

**

2

4

0

**

2

0

**

*

0

12

2

2

HEHE

HEHE

HEHE

EE

Page 56: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 56

Interferometric isolator: polarization-independent

(1-η )TM0° (1-η )TM0°

(1-η )TM0°

(1-η )TM180°

(1-η )TE0°

(1-η )TE0°

(1-η )TE0°

(1-η )TE0°(1-η )TE0°(1-η )TE0°

(1-η )TM-180° (1-η )TM0°(1-η )TM-180°

(1-η )TM0°

MC1

N

MC2

MC1

N

MC2

MC1

N

MC2

MC1

N

MC2

180

180

180

180

TM0°

η TE0°η TE0°

TM0° η TE0°

2TM

TM0°

2TE

TE0°

TE0°

η TM0° η TM0°

TE0° η TM0°

2TE

η TM0°

TE0°TE180°

η TM -180°

η TM180°

2TM

TM0°TM180°

η TE0°η TE0°

η TM -180°

TM0°η TE0°

η TE0°

η TE180°

η TM180°

2η TM

2η TE

TE0°

TE180°

(b)

(a)

(c)

(d)

(1-η )TE180°

(1-η )TE 180°

N: nonreciprocal phase shifter provides NPS only for TM mode MC: mode converters provide TE-TM mode conversion

Y. Shoji and T. Mizumoto (Tokyo Tech.) et al, JLT, 25(10), 3108-3113 (2007).

Page 57: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 57

Issues to be considered・ surface treatment → hydrophilic・ mismatch in thermal

expansion coefficient → low temperature

heat treatment

・ Si / Si・ Si/SiO2 / Si,・ III-V(GaAs,InP) / Si,・ III-V(GaAs, GaP, InP,

InAs) / III-V・ Ce:YIG / III-V・ Ce:YIG / SiO2

・ Ce:YIG / LiNbO3

Hydrophilic bonding

Page 58: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 58

Surface treatment

(GdCa)3(GaMgZr)5O12(111)

Heat treatment in H2 atmosphere

H3PO4 (RT)

temperature 220ºC

Deionized water

Deionized water

InP (100)

GaInAsP (λ g=1.25m)

O2 plasma (30s)

E-beam lithography

O2 plasma (30s) or

GaInAsP

Sputter epitaxy(CeY)3Fe5O12

pressure 0.025 MPa

CH4/H2 RIE

Hydrophilic bonding: fabrication

Page 59: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 59

Input

Output

External magnetic field

NS

NS

NSN

Input

Output

External magnetic field

SN

SN

SNS

Isolation 4.9 dB

Semiconductor waveguide isolator: demonstration

H. Yokoi, et al (Tokyo Tech.), Appl. Opt, 39, 6158 (2000).

Page 60: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 60

Ideal MMI couplers

Y.Shoji, T.Mizumoto, et al., APL, 92, 071117 (2008)

1530 1540 1550 1560 1570

-50

-40

-30

-20

-10

0

Wavelength (nm)

Tra

nsm

issi

on lo

ss (

dB)

Lasym =0 mm

Lasym =111 mm

Forward

Backwardperfectly balanced

slightly unbalanced

Calculated characteristics

Page 61: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 61

Part-1: Bulk nonreciprocal devicesmagneto-optic effect (Faraday rotation)operation principle of isolators and circulators

Part-2: Waveguide isolators operational principles, design and characterization

TE-TM mode conversion isolatorsNonreciprocal loss isolatorInterferometric isolatorSemi-leaky waveguide isolator

Part-3: Waveguide circulators

Part-4: Non-magneto-optic approach

Outline

Page 62: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 62

Mode conversion: semi-leaky

Semi-leaky type

Isolation: 20.2 dB (l=1550 nm, L=1.5 mm) - fabrication tolerant - wavelength insensitive

proposed by S. Yamamoto, et al (Osaka U.),IEEE QE, 12, 764 (1976).

T. Mizumoto et al.(Tokyo Tech), OFC 2007, OThU4 (2007).

Ce:YIG

LiNbO3

θ c-axis

NOGTE mode

2.143

1.9382.200

H

TE mode

Ce:YIG

LiNbO3

θ c-axis

NOGTM mode

2.210

1.9382.200

H

TM mode

guided

radiated

Mode conversion - TE-guided and TM-radiation modes - MO and LN mode conversions

Page 63: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 63

Semi-leaky isolator: design

1.0 2.0

10

20

30

40

50

0

10

20

30

40

0Guiding layer thickness [ m]

Off

set

angl

e [

deg]

Isol

atio

n [

dB/m

m] = 1.55 m

Offset angle

Backward lossTo cancel mode conversion in forward direction offset angle of LiNbO3

