IB Chemistry on Gibbs Free Energy and Entropy

35
http://lawrencekok.blogspo t.com Prepared by Lawrence Kok Tutorial on Gibbs Free Energy and Spontaneity .

Transcript of IB Chemistry on Gibbs Free Energy and Entropy

Page 1: IB Chemistry on Gibbs Free Energy and Entropy

http://lawrencekok.blogspot.com

Prepared by Lawrence Kok

Tutorial on Gibbs Free Energy and Spontaneity .

Page 2: IB Chemistry on Gibbs Free Energy and Entropy

E = sum kinetic energy/motion of molecule, and potential energy represented by chemical bond bet atom

∆E = q + w

∆E = Change internal energy

q = heat transfer

w = work done by/on system

Thermodynamics Study of work, heat and energy on a system

∆E universe = ∆E sys + ∆E surrounding = 0

1st Law Thermodynamics

Entropy - Measure of disorder↓

∆S uni = ∆S sys + ∆S surr > 0 (irreversible rxn)↓

All spontaneous rxn produce increase in entropy of universe

2nd Law Thermodynamics

∆S uni = ∆S sys + ∆S surr

Isolated system - Entropy change of universe always increase

Click here thermodynamics entropyEntropy

Measure molecular disorder/randomness

↓More disorder - More dispersion of matter/energy

↓More random - Rxn toward right- Entropy Increases ↑

Direction to right- Spontaneous to right →

2nd Law Thermodynamics

Embrace the chaos

Over time - Entropy increase ↑

Direction to left ← Never happen !

Click here thermodynamics

Energy cannot be created or destroyed

> 0

Page 3: IB Chemistry on Gibbs Free Energy and Entropy

∆S = Entropy change

Entropy

Dispersal/DistributionMatter Energ

y

Matter more disperse ↑

Entropy increases ↑

solid liquid gas

spontaneous - entropy ↑

Over time - Entropy increase ↑

Phase change - sol → liq → gas

↓ Entropy increase ↑ Every energy transfer - increase entropy universe

Entropy universe can only go up - never go down Entropy increase - many ways energy spread out

Dispersion energy as heat - increase entropy

Stoichiometry- more gas/liq in product

↓Entropy increase ↑

TQS

Heat added ↑

Phase change

Stoichiometry

Embrace the chaos

N2O4(g) → 2NO2(g)

1 2

2H2O(l) → 2H2 (g) + O2 (g)

1 23

3

More gas in product - Entropy ↑

Heat added ↑

Entropy

Measure molecular disorder/randomness↓

More disorder - More dispersion of matter/energy↓

More randon - Rxn towards right- Entropy Increases ↑

Liq more disorder than solidGas more disorder than liq

kinetic energy distributed over wide range

Q = heat

transferT = Temp/K

Distribution matter in space Distribution energy bet particles

Direction to left ← Never happen !Direction to right- Spontaneous to right →

Page 4: IB Chemistry on Gibbs Free Energy and Entropy

Statistical

Entropy

Entropy

Measure molecular disorder/randomness↓

More disorder - More dispersion of matter/energy↓

More random - Entropy Increases ↑

1st Law Thermodynamics - Doesn't help explain direction of rxn

∆S uni > 0 (+ve) → More disorder - spontaneous∆S uni < 0 (-ve) → More order - non spontaneous

Change sol → liq → gas - Higher entropyGreater number particles in product - Higher entropyMore complex molecule - More atoms bonded - Higher

entropyHigher temp - Vibrate faster - More random - Higher

entropy

Why gas mixes and not unmix?

Why heat flow from hot to cold?

Entropy

Notes on Entropy

1st Law Thermodynamics 2nd Law Thermodynamics

Energy cannot be created or destroyedTransfer from one form to another

∆E universe = ∆E sys + ∆E surrounding = 0

Isolated system ↓

∆S uni always increase

∆E = q + w

Method to calculate entropy

Number microstates

Thermodynamic

Entropy

Heat + Temp involved

Gas mixesSolution diffuse Heat flow hot →cold

X X X

∆E = internal energy

q = heat transfer

w = work done ∆S = Entropy universe

∆S = Entropy system

∆S = Entropy surrounding

∆S uni = ∆S sys + ∆S surr

Law Thermodynamics

1 2

∆S = Entropy uni

WkS ln

∆S = Entropy change

k = boltzmann constant

W = Microstate

Click here statistical entropy

Click here thermodynamics entropy

Why solution diffuse and not undiffuse?

Unit - J mol -1

K-1

surrsysuni SSS

∆S = Entropy sys and surr

High chaos factor

Page 5: IB Chemistry on Gibbs Free Energy and Entropy

1st Law Thermodynamics - Doesn't help explain direction of rxn

∆S uni > 0 (+ve) → More disorder - spontaneous∆S uni < 0 (-ve) → More order - non spontaneous

Change sol → liq → gas - Higher entropyGreater number particles in product - Higher entropyMore complex molecule - More atoms bonded - Higher

entropyHigher temp - Vibrate faster - More random - Higher

entropyMeasure molecular disorder/randomness↓

More disorder - More dispersion of matter/energy↓

More random - Entropy Increases ↑

Isolated system ↓

∆S uni always increase

Entropy

Why gas mixes and not unmix?

Why heat flow from hot to cold?

