Identification and characterization of effector genes from wheat stripe rust

41
Discovering the effector genes of Puccinia striiformis f.sp. tri.ci John Rathjen The Australian Na;onal University

description

John Rathjen, The Australian National University

Transcript of Identification and characterization of effector genes from wheat stripe rust

Page 1: Identification and characterization of effector genes from wheat stripe rust

Discovering  the  effector  genes  of  Puccinia  striiformis  f.sp.  tri.ci  

John  Rathjen  The  Australian  Na;onal  University  

Page 2: Identification and characterization of effector genes from wheat stripe rust

Stripe  rust  and  Australian  wheat  produc;on    

Annual  losses  

Control  cost  

GM  Murray  &  JP  Brennan  2009.  Grains  Research  &  Development  Corpora?on.  Australian  Government    

Page 3: Identification and characterization of effector genes from wheat stripe rust

Stripe  rust  and  Australian  wheat  produc;on    

Annual  losses  

Control  cost  

GM  Murray  &  JP  Brennan  2009.  Grains  Research  &  Development  Corpora?on.  Australian  Government    

Page 4: Identification and characterization of effector genes from wheat stripe rust

hAp://www.apsnet.org/edcenter/intropp/lessons/fungi/Basidiomycetes/Pages/StemRust.aspx  

Meiosis  

Urediniospores  (2n)  

Teliospores  (2n)  

Basidiospores    (1n)  

Pycniospores    (1n)  

Aeciospores    (2n)  

Wheat  

Barberry  

alternate  host  

Sexual  host  insignificant  in    Australia  

Dikaryo?c  –    Two  haploid  nuclei  

Page 5: Identification and characterization of effector genes from wheat stripe rust
Page 6: Identification and characterization of effector genes from wheat stripe rust

Puccinia  striiformis  f.sp.  tri0ci  Barley  grass  yellow  rust  Psd–  grows  on  Dactylis  glomerata  (Cocksfoot)  Psp  –  grows  on  Poa  pratensis  (Kentucky  blue  grass)  Stripe  rust  of  Phalaris  spp.,  Bromus  spp.,  “wheat  grass”,  etc,  etc  

P.  striiformis  in  Australia    

Pst-­‐1979  

Pst-­‐WA    (2002)  

BGYR  (2000)  

(~20  strains)  

 (~6  strains)  

Psd  

Psp  

Page 7: Identification and characterization of effector genes from wheat stripe rust

How  can  we  define  effector  genes?  

•  Generally,  effectors  are  thought  to  be  small  secreted  proteins.  

•  This  is  sufficient  to  build  a  list  of  such  proteins  if  genomic  sequence  is  available.  

•  In  some  cases,  amino  acid  mo?fs  such  as  RxLR  or  YxC  are  present…but  don’t  seem  to  be  diagnos?c.  

•  Another  important  criterion  is  expression  of  candidate  effector  genes  in  planta,  where  that  informa?on  is  available.  

Page 8: Identification and characterization of effector genes from wheat stripe rust

Puccinia genomics

•  Pgt (stem rust) genome (Duplessis et al. 2011) is about 90 Mb, encoding about 17,000 genes – Pgt expected to be similar.

•  This was assembled with a lot of “last-generation sequencing” which helps with scaffolding and sequence assembly.

•  Transposable elements account for about 45% of the genome.

•  Calling genes from NGS assemblies can be problematic, and can be difficult to detect expression of fungal genes in infected tissue (but these are the most interesting genes).

•  There are ongoing unresolved problems with the dikaryotic nature of rusts.

•  Broad Institute (Cuomo) has a good Pst assembly in the pipeline.

Page 9: Identification and characterization of effector genes from wheat stripe rust

Perils  and  pi`alls  of  next-­‐genera?on  sequencing  (NGS).  

•  NGS  –  boAom  up  or  ‘shotgun’  assembly  of  millions  of  small  sequence  reads,  using  high-­‐performance  compu?ng.  Technologies  include:  

•  Illumina  –  millions  of  very  short  reads  (~100  bp).  •  Roche-­‐454  –  fewer  numbers  of  longer  reads  (~500  bp).  

•  Tradi?onal  (Sanger)  sequencing  –  long  reads  800-­‐1000  bp.  

Page 10: Identification and characterization of effector genes from wheat stripe rust

DNA  sequencing;  the  impossible  triangle  

Tradi?onal  Sanger  sequencing  of  physical  con?gs  

NGS  

Page 11: Identification and characterization of effector genes from wheat stripe rust

Perils  and  pi`alls  of  next-­‐genera?on  sequencing  (NGS).  