Mode conversion in backward direction isolation

Ce:YIG

LiNbO3

θ c-axis

NOG

Isolation = 14.1 dB/mmfor 50dB isolation : L=3.5 mm

Ce:YIG qF=-4500 deg/cm

Page 64: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 64

1 1.1 1.2 1.30

10

20

0

1.0

2.0

Guiding layer thickness [ m]

Bac

kwar

d lo

ss /

Isol

atio

n [d

B/m

m]

Foward loss

Backward loss

Isolation

=1.55m

Fow

ard

loss

[dB

/mm

]

Radiation modes

-diagram

/k0(TE)

LiNbO3

ne=2.143

LiNbO3

no=2.210

Ce:YIGn=2.200

/k0(TM)

Guided mode

1.45 1.5 1.55 1.6 1.650

10

20

0

1.0

2.0

Wavelength [m]

Bac

kwar

d lo

ss/I

sola

tion

[dB

/mm

]

Forward loss

Backward loss

Isolation

For

war

d lo

ss [

dB/m

m]

1500nm < l < 1600nm: Isolation >12.5dB/mm Forward loss < 0.09dB/mm

Semi-leaky isolator: calculated performance

Page 65: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 65

Semi-leaky isolator: fabrication

x-cut LiNbO3

Ce:YIG waveguide&terraceGarnet No.CY0523

4.5mm

Bonding completed

Time : 3 minAnneal : none (RT)

Positioning : ~ 10 min

Hig

h va

cuum

Sample set

Pressure : 4.0 Pa (= 3.0x10-2 Torr)Gas flow : O2 2 sccm

Ar 20 sccmRF power : 250 WTime : 5 min

RF plasma : Ar + O2

Press : ~ 1MPa

Vacuum : 6.0x10-7 Pa Ce:YIG

LiNbO3

θ c-axis

NOG

Page 66: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 66

Semi-leaky guiding characteristics

Semi-leaky guiding characteristic

partially guided

TE mode

Ce:YIG

LiNbO3

c-axis

NOG

radiated

TM mode

Ce:YIG

LiNbO3

c-axis

NOG

Page 67: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 67

Part-1: Bulk nonreciprocal devicesmagneto-optic effect (Faraday rotation)operation principle of isolators and circulators

Part-2: Waveguide isolators operational principles, design and characterization

TE-TM mode conversion isolatorsNonreciprocal loss isolatorInterferometric isolatorSemi-leaky waveguide isolator

Part-3: Waveguide circulators

Part-4: Non-magneto-optic approach

Outline

Page 68: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 68

Waveguide optical circulator: TE-TM Mode conversion

- uses TE-TM mode conversion (rotation of polarization plane)

N. Sugimoto, et al. (NTT), IEEE PTL, 11, 355-357 (1999).

Page 69: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 69

#4#3

#2#1

Waveguide optical circulator: operation principle

#4

#1

#4#2

Page 70: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 70

Waveguide optical circulator: performance

#1#2

#3#4

out in #1 #2 #3 #4

#1 -- 17.1-19.5 3.2-3.3

#2 -- 3.1-3.2 17.2-18.7

#3 3.0-3.1 26.4-31.4

#4 27.0-31.8 3.0-3.1 --

N. Sugimoto, et al. (NTT), IEEE PTL, 11, 355-357 (1999).

Measured transmittance (dB)

Page 71: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 71

Waveguide optical circulator: Interferometric circulator

Direction-A (in-phase interference)

Direction-B (out-of-phase interference)

T. Mizumoto, et al. (Tokyo Tech.), EL, 26, 199-200 (1990).

Page 72: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 72

Part-1: Bulk nonreciprocal devicesmagneto-optic effect (Faraday rotation)operation principle of isolators and circulators

Part-2: Waveguide isolators operational principles, design and characterization

TE-TM mode conversion isolatorsNonreciprocal loss isolatorInterferometric isolatorSemi-leaky waveguide isolator

Part-3: Waveguide circulators

Part-4: Non-magneto-optic approach

Outline

Page 73: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 73

Interferometric isolator - single polarization operation --> no need for phase matching - ultra-wide band operation (1.31 / 1.55 mm in a single chip)

- integration with active devices --> Ce:YIG/ III-V, Ce:YIG/ Si low-temperature direct bonding

- first demonstration of Si waveguide isolator --> 21 dB isolation

Semi-leaky waveguide isolator - highly fabrication tolerant - LN/Ce:YIG direct bonding - 20 dB / 1.5 mm

Summary 2

Page 74: IEEE Photonics Soc. distinguished lecture 1 Tetsuya MIZUMOTO Dept. of Electrical and Electronic Eng. Tokyo Institute of Technology Optical Isolator: Application.

IEEE Photonics Soc. distinguished lecture 74

Waveguide circulator

Hybrid Faraday rotation type

MZ interferometer

Non-magneto-optic approach

dynamic modulation - indirect photonic transition of eigen modes dependent on propagation direction

Summary 3