Notes on Entropy

1st Law Thermodynamics 2nd Law Thermodynamics

Energy cannot be created or destroyedTransfer from one form to another

∆E universe = ∆E sys + ∆E surrounding = 0

∆E = q + w

Gas mixesSolution diffuse Heat flow hot →cold

X X X

∆E = internal energy

q = heat transfer

w = work done ∆S = Entropy universe

∆S = Entropy system

∆S = Entropy surrounding

∆S uni = ∆S sys + ∆S surr

Law Thermodynamics

3rd Law Thermodynamics

Unit - J mol -1

K-1

Standard Molar Entropy, S0

Entropy perfectly crystal at 0K = 0Std molar entropy, S0 (absolute

value)↓

S0 when substance heated from 0K to 298K

Std state - 1 atm / 1M sol

Temp = 298K

Std Molar Entropy/S0

S0 at 298 /JK-1 mol-1

Fe (s) + 27

H2O (s) + 48

Na (s) + 52

H2O (l) + 69

CH3OH (l) + 127

H2 (g) + 130

H2O (g) + 188

CO2 (g) + 218

Solid - Order↓

Entropy Lowest

Liq - Less order↓

Entropy Higher

Gas - Disorder↓

Entropy Highest

Entropy highest

Why solution diffuse and not undiffuse?

High chaos factor

Page 6: IB Chemistry on Gibbs Free Energy and Entropy

Entropy

Why gas mix and not unmix?

Why solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

Unit - J mol -1

K-1

Standard Molar Entropy, S0

Entropy perfectly crystal at 0K = 0 (Absolute value)

↓S0 when substance heated from 0K to

298K

Std state - 1 atm / 1M sol

Temp = 298K

Std Molar Entropy/S0

S0 at 298 /JK-1 mol-1

Fe (s) + 27

H2O (s) + 48

Na (s) + 52

H2O (l) + 69

CH3OH (l) + 127

H2 (g) + 130

H2O (g) + 188

CO2 (g) + 218

Solid - Order↓

Entropy Lowest

Liq - Less order↓

Entropy Higher

Gas - Disorder↓

Entropy Highest

Entropy highest

Entropy

Standard Molar Entropy, S0

Depend on

Temp increase ↑ - Entropy increase ↑

Physical/phase state

Dissolving solid Molecular mass

Click here thermodynamics entropy Ba(OH)2

Temp

Temp/K 273 295 298

S0 for H2 + 31 + 32 + 33.2

Sol → Liq → Gas - Entropy increase ↑

State solid liquid gas

S0 for H2O + 48 + 69 + 188

entropy increase ↑ entropy increase ↑

Depend on

Substance NaCI NH4NO3

S0 for solid + 72 + 151

S0 for aq + 115 + 260

More motion - entropy increase ↑ Higher mass - entropy increase ↑

Substance HF HCI HBr

Molar mass 20 36 81

S0 + 173 + 186 + 198

S0 = 0 at 0KAll sub > 0K, have +ve S0

Page 7: IB Chemistry on Gibbs Free Energy and Entropy

Entropy perfectly crystal at 0K = 0 (Absolute value)

↓S0 when substance heated from 0K to

298K

Entropy

Why gas mix and not unmix?

Why solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

Unit - J mol -1

K-1

Standard Molar Entropy, S0

Std state - 1 atm / 1M sol

Temp = 298K

Std Molar Entropy/S0

S0 at 298 /JK-1 mol-1

H2O (s) + 48

Na (s) + 52

H2O (l) + 69

CH3OH (l) + 127

H2O (g) + 188

CO2 (g) + 218

Solid - Order↓

Entropy Lowest

Liq - Less order↓

Entropy Higher

Gas - Disorder↓

Entropy Highest

Entropy highest

Entropy

Standard Molar Entropy, S0

Depend on

Temp increase ↑ - Entropy increase ↑

Physical/phase state

Dissolving solid Molecular mass

Temp

Temp/K 273 295 298

S0 for H2 + 31 + 32 + 33.2

Sol → Liq → Gas - Entropy increase ↑

State solid liquid gas

S0 for H2O + 48 + 69 + 188

entropy increase ↑ entropy increase ↑

Depend on

More motion - entropy increase ↑

Click here entropy notes

Click here entropy, enthalpy free energy data

Click here entropy CRC data booklet

Higher mass - entropy increase ↑

S0 = 0 at 0KAll sub > 0K, have +ve S0

Substance NaCI NH4NO3

S0 for solid + 72 + 151

S0 for aq + 115 + 260

Substance HF HCI HBr

Molar mass 20 36 81

S0 + 173 + 186 + 198

Page 8: IB Chemistry on Gibbs Free Energy and Entropy

∆Hf θ

(reactant)∆Hf

θ

(product)

 Using Std ∆Hf θ formation to find ∆H rxn

∆H when 1 mol form from its element under std condition

Na(s) + ½ CI2(g) → NaCI (s) ∆Hf θ = - 411 kJ

mol -1

Std Enthalpy Changes ∆Hθ

Std condition

Pressure 100kPa

Temp 298K

Conc 1M All substance at std states

Std ∆Hf θ formation

Mg(s) + ½ O2(g) → MgO(s) ∆Hf θ =- 602 kJ

mol -1

Reactants Products

O2(g) → O2 (g) ∆Hf θ = 0 kJ

mol -1

∆Hrxnθ = ∑∆Hf

θ(products) - ∑∆Hf

θ(reactants)

∆Hf θ

(products)∆Hf

θ

(reactants)