AATATAAAACCAAAGATACTGATATCTTAGCGGCTTTCCGAATGACCCCACAACCTGGAG  

Page 12: Identification and characterization of effector genes from wheat stripe rust

Nucleus  1  Nucleus  2  

Page 13: Identification and characterization of effector genes from wheat stripe rust

Detec?ons  of  sequence  polymorphisms  in  small-­‐read  assemblies  

AATATAAAACCAAAGATACTGATATCTTAGCGGCTTTCCGAATGACCCCACAACCTGGAG  

X  

X  

X  

X  

C/G  

Page 14: Identification and characterization of effector genes from wheat stripe rust

Detec?ons  of  sequence  polymorphisms  in  small-­‐read  assemblies  -­‐  II  

AATATAAAACCAAAGATACTGATATCTTAGCGGCTTTCCGAATGACCCCACAACCTGGAG  

X  

X  

X  

X  

C/G  

X  

X  

X  

X  

T/A  

Page 15: Identification and characterization of effector genes from wheat stripe rust

Detec?ons  of  sequence  polymorphisms  in  small-­‐read  assemblies  -­‐  II  

AATATAAAACCAAAGATACTGATATCTTAGCGGCTTTCCGAATGACCCCACAACCTGGAG  

X  

X  

X  

X  

C/G  

X  

X  

X  

X  

T/A  T   C  A   C  T  A  

G  G  

The  “phase”  problem  

Page 16: Identification and characterization of effector genes from wheat stripe rust

Repeats  and  mul?copy  genes  are  difficult  to  assemble  from  small  reads  

Repeats  (transposons…effectors?)  assemble  poorly  or  not  at  all.  This  is  obvious  in  NGS  genome  assemblies.  It’s  a  considerable  problem  for  genomics  of  Puccinia  spp.  

Page 17: Identification and characterization of effector genes from wheat stripe rust

Transcriptome  

Transcriptome  

Illumina  mate-­‐paired  Illumina  pair-­‐end  (2)  

454  RNA-­‐seq  

454  RNA-­‐seq  

Genome  

Illumina  RNA-­‐seq  

Illumina  RNA-­‐seq  

454  mate-­‐pair  

NGS datasets for stripe rust bioinformatics

Page 18: Identification and characterization of effector genes from wheat stripe rust

16831 contigs

14682 contigs

1299 ORFs-SP

515 ORFs-SP

418 ORFs-SP

100 ORFs-SP

Contamina;on  removal  

Secreted  proteins  predic;on  Non-­‐transmembrane  domains  

Unique  or  non-­‐overlapping  ORFs  

Protein  length  ≤  300aa  

High  expression  

454 sequencing of isolated haustoria

transcriptome

Lab tests

Illumina sequencing

Page 19: Identification and characterization of effector genes from wheat stripe rust

Prediction of small secreted proteins (SSPs) from the haustorial transcriptome

433    ≤  300  aa  98  >    300  aa  

311  ≤    4  Cysteines  220  >    4  Cysteines  

91  have  1  mo?f  ,  18  in  the  ‘correct’  loca?on  42  have  2  mo?ves,  23  correct  loca?on  

Protein  length  

Cysteine  content    

9  have  3  or  more  mo?ves,  8  correct  loca?on  Y/F/WxC  mo?f    

Pgt  hypothe?cal  protein    

Specific  hit  (most  from  Pgt)  

Not  available    

 e-­‐val  ≤  10-­‐25    

 e-­‐val  >  10-­‐25    

                 BLASTn                                        BLASTx  

74   211  

29  38  

291  419  

Invertase  1,3-­‐β-­‐glucosidase  Pepsin  A  Chi?n  deacetylase  Glucose-­‐regulated  protein  Previous  SP  from  Pst      

No  memes  No  clusters/tribes    

Page 20: Identification and characterization of effector genes from wheat stripe rust

Validation and investigation of effector candidates

100  sequenced  and  cloned  in  TOPO    

75  

24  

Narayana  Upadhyaya  and  Diana  Garnica  

Ø R-­‐AvrR  recogni?on  assay  Ø Inhibi?on  of  plant  cell  death  Ø Localisa?on  Ø Influence  on  host  metabolism  

AvrM  type-­‐III  delivery/  P.  fluorescens  

AvrM  

avrM  

Agro/AvrM  

Page 21: Identification and characterization of effector genes from wheat stripe rust

PST-80 housekeeping genes are not single allele

Housekeeping  Gene  Copy  Number

0

1

2

3

4

5

6

7

8

9

10

221 18 39 60 81 102

123

144

165

186

207

233

254

275

312

333

368

389

418

453

483

521

295

467

443

511

Copy  num

ber

Boeva  V,  et  al.  (2011)  Control-­‐FREEC:  Bioinforma?cs.  2011  Dec  6    

Page 22: Identification and characterization of effector genes from wheat stripe rust

