ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a) - Professor Daniel Martin Katz

47
COMPLEX SYSTEMS MODELS IN THE SOCIAL SCIENCES MICHAEL J BOMMARITO II DANIEL MARTIN KATZ Structure and Community Detec1on in Networks

description

 

Transcript of ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a) - Professor Daniel Martin Katz

Page 1: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

COMPLEX SYSTEMS MODELS IN THE SOCIAL SCIENCES    

MICHAEL  J  BOMMARITO  II                                                                DANIEL  MARTIN  KATZ    

Structure  and  Community  Detec1on    in  Networks  

Page 2: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Defini1on  –  Simple  Version  

�  Broadly:  “a  group  of  nodes  that  are  rela&vely  densely  connected  to  each  other  but  sparsely  connected  to  other  dense  groups  in  the  network”  ¡  Porter,  Onnela,  Mucha.    Communi&es  in  Networks.  No1ces  to  the  AMS,  2009.  

�  Examples:  ¡  Cliques  in  a  high  school  social  network  ¡  Vo1ng  coali1ons  in  Congress  ¡  Consumer  types  in  a  network  of  co-­‐purchases  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 3: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Example  –  Social  Networks  

Imagine  this  Graph  ….  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 4: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Example  –  Social  Networks  

What   factors   might   affect   the   formaJon   of  friendships  in  a  high  school  social  network?    Ideas:    Age,    Gender,  Class,  Race,  Interests  

 How   might   we   assign   communiJes   to   this  network?    

           

VerJces:  People  Edges:  Friendship  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 5: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Example  –  Social  Networks  

What   factors   might   affect   the   formaJon   of  friendships  in  a  high  school  social  network?    Ideas:    Age,    Gender,  Class,  Race,  Interests  

 How   might   we   assign   communiJes   to   this  network?    

           

Girls  

Boys  

VerJces:  People  Edges:  Friendship  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 6: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Example  –  Vo1ng  Coali1ons  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

VerJces:  People  Edges:  Co-­‐voted                at  least  once  

Now  let’s  look  at  the  same  network  as  if  it  represented  co-­‐voJng  in  the  Senate.    Ideas:  Issue  posi1on,  geography,  ethnicity,  gender    How  might  we  assign  communiJes  to  this  network?            

Page 7: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Example  –  Vo1ng  Coali1ons  

Republicans  

Democrats  

Independents  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

VerJces:  People  Edges:  Co-­‐voted                at  least  once  

Now  let’s  look  at  the  same  network  as  if  it  represented  co-­‐voJng  in  the  Senate.    Ideas:  Issue  posi1on,  geography,  ethnicity,  gender    How  might  we  assign  communiJes  to  this  network?            

Page 8: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Context!  

Note  that  we  have  assigned  community  membership  differently        despite  observing  the  same  graph!    Community  detecJon  is  not  a  concept  that  can  be  divorced  from  context.      

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 9: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Directedness  

Undirected   Directed  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 10: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Directedness  

Many  methods  do  not  incorporate  direcJon!      Many  methods  that  do  incorporate  direcJon  do  not  allow  for  bidirected  edges.      Different  soVware  packages  may  implement  the  same  “method”  with  or  without  support  for  directed  edges.  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 11: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Weights  

Unweighted   Weighted  

•   Binary  rela1onships  •   Data  limita1ons  

•   Rela1onship  strength  •   Frequency  of  rela1onship  •   Flow  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 12: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Weights  

Unweighted   Weighted  

•   Binary  rela1onships  •   Data  limita1ons  

•   Rela1onship  strength  •   Frequency  of  rela1onship  •   Flow  

Note  edge  thickness.  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 13: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Weights  

Many  methods  do  not  incorporate  edge  weights!    Methods  that  do  incorporate  edge  weights  may  differ  in  acceptable  values!  •   Integers  or  real  weights  •   Strictly  posi1ve  weights    Different  soVware  packages  may  implement  the  same  “method”  with  or  without  support  for  weighted  edges.  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 14: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Resolu1on  

Resolu1on  is  a  concept  inherited  from  op1cs.    According  to  Wiki,      Op,cal  resolu,on  describes  the  ability  of  an  imaging  system        to  resolve  detail  in  the  object  that  is  being  imaged.      