∆Hrxnθ

Elements

Std state solid gas

2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Hf θ =- 275

kJ mol -1

1 mole formed

H2(g) + ½O2(g) → H2O(I) ∆Hf θ =- 286

kJ mol -1

Std state solid gas 1 mol liquid

For element Std ∆Hf θ formation = 0

Mg(s)→ Mg(s) ∆Hf θ = 0 kJ

mol -1

No product form

 Using Std ∆Hf θ formation to find ∆H rxn

PDF version

Click here chem database (std formation enthalpy)

Online version

Click here chem database (std formation enthalpy)

C2H4 + H2 C2H6

Find ΔHθ rxn using std ∆H formation

Reactants Products

2C + 3H2

ElementsC2H4 + H2 → C2H6

∆Hrxnθ

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = Hf

θ C2H6 - ∆Hf

θ C2H4+ H2

= - 84.6 – ( + 52.3 + 0 ) = - 136.9 kJ mol -1

Enthalpy Formation, ∆Hf

Page 9: IB Chemistry on Gibbs Free Energy and Entropy

Std ∆Gfθ formation

∆Grxnθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Grxnθ = Gf

θ C2H6 - ∆Gf

θ C2H4+ H2

= - 33 – ( + 68 + 0 ) = - 101 kJ mol -1

∆Gf θ

(reactant)∆Gf

θ

(product)

 Using Std ∆Gf θ formation to find ∆G rxn o

∆Gf when 1 mol form from its element under std condition

Na(s) + ½ CI2(g) → NaCI (s) ∆Gf θ = - 384 kJ

mol -1

Std Free Energy Change ∆Gθ

Std condition

Pressure 100kPa

Temp 298K

Conc 1M All substanceat std states

Gibbs Free Energy change formation, ∆Gf

Mg(s) + ½ O2(g) → MgO(s) ∆Gf θ =- 560 kJ

mol -1

Reactants Products

O2(g) → O2 (g) ∆Gf θ = 0 kJ

mol -1

∆Grxnθ = ∑∆Gf

θ(prod) - ∑∆Gf

θ(react)

∆Gf θ

(product)∆Gf

θ

(reactant)

∆Grxnθ

Elements

Std state solid gas

2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Gf θ =- 175

kJ mol -1

1 mole formed

H2(g) + ½O2(g) → H2O(I) ∆Gf θ =- 237

kJ mol -1

Std state solid gas 1 mol liquid

For element Std ∆Gf θ formation = 0

Mg(s)→ Mg(s) ∆Gf θ = 0 kJ

mol -1

No product form

 Using Std ∆Gf θ formation to find ∆G rxn

PDF version

Click here chem database (std ∆G formation)

Online version

Click here chem database (std ∆G formation)

C2H4 + H2 C2H6

Find ΔGθ rxn using std ∆G0 formation

Reactants Products

2C + 3H2

ElementsC2H4 + H2 → C2H6

∆Grxnθ

Page 10: IB Chemistry on Gibbs Free Energy and Entropy

∆S sys + ve , ∆S surr - ve↓

∆S uni > 0 (+ve)(Rxn Spontaneous)

∆S sys - ve , ∆S surr + ve↓

∆S uni < 0 (-ve)(Rxn Non spontaneous)

spontaneous+ve

-ve

=

S /JK-1

∆Ssys = + ve

∆Ssurr = + ve∆Suni = + ve

+

∆Ssys = - ve

+

∆Ssurr = + ve∆Suni = + ve

= spontaneous

S /JK-1 S /JK-1

∆Ssys = + ve

+

∆Ssurr = - ve

=

∆Suni = + ve spontaneous

C6H12O6(s) + 6O2 (g) → 6CO2(g) + 6H2O(l)

Using ∆Hsys , ∆Suni , ∆S sys , ∆S surr to predict spontaneity

2NO(g) + O2(g) → 2NO2(g) CaCO3 (s) → CaO(s) + CO2(g)

∆H = -ve (Heat released)

Difficult !!

∆S sys + ve , ∆S surr - ve↓

∆S uni < 0 (-ve)(Rxn Non spontaneous)

∆Ssys = + ve

∆Ssurr = - ve

+=∆Suni = - ve

Nonspontaneous

∆H = -ve (Heat released) ∆H = +ve (Heat absorb)

CaCO3 (s) → CaO(s) + CO2(g)

∆H = +ve (Heat absorb)∆Ssys = + ve

+

∆Ssurr = - ve∆Suni = - ve

Nonspontaneous

=

H2(g) → 2 H(g)

∆H = +ve (Heat absorb)

H2O (l) → H2O(s)

∆H = -ve (Heat released)

∆Ssys = - ve

+

∆Suni = - ve

∆Ssurr = + ve

=

∆S sys + ve , ∆S surr - ve↓

∆S uni < 0 (-ve)(Rxn Non spontaneous)

∆S sys + ve , ∆S surr + ve↓

∆S uni > 0 (+ve)(Rxn Spontaneous)

∆S sys - ve , ∆S surr + ve↓

∆S uni > 0 (+ve)(Rxn Spontaneous)

Page 11: IB Chemistry on Gibbs Free Energy and Entropy

∆Hsys ∆Ssys ∆Suni Description

- + > 0 (+) Spontaneous, All Temp

+ - < 0 (-) Non spontaneous, All Temp

+ + > 0 (+) Spontaneous, High ↑ Temp

- - > 0 (+) Spontaneous, Low ↓ Temp

Predicting Spontaneity rxn

∆G - Temp/Pressure remain constantAssume ∆S/∆H constant with temp

Using ∆Hsys , ∆Suni , ∆S sys , ∆S surr to predict spontaneity

Using ∆Gsys to predict spontaneity

syssyssys STHG

Difficult !!