PST-80 Effector genes are present with variable copy number

Effector  Allele  Number,  6  

0  

1  

2  

3  

4  

5  

6  

7  

1   21  

41  

308   61  

81  

101  

121  

141  

161  

181  

201  

221  

241  

261  

281  

326  

346  

366  

415  

456  

494  

290  

434  

486  

471  

519  

Allele  Num

ber  

PST_80  Effector  Allele  Number  Effector  gene  copy  number  

Effector  gene,  nominal  ranking  

Copy  num

ber  

Page 23: Identification and characterization of effector genes from wheat stripe rust

Effector copy number variations between Pst-80 and BGYR

0  

1  

2  

3  

4  

5  

6  

7  

1   51   101   151   201   251   301   351   401   451   501  

Axis  Title  

Axis  Title  

Effector  Allele  Number  Effector  gene  copy  number  

Effector  rank  (nominal)  

Copy  num

ber  

Page 24: Identification and characterization of effector genes from wheat stripe rust

Effector copy number variations between Pst-80 and Pst-130 (US)

0  

2  

4  

6  

8  

10  

12  

1   13  

25  

37  

49  

61  

73  

85  

97  

109  

121  

133  

145  

157  

169  

181  

193  

205  

217  

229  

241  

253  

265  

277  

289  

301  

313  

325  

337  

349  

361  

373  

385  

397  

409  

421  

433  

445  

457  

469  

481  

493  

505  

517  

Allele  Num

ber  

Effector  Number  

PST_130  Effector  Allele  Number  

Effector  Allele  Number  

Effector  gene  copy  number  

Copy  num

ber  

Effector  number  (nominal)  

Cantu  et  al.  PLOS  One  (2011)  

Page 25: Identification and characterization of effector genes from wheat stripe rust

Housekeeping  genes  do  not  show  the  same  degree  of  varia?on  in  copy  number  

Conserved  Gene  Copy  Number

01234567

1 51 101 151 201 251 301 351 401 451 501

Gene

Pred

icted

 Cop

y  Num

ber

PST_conBGYR_con

BGYR  

Pst-­‐80  Control-­‐FREEC  predic?on  of  CNVs  

Boeva  V,  et  al.  (2011)  Control-­‐FREEC:  Bioinforma?cs.  2011  Dec  6    

Page 26: Identification and characterization of effector genes from wheat stripe rust

Copy  number  varia?on  in  Pst  effectors  

•  Copy  number  varia?ons  are  readily  apparent  in  Pst  effector  genes,  with  many  single  copy.  

•  Sequence  polymorphisms  are  also  apparent,  but  these  are  harder  to  annotate  because  of  NGS  assemblies.  

•  Single-­‐copy  effectors  may  allow  the  pathogen  to  mutate  rapidly  to  virulence.  

Page 27: Identification and characterization of effector genes from wheat stripe rust

Barley grass yellow rust (BGYR) – a stripe rust that jumped?

BGYR  (2000)  

Wheat  stripe  (1980)  

wheat   Barley  grass  

Stripe  rust  and  BGYR  99+%  iden?cal  in  effector  genes  so  far  sequenced  

Page 28: Identification and characterization of effector genes from wheat stripe rust

Sequencing summary

•  We amplified and sequenced the PCR products of 50 candidate effector genes from Pst-80 and BGYR and found 99 single nucleotide polymorphisms (SNPs).

•  These were ALWAYS of a particular pattern – twin peak ‘dimorphisms’, rather than clear SNPs (dSNPs).

•  50 of these were'informative' dSNPs - 34 from BGYR, and 16 from Pst-80.

•  We amplified and sequenced these alleles from BGYR and Pst-80.

•  When we did this, we found that BGYR ALWAYS shared an allele with Pst-80, and the alternative allele was divergent.

•  We think that this is related to the dikaryotypic nature of P. striiformis.

Page 29: Identification and characterization of effector genes from wheat stripe rust

1 8 6

2

4 7

5 3

1 8 6

2

4 7

5 3

Pst-­‐80  

BGYR  

1 8 6

2

4 7

5 3

1 8 6

2

4 7

5 3

Page 30: Identification and characterization of effector genes from wheat stripe rust

1 8 6

2

4 7

5 3

BGYR  1

8 6 2

4 7

5 3

Page 31: Identification and characterization of effector genes from wheat stripe rust

Model for the origins of BGYR

Pst

BGYR unknown ancestor Anastamosis + Heterokaryosis

BGYR

Page 32: Identification and characterization of effector genes from wheat stripe rust

Where did BGYR come from?