High  resoluJon)   Low  resoluJon  

•   Can  make  out  many  details!  (15.1MP)  •   But…  

•   Details  may  be  noise  •   Some1mes  they  don’t  ma]er!    

•   Can’t  read  a  word!  •   But…  

•   Can  focus  on  broad  regions  •   Noise  is  out  of  focus  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 15: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Resolu1on  

High  resoluJon  (microscopic)   Low  resoluJon  (macroscopic)  

Same  graphs!  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 16: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Resolu1on  

Different  hypotheses  or  quesJons  correspond  to  different      resoluJons.    Different  methods  are  more  or  less  effecJve  at  detecJng        community  structure  at  different  resoluJons.    Modularity-­‐based  methods  cannot  detect  structure  below      a  known  resoluJon  limit.  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 17: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Overlapping  Communi1es  

Palla,  Derenyi,  Farkas  ,Vicsek.  Uncovering  the  overlapping  community  structure  of  complex  networks  in  nature  and  society  

Nature    435,  2005.  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 18: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Computa1onal  Complexity  Refresher  

ComputaJonal  complexity  is  a  serious  issue!  

       

Data   is   becoming   more   abundant   and   more  detailed.    Many   quan1ta1ve   research   projects   hinge   on  the  feasibility  of  calcula1ons.    Understanding   computa1onal   complexity   can  allow  you  to  communicate  with  department  IT  personnel  or  computer  scien1sts  to  solve  your  problem.    Make   sure   your   project   is   feasible   before  commi[ng  the  Jme!      

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 19: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Computa1onal  Complexity  Refresher  

Computa1onal  complexity  in  the  context  of  modern  compu1ng  is        primarily  focused  on  two  resources:    1.    Time:  How  long  does  it  take  to  perform  a  sequence  of  opera1ons?  

•  CPU/GPU  •  Exact  vs.  approximate  solu1ons    

2.    Storage:  How  much  space  does  it  take  to  store  our  problem?  •  Memory  and  “persistent”  storage  (to  a  lesser  degree)  •  Data  representa1ons  

We  tend  to  communicate  1me  and  storage  complexity  through  “Big-­‐O  nota1on.”  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 20: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Computa1onal  Complexity  Refresher  

In  computa1onal  complexity,  “Big-­‐O  nota1on”  conveys  informa1on        about  how  1me  and  storage  costs  scale  with  inputs.    •   O(1):  constant  -­‐  independent  of  input  •   O(n):  scales  linearly  with  the  size  of  input  •   O(n^2):  scales  quadra1cally  with  the  size  of  input  •   O(n^3):  scales  cubically  with  the  size  of  input  

These  terms  ofen  occur  with  log  n  terms      and  are  then  given  the  prefix  “quasi-­‐.”  

For  graph  algorithms,  the  input  n  is  typically    • |V|,  the  number  of  ver1ces  • |E|,  the  number  of  edges  

       

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 21: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Taxonomy  of  Methods  

This  taxonomy  of  methods  follows  the  history  of  their  development.    • Divisive  Methods  

•  Edge-­‐betweenness  (2002)    

• Modularity  Methods  •  Fast-­‐greedy  (2004)  •  Leading  Eigenvector  (2006)  

• Dynamic  Methods  •  Clique  percola1on  (2005)  •  Walktrap  (2005)  

 More  on  my  blog  here:    Summary  of  community  detec1on  algorithms  in  igrap  •  h]p://bommaritollc.com/2012/06/17/summary-­‐community-­‐detec1on-­‐algorithms-­‐

igraph-­‐0-­‐6/  

  Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 22: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Edge  Betweenness  

PublicaJon(s):    Girvan,  Newman.    Community  structure  in  social  and  biological  networks.    PNAS,  2002.    Basic  Idea:    Divide  the  network  into  subsequently  smaller  pieces  by  finding  edges  that  “bridge”  communi1es.    Constraints:      •   Can  be  adapted  to  directed  networks  (igraph).  •   Can  be  adapted  to  weights  (no  public  sofware).    Time  Complexity:  O(|V|^3)  in  general,  O(|V|^2  log  |V|)  for  special  cases  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 23: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Edge  Betweenness  

From  the  paper:  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 24: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Quick  Aside  –  Zach’s  Karate  Club  

Zachary's  Karate  Club:  Social  network  of  friendships  between  34  members  of  a  karate  club  at  a  US  university  in  the  1970s  

Event:  During  the  observa1on  period,  the  club  broke  into  2  smaller  clubs.    This  split  occurred  along  a  pre-­‐exis1ng  social  division  between  the  two  “communi1es”  in  the  network.  