surrsysuni SSS THSsurr

)()( reactfprofsys HHH

CH4(g) + 2O2 (g) → CO2(g) + 2H2O(l)

CH4(g) + 2 O2 (g) → CO2(g) + 2 H2O(l) ∆Hf

0 - 74 0 - 393 - 286 x 2 S0 + 186 +205 x 2 + 213 + 171 x 2

Reactant Product

∆Ssysθ = ∑Sf

θ(pro) - ∑Sf

θ(react) ∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react)

1

)tan()(

41

596555

JKS

S

SSS

sys

sys

treacproductsys kJH sys 891)74(965

12990298

)891000(

JKS

S

THS

surr

surr

surr

12949299041

JKS

SSS

uni

surrsysuni

∆S uni > 0spontaneous

Easier

Unit ∆G - kJ

Unit ∆S - JK-1

Unit ∆H - kJ

CH4(g) + 2O2 (g) → CO2(g) + 2H2O(l)

Only ∆S sys involved∆S surr, ∆S uni not needed

∆Hsys ∆Ssys ∆Gsys Description

- +∆G = ∆H - T∆S

∆G = - veSpontaneous, All Temp

+ -∆G = ∆H - T∆S

∆G = + veNon spontaneous, All Temp

+ +∆G = ∆H - T∆S

∆G = - veSpontaneous, High ↑ Temp

- -∆G = ∆H - T∆S

∆G = - veSpontaneous, Low ↓ Temp

CH4(g) + 2 O2 (g) → CO2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2Reactant (+596) Product (+589)

kJGG

STHG syssyssys

888)007.0(298890

∆Hsys = - 890 kJ

kJS

JKS

S

SSS

sys

sys

sys

reactprodsys

007.0

7

5965891

)()(

∆G < 0spontaneous

Entropy change ∆S greater at low temp

Page 12: IB Chemistry on Gibbs Free Energy and Entropy

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -868 - (-51) = - 817 kJ

Predicting Spontaneity rxn

∆G - Temp/Pressure remain constantAssume ∆S/∆H constant with temp

Using ∆Gsys to predict spontaneity

syssyssys STHG

CH4(g) + 2O2 (g) → CO2(g) + 2H2O(l)

Reactant (-51) Product (-868)

∆G < 0spontaneous

Easier

Unit ∆G - kJ mol-1 CH4(g) + 2O2 (g) → CO2(g) + 2H2O(l)

Only ∆S sys involved∆S surr, ∆S uni not needed

∆Hsys ∆Ssys ∆Gsys Description

- + ∆G = ∆H - T ∆S ∆G = - ve

Spontaneous at all Temp

+ - ∆G = ∆H - T ∆S ∆G = + ve

Non spontaneous, all Temp

+ + ∆G = ∆H - T ∆S ∆G = - ve

Spontaneous at high ↑ Temp

- - ∆G = ∆H - T ∆S ∆G = - ve

Spontaneous at low ↓ Temp

CH4(g) + 2 O2 (g) → CO2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2Reactant (+ 596) Product (+ 589)

kJGG

STHG syssyssys

888)007.0(298890

∆Hsys = - 890 kJ kJS

JKS

S

SSS

sys

sys

sys

reactprodsys

007.0

7

5965891

)()(

∆G < 0spontaneous

Using ∆Gsys to predict spontaneity

Easier

CH4(g) + 2 O2 (g) → CO2(g)

+ 2 H2O(l) ∆G0 - 51 0 - 394 - 237 x 2

Method 1 Method 2

)()( reactfprofsys GGG

CH4(g) + 2 O2 (g) CO2(g)

+ 2H2O(g)

C + 2O2 + 2H2

Reactants Products∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product) Elements

• Neither ∆H or ∆S can predict feasibility of spontaneous rxn• Gibbs Free Energy (∆G) – measure spontaneity and useful energy available• Gibbs Free Energy (∆G) - max amt useful work at constant Temp/Pressure• Involve ∆H sys and ∆S sys

• ∆G involve only sys while ∆S uni involve sys and surr• Easier to find ∆H and ∆S for system

Gibbs Free Energy change formation, ∆Gf

0

At std condition/statesTemp - 298KPress - 1 atm

Page 13: IB Chemistry on Gibbs Free Energy and Entropy

∆G - Temp/Pressure remain constantAssume ∆S/∆H constant with temp

Using ∆Gsys to predict spontaneity

syssyssys STHG

Easier

Unit ∆G - kJ

CH4(g) + 2O2 (g) → CO2(g) + 2H2O(l)

Only ∆S sys involved∆S surr, ∆S uni not needed

∆Hsys ∆Ssys ∆Gsys Description

- +∆G = ∆H - T∆S

∆G = - veSpontaneous, All Temp

+ -∆G = ∆H - T∆S

∆G = + veNon spontaneous, All Temp

+ +∆G = ∆H - T∆S

∆G = - veSpontaneous, High ↑ Temp

- -∆G = ∆H - T∆S

∆G = - veSpontaneous, Low ↓ Temp

CH4(g) + 2 O2 (g) → CO2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2Reactant (+ 596) Product (+ 589)

kJGGG

STHG syssyssys

8882890

)007.0(298890

∆Hsys = - 890 kJ

kJS

JKS

S

SSS

sys

sys

sys

reactprodsys

007.0

7

5965891

)()(

∆G < 0spontaneous

Gibbs Free Energy Change, ∆G

∆G sys

T∆S sys

Total energy change, ∆H

Measure spontaneity and useful energy availableMax amt useful work at constant Temp/Pressure