•  One line of evidence suggests that heterokaryosis is an underlying mechanism for the host jump – but we need to address the phase problem.

•  In the 1950’s, this was proposed as a mechanism to explain frequent mutation to virulence of stem rust on wheat.

•  We have detected four deleted effector genes, and will test these for recognition on barley grass by bacterial delivery.

•  Heterokaryosis potentially increases effector hemizygosity, which could both increase the effective effector compliment (for virulence) and allow rapid deletion of recognised effectors.

Page 33: Identification and characterization of effector genes from wheat stripe rust

Acknowledgments    •  Diana  Garnica  •  William  Jackson  

•  CSIRO  Black  Mountain  •  Narayana  Upadhyaya    •  Peter  Dodds  •  Jeff  Ellis  

•  Univ  Sydney  CobbiAy  •  Colin  Wellings  

Robert  Park  

•  Univ  Exeter,  UK  •  David  Studholme  

Page 34: Identification and characterization of effector genes from wheat stripe rust
Page 35: Identification and characterization of effector genes from wheat stripe rust

Ø Take  nutrients  (sugars  and  aminoacids)  from    host  Ø Generate  precursors  of  metabolites  and  energy  Ø Biosynthesise  compounds  necessary  for  the  ul?mate  produc?on  of  spores    Ø Secrete  pathogenicity  factors  (effectors)    

Ø Use  lipid  reserves  to  generate  energy  Ø Grow  (DNA  replica?on,  cell  division)  Ø Modify  chi?n  to  avoid  recogni?on    

Haustoria:  

Germinated  spores:  

Page 36: Identification and characterization of effector genes from wheat stripe rust

0  

10  

20  

30  

40  

50  

60  

70  

80  

0  

2  

4  

6  

8  

10  

12  

14  

1   23  

45  

398   69  

91  

113  

135  

157  

179  

201  

223  

245  

267  

314  

336  

358  

409  

431  

492  

290  

436  

517  

502  

Copy,  A

llele  and

 SNP  Num

ber  

Effector  Number  

PST_80  Effector  Copy  Number,  Allele  Number  and  SNP  Number  

Effector  Candidate  Copy  Number  

Many effector genes are single copy

Page 37: Identification and characterization of effector genes from wheat stripe rust

PST_80 effector genes in PST_130 have undergone significant modification

0  

20  

40  

60  

80  

100  

120  

0  

2  

4  

6  

8  

10  

12  

14  

16  

1   13  

25  

38  

50  

62  

74  

86  

98  

110  

122  

134  

146  

159  

172  

185  

198  

211  

223  

235  

247  

259  

271  

283  

295  

307  

320  

332  

344  

356  

368  

380  

392  

404  

416  

428  

440  

452  

464  

476  

488  

500  

512  

Copy,  A

llele  and

 SNP  Num

ber  

Effector  Number  

PST_130  Effector  Gene  Variability  

Effector  Copy  Number  Effector  Allele  Number  Effector  SNP  Number  

Page 38: Identification and characterization of effector genes from wheat stripe rust

Mapping  BGYR  genomic  reads  against  500  ‘conserved’  Pst  genes  

Conserved  Gene  Copy  Number

01234567

1 51 101 151 201 251 301 351 401 451 501

Gene

Pred

icted

 Cop

y  Num

ber

PST_conBGYR_con

BGYR  

Pst-­‐79  Control-­‐FREEC  predic?on  of  CNVs  

Boeva  V,  et  al.  (2011)  Control-­‐FREEC:  Bioinforma?cs.  2011  Dec  6    

Page 39: Identification and characterization of effector genes from wheat stripe rust

Mapping  BGYR  genomic  reads  against  500  Pst  effector  candidates  Effector  Candidate  Copy  Number

0

2

4

6

8

1 51 101 151 201 251 301 351 401 451 501

Gene

Pred

icted

 Cop

y  Num

ber PST_e

ffBGYR_eff

BGYR  

Pst-­‐79  Control-­‐FREEC  predic?on  of  CNVs  

Boeva  V,  et  al.  (2011)  Control-­‐FREEC:  Bioinforma?cs.  2011  Dec  6    

Page 40: Identification and characterization of effector genes from wheat stripe rust

ToxA  cell  death  dependent  on  Tsn1  is  suppressed    by  stripe  rust  infec;on  

+ToxA   +H2O  

+ToxA  +  stripe  rust   stripe  rust  

Diana  Garnica  with  help  from  the  Solomon  lab  

Page 41: Identification and characterization of effector genes from wheat stripe rust

PST_79 effector gene Pstv_4835_1 has one copy and two alleles