IceCube

20
IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection at the South Pole

description

IceCube. Outlook for Neutrino Detection at the South Pole. S Robbins University of Wuppertal Moriond - “ Contents and Structures of the Universe ” La Thuile, Italy, March 2006. Scientific Goals IceCube Status AMANDA Results. Amundsen-Scott South-Pole Station. Alabama University, USA - PowerPoint PPT Presentation

Transcript of IceCube

Page 1: IceCube

IceCubeIceCube

S Robbins

University of Wuppertal

Moriond - “Contents and Structures of the Universe”

La Thuile, Italy, March 2006

Outlook for NeutrinoDetection at the South Pole

Outlook for NeutrinoDetection at the South Pole

Page 2: IceCube

• Scientific Goals

• IceCube Status

• AMANDA Results

Amundsen-Scott South-Pole Station

Page 3: IceCube

USA (14)USA (14)Europe (15)Europe (15)

JapanJapan

New ZealandNew Zealand

• Alabama University, USA• Bartol Research Institute, Delaware, USA• Pennsylvania State University, USA• UC Berkeley, USA• UC Irvine, USA• Clark-Atlanta University, USA• University of Alaska, Anchorage, USA• Univ. of Maryland, USA

• Alabama University, USA• Bartol Research Institute, Delaware, USA• Pennsylvania State University, USA• UC Berkeley, USA• UC Irvine, USA• Clark-Atlanta University, USA• University of Alaska, Anchorage, USA• Univ. of Maryland, USA

• IAS, Princeton, USA• University of Wisconsin-Madison, USA• University of Wisconsin-River Falls, USA• LBNL, Berkeley, USA• University of Kansas, USA• Southern University and A&M College, Baton Rouge, USA

• IAS, Princeton, USA• University of Wisconsin-Madison, USA• University of Wisconsin-River Falls, USA• LBNL, Berkeley, USA• University of Kansas, USA• Southern University and A&M College, Baton Rouge, USA

• Universite Libre de Bruxelles, Belgium• Vrije Universiteit Brussel, Belgium• Université de Mons-Hainaut, Belgium• Universiteit Gent, Belgium• Humboldt Universität, Germany• Universität Mainz, Germany• DESY Zeuthen, Germany• Universität Dortmund, Germany

• Universite Libre de Bruxelles, Belgium• Vrije Universiteit Brussel, Belgium• Université de Mons-Hainaut, Belgium• Universiteit Gent, Belgium• Humboldt Universität, Germany• Universität Mainz, Germany• DESY Zeuthen, Germany• Universität Dortmund, Germany

• Universität Wuppertal, Germany• MPI Heidelberg, Germany • Uppsala University, Sweden• Stockholm University, Sweden• Imperial College, London, UK• Oxford University, UK• Utrecht University, Netherlands

• Universität Wuppertal, Germany• MPI Heidelberg, Germany • Uppsala University, Sweden• Stockholm University, Sweden• Imperial College, London, UK• Oxford University, UK• Utrecht University, Netherlands

• University of Canterbury, Christchurch, NZ• University of Canterbury, Christchurch, NZ

ANTARCTICA

The IceCube Collaboration

• Chiba University, Japan• Chiba University, Japan

Page 4: IceCube

Physics GoalsDetect neutrinos from the sources of cosmic-rays

Search for neutrinosfrom dark matterannihilations

Search for neutrinos from cosmological events

NewPhysics

Page 5: IceCube

Fermi acceleration of protons gives particle spectrum

dNp/dE~ E-2

Neutrino production at source: p+ or p+p collisions gives pions

± -> ± +

± -> e± + + e

Neutrino flavors:

e : : 1:2:0 generic sources1:1:1 after oscillations

Observing Neutrinos

Page 6: IceCube

IceCube

QuickTime™ and aBMP decompressor

are needed to see this picture.

IceTop air shower array80 pairs of ice Cherenkov tanks

IceCube (deep ice)80 strings of 60 optical modules17 m between optical modules125 m between strings1 km3 (1 Gton) detector!