Free Energy

syssyssys STHG

Free energy available to do work not available

for work

syssyssys STHG

Free Energy

Total energy change, ∆H

∆G sys

T∆S sys

-890kJ

Free energy available to do work

not available for work

-888kJ +2 kJ

Page 14: IB Chemistry on Gibbs Free Energy and Entropy

Gibbs Free Energy Change, ∆G

∆G - Temp/Pressure remain constantAssume ∆S/∆H constant with temp

Using ∆Gsys to predict spontaneity

syssyssys STHG

Easier

Unit ∆G - kJ mol-1

Only ∆S sys involved∆S surr, ∆S uni not needed

Using ∆Gsys to predict spontaneity

Easier

Method 1 Method 2

)()( reactfprofsys GGG At std condition/states

Temp - 298KPress - 1 atm

Gibbs Free Energy change formation, ∆Gf

0

At High Temp ↑

Temp dependent

syssyssys STHG

At low Temp ↓

veGSTG

HST sys

syssyssys STHG

veGHGSTH

spontaneous spontaneous

surrsysuni SSS

TH

S syssurr

syssysuni STHST

Deriving Gibbs Free Energy Change, ∆G

TH

SS syssysuni

∆S sys / ∆H sys

multi by -T

syssyssys STHG

∆Hsys ∆Ssys ∆Gsys Description

- +∆G = ∆H - T ∆S

∆G = - veSpontaneous at all Temp

+ -∆G = ∆H - T ∆S

∆G = + veNon spontaneous, all Temp

unisys STG syssyssys STHG

Only ∆H sys/∆S sys involved ∆S surr, ∆S uni not needed

syssyssys STHGNon standard conditionStandard condition

or

Gibbs Free Energy Change, ∆G

syssyssys STHG unisys STG

veGsys ∆S uni = +ve

Spontaneous SpontaneousveGsys

∆H = - ve∆S sys = +ve

∆Hsys ∆Ssys ∆Gsys Description

+ +∆G = ∆H - T ∆S

∆G = - veSpontaneous at high ↑ Temp

- -∆G = ∆H - T ∆S

∆G = - veSpontaneous at low ↓ Temp

Page 15: IB Chemistry on Gibbs Free Energy and Entropy

kJGG

STHG

130)16.0(298178

Predict entropy change - quatitatively

Reactant Product

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

kJH sys 178)1206(1028

∆G uni > 0 - Decomposition at 298K - Non Spontaneous

Reactant Product

∆Ssysθ = ∑Sf

θ(pro) - ∑Sf

θ(react)∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react)

CaCO3 (s) → CaO(s) + CO2(g)

CaCO3 (s) → CaO (s) + CO2(g) ∆Hf

0 - 1206 - 635 - 393S0 + 93 + 40 + 213

kJS

S

S

SSS

sys

sys

sys

treacproductsys

16.0

160

93253)tan()(

Decomposition at 298K Decomposition at 1500K

CaCO3 (s) → CaO(s) + CO2(g)

CaCO3 (s) → CaO (s) + CO2(g) ∆Hf

0 - 1206 - 635 - 393S0 + 93 + 40 + 213

kJH sys 178)1206(1028

Rxn Temp dependentSpontaneous at High ↑ temp

1500K298K

Decomposition limestone CaCO3 spontaneous?

Gibbs Free Energy Change, ∆G

kJS

S

S

SSS

sys

sys

sys

treacproductsys

16.0

160

93253)tan()(

kJGG

STHG

62)16.0(1500178

∆G uni < 0 - Decomposition at 1500K - Spontaneous

∆H = +ve ∆S = +ve

Temp dependent

∆Hsys ∆Ssys ∆Gsys Description

+ +∆G = ∆H - T ∆S

∆G = - veSpontaneous at high ↑ Temp

- -∆G = ∆H - T ∆S

∆G = - veSpontaneous at low ↓ Temp

At Low Temp At High Temp

Page 16: IB Chemistry on Gibbs Free Energy and Entropy

Predict entropy change - quatitatively

Reactant Product

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

∆G uni > 0 - Decomposition at 298K - Non Spontaneous

Reactant Product

∆Ssysθ = ∑Sf

θ(pro) - ∑Sf

θ(react)∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react)

Rxn Temp dependentSpontaneous at Low ↓ temp

298K (25C)

Gibbs Free Energy Change, ∆G

∆G uni < 0 - Decomposition at 1500K - Spontaneous

∆H = - ve ∆S = - ve

Temp dependent

∆Hsys ∆Ssys ∆Gsys Description

+ +∆G = ∆H - T ∆S

∆G = - veSpontaneous at high ↑ Temp

- -∆G = ∆H - T ∆S

∆G = - veSpontaneous at low ↓ Temp

H2O (l) → H2O(s)

H2O (l) → H2O(s) ∆Hf

0 - 286 - 292S0 + 70 + 48

Freezing at 298K (25C)

Is Freezing spontaneous?