 Drawn  from  the  Paper:  Zachary.  An  informa&on  flow  model  for  conflict  and  fission  in  

small  groups.  Journal  of  Anthropological  Research  33,  1977.  

Download  the  Data:  h]p://www-­‐personal.umich.edu/~mejn/netdata/  

     

 

   

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 25: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Edge  Betweenness  

Only  misclassifica1on  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 26: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Edge  Betweenness  

Betweenness  tends  to  get  the  big  picture  right.        However,  resolu1on  can  be  a  problem!        Do  not  draw  conclusions  about  small  communi1es  from  this  algorithm  alone.  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 27: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Modularity  

 •   e  is  the  number  of  edges  in  module  i    •   d  is  total  degree  of  ver1ces  in  module  i    •   m  is  the  total  number  of  edges  in  network    Q  is  difference  between  observed  connecJvity  within  modules  and  EV  for  the  configuraJon  model  (degree-­‐distribuJon  fixed)    

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 28: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Modularity  

Remember  our  previous  discussion  on  computa1onal  complexity?    

Modularity  maximiza1on  is  an  NP-­‐hard  problem.    

This  means  that  there  is  no  polynomial  representa1on  of  1me  complexity!    

All  methods  therefore  try  to  solve  for  approximate  solu&ons.      

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 29: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Modularity  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Benjamin  H.  Good,  Yves-­‐Alexandre  de  Montjoye  &  Aaron  Clauset,    The  Performance  of    Modularity  Maximiza1on  in  Prac1cal  Contexts,  Phys.  Rev.  E  81,  046106  (2010)  

 

Page 30: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Fast  Greedy  

PublicaJon(s):    •   Newman.    Fast  algorithm  for  detec&ng  community  structure  in  networks.  Phys.  Rev.  E,  2004.  •   Clauset,  Newman,  Moore.    Finding  community  structure  in  very  large  networks.  Phys.  Rev.    E,  2004.  •   Wakita,  Tsurumi.  Finding  Community  Structure  in  Mega-­‐scale  Social  Networks.  2007.      Basic  Idea:        Try  to  randomly  assemble  a  larger  and  larger  communi1es  from  the  ground  up.    Start  by  placing  each  vertex  in  its  own  community  and  then  combine  communi1es  that  produce  the  best  modularity  at  that  step.    Constraints:  •   Can  be  adapted  to  directed  edges  (no  public).  •   Can  be  adapted  to  weights  (igraph).    Time  Complexity:  O(|E||V|  log  |V|)  worst  case  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 31: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Fast  Greedy  

Fast-­‐Greedy  also  tends  to  aggressively  create  larger  communi1es  to  the  detriment  of  smaller  communi1es.  

Why  is  this  node  red  instead  of  blue?  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 32: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Leading  Eigenvector  

PublicaJon(s):    •   Newman.  Finding  community  structure  in  networks  using  the  eigenvectors  of  matrices.  Phys.  Rev.  E,  2006.  •   Leicht,  Newman.  Community  structure  in  directed  networks.  Phys.  Rev.  Le].,  2008.    Basic  Idea:  Use  the  sign  on  the  components  of  the  leading  eigenvector  of  the  Laplacian  to  sequen1ally  divide  the  network.    Constraints:  •   Can  be  adapted  to  directed  edges  (no  public).  •   Can  be  adapted  to  weights  (igraph).    Time  Complexity:  O(|V|^2)  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 33: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Leading  Eigenvector  

Note   that   eigenvector’s   results  seem   to   split   the   difference  between   edge   betweenness   and  fast-­‐greedy  in  this  case.  