AMANDA19 strings, 677 OMs totalø 200m, height 500m

Page 7: IceCube

~1

0-20

m

Optical module

Mean - angle is ~0.7o at 1TeV

Muon travels a large distance Interaction can be outside the detector Active volume is much larger than the detector

Proposed by Markov 1960

νμμ

X X’

W

detection principle

energy deposited in OM

time recorded on OM

Page 8: IceCube

Optical module

νe,τ

N X

W

e,τ

νμ,e,τ

N X

Z

νμ,e,τ

Charged-current interactions:

Neutral-current interactions:

e & detection principle

energy deposited in OM

time recorded on OM

Page 9: IceCube

Ice Properties• Ice not uniform in depth (e.g. dust layers)• Important to understand ice for analysis

QuickTime™ and aBMP decompressor

are needed to see this picture.

Mean scattering length: 25m Mean absorption length: 110m

Page 10: IceCube

Light Propagation• Cherenkov cone from muon tracks• Use timing information, accounting for propagation

Homogeneous ice Depth Dependent ice properties

Page 11: IceCube

Hot-water drilling

Hose reel Drill tower

IceTop tanks5 MW Hot water generator

Page 12: IceCube

AMANDA

IceCube Today

500 m

Only IceToptank

InIce string& IceTop

• 2004/2005 season– New hot water drill – First string deployed (string 21)– Four IceTop stations installed

(16 OMs)– 60 OMs in deep ice,

all 60 functioning

• 2005/2006 season– Modified drill – 8 strings deployed– 12 IceTop stations installed– 480 OMs in deep ice

and 48 OMs in IceTop

Page 13: IceCube

“String 21” DataFirst IceCube string, deployed January 2005

Neutrino candidate9 string

Downgoing

IceCube event

Page 14: IceCube

AMANDA

QuickTime™ and aBMP decompressor

are needed to see this picture.

IceTop air shower array80 pair of ice Cherenkov tanks

IceCube (deep ice)80 strings of 60 optical modules17 m between optical modules125 m between strings1 km3 (1 Gton) detector!

AMANDA19 strings, 677 OMs totalø 200m, height 500m

Page 15: IceCube

“Diffuse Limits”• Measure the neutrino energy spectrum• Search for a break in the spectrum

Some AGN models excluded at 90% CL :Szabo-Protehoe 92

Stecker, Salamon. Space Sc. Rev. 75, 1996

Protehoe. ASP Conf series, 121, 1997E2μ

(E) < 2.6·10–7 GeV cm-2 sr-1 s-1

Results from one year (2000) of data

Consistent with Atmospheric neutrino expectation

Page 16: IceCube

Point Source SearchNeutrino sky map:

• 2000-2003 data: 807 days livetime• 3329 neutrino events• Largest significance = 3.4 (92% chance occurrence)• No significant excess observed

• 2000-2003 data: 807 days livetime• 3329 neutrino events• Largest significance = 3.4 (92% chance occurrence)• No significant excess observed

Page 17: IceCube

Neutrinos from GRBs

10 min -1 hour+1 hour

1.4501.29312 (BT)B-10/A-II97-00

1.8800.6046 (New)A-II2000

1.4701.24114 (All)A-II2000

2000

2000

1999

1998

1997

Year

A-II

A-II(2 analyses)

B-10

B-10

B-10

Detector

2.1900.2424 (BNT)

1.72/2.050/00.83/0.4044 (BT)

2.2400.2096 (BT)

2.2400.2094 (BT)

2.4100.0678 (BT)

Event U.L.NObsNBG, PredNBursts

Using space and time coincidence leads to a very low background.

No observed signal

Only ~1 order of magnitude above Waxmann&Bahcall prediction

Page 18: IceCube

Solar WIMPs

• Neutralinos captured in the Sun• These annihilate producing quarks and leptons• And neutrinos, which we search for with IceCube

χ + χ → ν + ν (+…)

Earth

Detector

Freese, ’86; Krauss, Srednicki & Wilczek, ’86 Gaisser, Steigman & Tilav, ’86

Silk, Olive and Srednicki, ’85Gaisser, Steigman & Tilav, ’86

Page 19: IceCube

Neutralinos from the Sun

data from 2001

Sun

Limits on muon flux from Sun

IceCube Best-Case

Page 20: IceCube

Conclusions• 2005/6 was a successful deployment season• Now have in total 604 optical modules installed• Only ~1% failure rate• IceCube is on track for 1km3 neutrino observatory• AMANDA has taken 10 years of data• AMANDA continues to produce physics results

• No extraterrestrial neutrinos observed so far

• Stay tuned…