kJH sys 6)286(292

kJS

S

S

SSS

sys

sys

sys

treacproductsys

02.0

22

7048)tan()(

kJGG

STHG

55.0)022.0(2986

Freezing at 263K (-10C)

H2O (l) → H2O(s)

H2O (l) → H2O(s) ∆Hf

0 - 286 - 292S0 + 70 + 48

kJH sys 6)286(292

kJS

S

S

SSS

sys

sys

sys

treacproductsys

02.0

22

7048)tan()(

263K (-10C) kJGG

STHG

21.0)022.0(2636

At High Temp At Low Temp

Page 17: IB Chemistry on Gibbs Free Energy and Entropy

C3H8(g) + 5 O2 (g) 3CO2(g)

+ 4H2O(l)

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

1

syssyssys STHG

)tan()( treacprosys SSS

C3H8(g) + 5O2 (g) → 3CO2(g) + 4H2O(l) ∆H = -2220 kJ at 298K

C3H8(g) + 5 O2 (g) → 3 CO2(g) + 4 H2O(l) S0 +270 +205 x 5 +213 x 3 +70 x 4 1295 919

Reactant Product

kJGG

STHG

2108)376.0(2982220

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

376.0

376

12959191

)tan()(

∆H = -2220 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Is Combustion at 298K spontaneous?

Using Free Energy to predict spontaneity

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -2130 - (-23) = - 2153 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 - Combustion at 298K - Spontaneous

C3H8(g) + 5 O2 (g) → 3 CO2(g) + 4 H2O(l) ∆G0 - 23 0 - 394 x 3 - 237 x 4

Elements

3C + 5O2 + 4H2

Reactant (-23) Product (-2130)

∆G < 0 - Combustion at 298K - Spontaneous

Page 18: IB Chemistry on Gibbs Free Energy and Entropy

CH4(g) + 2O2 (g) → CO2(g) + 2H2O(g) ∆H = - 890 kJ at 298K

CH4(g) + 2 O2 (g) CO2(g)

+ 2H2O(g)

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

2

syssyssys STHG

)tan()( treacprosys SSS

+ 596 + 589Reactant Product

kJGG

STHG

888)007.0(298890

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

007.0

7

5965891

)tan()(

∆H = - 890 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Is Combustion at 298K spontaneous?

Using Free Energy to predict spontaneity

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -868 - (-51) = - 817 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 - Combustion at 298K - Spontaneous

CH4(g) + 2 O2 (g) → CO2(g) + 2 H2O(l) ∆G0 - 51 0 - 394 - 237 x 2

Elements

C + 2O2 + 2H2

Reactant (-51) Product (-868)

∆G < 0 - Combustion at 298K - Spontaneous

CH4(g) + 2 O2 (g) → CO2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2

Page 19: IB Chemistry on Gibbs Free Energy and Entropy

H2O (g) → H2O(l) ∆H = - 44.1 kJ at 298K

H2O(g) H2O(l)

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 188 + 70Reactant Product

kJGG

STHG

1.9)118.0(2981.44

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

118.0

118

188701

)tan()(

∆H = - 44.1 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -237 - (-228) = - 9 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 - Combustion at 298K - Spontaneous

H2O(g) → H2O(l) ∆G0 -228 - 237

Elements

H2 + O2

Reactant (-228) Product (-237)

∆G < 0 - Combustion at 298K - Spontaneous

Condensation steam at 298K (25C) spontaneous?

H2O (g) → H2O(l) S0 + 188 + 70

3

Using Free Energy to predict spontaneity

Page 20: IB Chemistry on Gibbs Free Energy and Entropy

H2(g) → 2 H(g) ∆H = + 436 kJ at 298K

H2(g) 2H(g)

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 130 + 230Reactant Product

kJGG

STHG

406)1.0(298436

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

1.0

100

1302301

)tan()(

∆H = + 436 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = + 406 - (0) = +406 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G > 0 - Atomization at 298K - Non Spontaneous

H2(g) → 2H(g) ∆G0 0 + 203 x 2

Elements

H2

Reactant (0) Product ( + 406)

4Is Atomization of H2 at 298K spontaneous?

H2 (g) → 2 H(g) S0 + 130 + 115 x 2

∆G > 0 - Atomization at 298K - Non Spontaneous

Using Free Energy to predict spontaneity

Page 21: IB Chemistry on Gibbs Free Energy and Entropy

H2O (l) → H2O(s) ∆H = - 6 kJ at 298K

H2O(l) H2O(s)

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

2

syssyssys STHG

)tan()( treacprosys SSS

+ 70 + 48Reactant Product

kJGG

STHG

55.0)022.0(2986

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

022.0

22

70481

)tan()(

∆H = - 6 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -236.6 - (-237) = + 0.4kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G > 0 -Freezing at 298K - Non Spontaneous

H2O(l) → H2O(s) ∆G0 -237 - 236.6

Elements

H2 + O2

Reactant (-237) Product (-236.6)

5

H2O (l) → H2O(s) S0 + 70 + 48

∆G > 0 -Freezing at 298K - Non Spontaneous

Is Freezing water to ice at 298K (25C) spontaneous?