Why  are  these  nodes  not  a  part  of  the  larger  modules?  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 34: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Walktrap  

PublicaJon(s):  Pons,  Latapy.  Compu&ng  communi&es  in  large  networks  using  random  walks.  JGAA,  2006.    Basic  Idea:    Simulate  many  short  random  walks  on  the  network  and  compute  pairwise  similarity  measures  based  on  these  walks.    Use  these  similarity  values  to  aggregate  ver1ces  into  communi1es.    Constraints:  •   Can  be  adapted  to  directed  edges  (igraph).  •   Can  be  adapted  to  weights  (igraph).  •   Can  alter  resolu1on  by  walk  length  (igraph).    Time  Complexity:  depends  on  walk  length,  O(|V|^2  log  |V|)  typically  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 35: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Walktrap  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 36: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Walktrap  

Walktrap  assigns  ver1ces  to  different  communi1es  than  previous  algorithms.    Note  that  the  simulated  walk  length  can  be  changed  to  alter  resolu1on.    Furthermore,  simulaJon  is  stochasJc  and  thus  results  may  change  even  aVer  fixing  the  walk  length  and  input  graph!      

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 37: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Method  Comparison  

Edge-­‐Betweenness   Fast-­‐Greedy  

Leading  Eigenvector  Walktrap  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 38: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Recommended  Sofware  -­‐  igraph  

•   Core  Library:  C  •   Interfaces:  Python,  R,  Ruby    •   Features:  Graph  opera1ons  &  algorithms,  random  graph  genera1on,  graph  sta1s1cs,  community  detec1on,  visualiza1on  layout,  ploqng  •   URL:  h]p://igraph.sourceforge.net/  •   Documenta1on:  h]p://igraph.sourceforge.net/documenta1on.html  

 

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 39: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Example  Python  Source  Code  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 40: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Fron1ers  of  Community  Detec1on:  Temporal  Network  Dynamics  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Gergely Palla, Albert-Laszlo Barabasi & Tamas Vicsek, Quantifying Social Group Evolution, Nature 446:7136, 664-667 (2007)

Page 41: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

 Fron1ers  of  Community  Detec1on:  

Community  Structure  Over  Scales,  Time  Period,  etc.    

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Science 14 May 2010, Vol. 328. no. 5980, pp. 876 - 878

Page 42: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Community  Detec1on  Review  Ar1cles  

Some  Useful  Review  ArJcles:       Mason A. Porter, Jukka-Pekka Onnela and Peter J. Mucha. 2009. “Communities in Networks.” Notices of the American Mathematical Society 56: 1082-1166.    Santo Forunato. 2010. “Community detection in graphs.” Physics Reports. 486: 75-174.  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 43: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

A  Transi1on  to  Our  Sink  Method  Paper      

�  Provide  a  very  brief  introduc1on  to  the            Exponen1al  Random  Graph  Models  (p*)        

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

�  Now  we  are  going  to  transi1on  to  a  specific  project  -­‐-­‐-­‐        where  we  apply  some  of  the  ideas  contained  herein      

Page 44: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Our  Sink  Paper  –Physica  A      

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Page 45: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Dynamic  Acyclic  Digraphs  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

�  We  are  interested  in  conduc1ng  community  detec1on  in  the  special  case  of  dynamic  acyclic  digraphs.  

�  Before  we  transi1on  to  the  full  presenta1on,  some  background:  �  Dynamic  =  Changing  both  locally  and  globally    �  Digraph  =  Directed  graph  �  Acyclic  =  No  cycles  because  current  documents  generally  cannot  cite  documents  in  the  future    

 

Page 46: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Dynamic  Acyclic  Digraphs  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

Case-­‐to-­‐case  judicial  cita1on  networks  are  dynamic  acyclic  digraphs.    

So  are  academic  cita1on  networks,  patents  cita1on  networks,  etc.      

 

Page 47: ICPSR - Complex Systems Models in the Social Sciences - Lecture 5(a)  - Professor Daniel Martin Katz

Dynamic  Acyclic  Digraphs  

Michael  J.  Bommarito  II,  Daniel  Mar1n  Katz  

QuesJon:  What  does  modularity  mean  when  there  can  be  no  closed  paths/walks?  

 Answer:  

Read  the  paper!    

Takeaway:  Correct  methodologies  are  ones  that  make  sense  in  the  context  of  your  data.  

They  don’t  always  exist  already!