Using Free Energy to predict spontaneity

Page 22: IB Chemistry on Gibbs Free Energy and Entropy

H2O (l) → H2O(s) ∆H = - 6 kJ at 263K

H2O(l) H2O(s)

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

2

syssyssys STHG

)tan()( treacprosys SSS

+ 70 + 48Reactant Product

kJGG

STHG

21.0)022.0(2636

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

022.0

22

70481

)tan()(

∆H = - 6 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -237.2 - (-237) = - 0.2 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 -Freezing at 263K - Spontaneous

H2O(l) → H2O(s) ∆G0 -237 - 237.2

Elements

H2 + O2

Reactant (-237) Product (-237.2)

6

H2O (l) → H2O(s) S0 + 70 + 48

∆G < 0 -Freezing at 263K - Spontaneous

Is Freezing water to ice at 263K (-10C) spontaneous?

Assume std condition at 263K

Using Free Energy to predict spontaneity

Page 23: IB Chemistry on Gibbs Free Energy and Entropy

CaCO3 (s) → CaO(s) + CO2(g) ∆H = + 178 kJ at 298K

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 93 + 253Reactant Product

kJGG

STHG

130)16.0(298178

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

16.0

160

932531

)tan()(

∆H = + 178 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = - 999 - (- 1129) = + 130 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G > 0 - Decomposition at 298K - Non Spontaneous

CaCO3(s) → CaO + CO2(g) ∆G0 -1129 - 604 - 395

Elements

Ca + C + O2

Reactant ( -1129) Product (- 999)

7 Decomposition CaCO3 at 298K (25C) spontaneous?

CaCO3 (s) → CaO (s) + CO2(g) S0 + 93 + 40 + 213

∆G > 0 - Decomposition at 298K - Non Spontaneous

CaCO3 (s) CaO (s) + CO2(g)

Using Free Energy to predict spontaneity

Page 24: IB Chemistry on Gibbs Free Energy and Entropy

CaCO3 (s) → CaO(s) + CO2(g) ∆H = + 178 kJ at 1500K

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 93 + 253Reactant Product

kJGG

STHG

62)16.0(1500178

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

16.0

160

932531

)tan()(

∆H = + 178 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = - 999 - (- 939) = - 60 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 - Decomposition at 1500K - Spontaneous

CaCO3(s) → CaO + CO2(g) ∆G0 -939 - 604 - 395

Elements

Ca + C + O2

Reactant (- 939) Product (- 999)

8

CaCO3 (s) → CaO (s) + CO2(g) S0 + 93 + 40 + 213

CaCO3 (s) CaO (s) + CO2(g)

Decomposition CaCO3 at 1500K (1227C) spontaneous?

∆G < 0 - Decomposition at 1500K - Spontaneous

Assume std condition at 1500K

Using Free Energy to predict spontaneity

Page 25: IB Chemistry on Gibbs Free Energy and Entropy

2NO(g) + O2(g) → 2NO2(g) ∆H = - 114 kJ at 298K

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 522 + 480Reactant Product

kJGG

STHG

101)042.0(298114

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

042.0

42

5224801

)tan()(

∆H = - 114 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = + 104 - (174) = - 70 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 - Decomposition at 298K - Spontaneous

2 NO + O2 → 2NO2(g) ∆G0 + 87 x 2 0 + 52 x 2

Elements

N2 + O2

Reactant (+ 174) Product (+ 104)

9

2 NO(g) + O2 (g) 2NO2(g)

∆G < 0 - Decomposition at 298K - Spontaneous

Is Oxidation of NO at 298K (25C) spontaneous?

2 NO(g) + O2 (g) → 2NO2(g) S0 + 210 x 2 + 102 + 240 x 2

Using Free Energy to predict spontaneity

Page 26: IB Chemistry on Gibbs Free Energy and Entropy

N2(g) + 3H2(g) → 2NH3(g) ∆H = - 92 kJ at 298K

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 585 + 384Reactant Product

kJGG

STHG

32)2.0(29892

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

2.0

201

5853841

)tan()(

∆H = - 92 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = - 34 - (0) = - 34 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 - NH3 production at 298K - Spontaneous

N2 + 3H2 → 2NH3(g) ∆G0 0 0 - 17 x 2

Elements

N2 + H2

Reactant (0) Product (- 34)

10

N2(g) + 3H2 (g) 2NH3(g)

Is Haber, NH3 production 298K (25C) spontaneous?

NH3

N2(g) + 3H2 (g) → 2NH3(g) S0 + 192 + 131 x 3 + 192 x 2

∆G < 0 - NH3 production at 298K - Spontaneous

Using Free Energy to predict spontaneity

Page 27: IB Chemistry on Gibbs Free Energy and Entropy

Fe2O3(s) + 2AI(s) → 2Fe(s) + AI2O3(s) ∆H = - 851 kJ at 298K

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 143 + 105Reactant Product

kJGG

STHG

840)038.0(298851

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

038.0

38

1431051

)tan()(

∆H = - 851 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -1576 - (-741) = - 835 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 - AI production at 298K - Spontaneous

Fe2O3 + 2AI → 2Fe + AI2O3∆G0 - 741 0 0 - 1576

Elements

Fe + AI + O2

Reactant (-741) Product (- 1576)

11 Is Thermite, AI production 298K (25C) spontaneous?

Fe2O3(s) + 2AI(s) → 2Fe(s) + AI2O3(s) S0 + 87 + 28 x 2 + 27 x 2 + 51

∆G < 0 - AI production at 298K - Spontaneous

Fe2O3(s) + 2AI(s) 2Fe(s) + AI2O3(s)

Using Free Energy to predict spontaneity

Page 28: IB Chemistry on Gibbs Free Energy and Entropy

4KCIO3(s) → 3KCIO4(s) + KCI(s) ∆H = - 144 kJ at 298K

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 572 + 535Reactant Product

kJGG

STHG

133)037.0(298144

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

037.0

37

5725351

)tan()(

∆H = - 144 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -1317 - (-1160) = - 157 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 - Decomposition at 298K - Spontaneous

4KCIO3 → 3 KCIO4 + KCI∆G0 - 290 x 4 - 303 x 3 - 408

Elements

K + CI2 + O2

Reactant (-1160) Product (- 1317)

13

∆G < 0 - Decomposition at 298K - Spontaneous

Is decomposition KCIO3

298K (25C) spontaneous?

4KCIO3(s) → 3KCIO4(s) + KCI(s) S0 + 143 x 4 + 151 x 3 + 82

4KCIO3(s) 3KCIO4(s) + KCI(s)

Using Free Energy to predict spontaneity

Page 29: IB Chemistry on Gibbs Free Energy and Entropy

Entropy and Gibbs Free Energy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Will rxn be spontaneous ?

Gas mixesSolution diffuse Heat flow hot →cold

X X X

syssyssys STHG

)tan()( treacprosys SSS

+ 821 + 1698Reactant Product

kJGG

STHG

3071)877.0(2982810

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

877.0

877

82116981

)tan()(

∆H = - 2810 kJ

Assume ∆S, ∆H at constant over Temp

∆G sys < 0 (-ve) → Spontaneous ∆G sys > 0 (+ve) → Non spontaneous

Gibbs Free Energy, ∆G

syssyssys STHG

Unit ∆S - JK-

1

Unit ∆H - kJUnit ∆G - kJ

Reactants Products

∆Gsysθ = ∑∆Gf

θ(pro) - ∑∆Gf

θ(react)

∆Gsysθ = -3792 - (-910) = - 2882 kJ

∆Gsysθ

∆Gf θ

(reactant)∆Gf

θ

(product)

)()( reactfprofsys GGG

∆G < 0 Combustion sugar at 298K - Spontaneous

Elements

C + H2 + O2

Reactant (-910) Product (- 3792)

14 Is combustion sugar 298K (25C) spontaneous? C6H12O6(s) + 6O2 (g) → 6CO2(g) + 6H2O(l) ∆H = - 2810

kJ at 298K

C6H12O6 (s) + 6O2(g) → 6CO2(g) + 6H2O(l) S0 + 209 +102 x 6 + 213 x 6 + 70 x 6

∆G < 0 Combustion sugar at 298K - Spontaneous

C6H12O6 + 6O2 6CO2 + 6H2O(l)

C6H12O6 (s) + 6O2(g) → 6CO2(g) + 6H2O(l) ∆G0 - 910 0 - 395 x 6 - 237 x 6

Using Free Energy to predict spontaneity

Page 30: IB Chemistry on Gibbs Free Energy and Entropy

Entropy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Predict entropy change - quatitatively

Gas mixesSolution diffuse Heat flow hot →cold

X X X

Reactant Product

CH4(g) + 2O2 (g) → CO2(g) + 2H2O(l)

CH4(g) + 2 O2 (g) → CO2(g) + 2 H2O(l) ∆Hf

0 - 74 0 - 393 - 286 x 2 S0 + 186 +205 x 2 +213 + 171 x 2

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

041.0

41

5965551

)tan()(

kJH sys 890)74(964

Is Combustion at 298K spontaneous?

Unit for ∆S - JK-1 Unit for ∆H - kJ

C3H8(g) + 5O2 (g) → 3CO2(g) + 4H2O(l)

C3H8(g) + 5 O2 (g) → 3 CO2(g) + 4 H2O(l) ∆Hf

0 - 104 0 - 393 x 3 - 286 x 4S0 +270 +205 x 5 + 213 x 3 + 171 x 4

Reactant Product∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react)

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

028.0

28

129513231

)tan()(

kJH sys 2219)104(2323

1 2

kJGG

STHG

877)041.0(298890

∆G < 0 Combustion sugar at 298K - Spontaneous

kJGG

STHG

881)028.0(2982219

∆G < 0 Combustion sugar at 298K - Spontaneous

Page 31: IB Chemistry on Gibbs Free Energy and Entropy

Entropy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Predict entropy change - quatitatively

Gas mixesSolution diffuse Heat flow hot →cold

X X X

Reactant Product

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

118.0

118

188701

)tan()(

kJH sys 44)242(286

Is Condensation/Freezing at 298K spontaneous?

Reactant Product

∆Ssysθ = ∑Sf

θ(pro) - ∑Sf

θ(react)∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react)

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

022.0

22

70481

)tan()(

kJH sys 6)286(292

3 4 H2O (g) → H2O(l)

H2O (l) → H2O(s)

H2O (g) → H2O(l) ∆Hf

0 - 242 - 286S0 + 188 + 70

H2O (l) → H2O(s) ∆Hf

0 - 286 - 292S0 + 70 + 48

kJGG

STHG

1.9)118.0(2981.44

∆G < 0 Condensation at 298K - Spontaneous

kJGG

STHG

55.0)022.0(2986

∆G > 0 Freezing at 298K – Non Spontaneous

Page 32: IB Chemistry on Gibbs Free Energy and Entropy

Entropy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Predict entropy change - quatitatively

Gas mixesSolution diffuse Heat flow hot →cold

X X X

Reactant Product

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

kJH sys 92)0(92

Are these rxn at 298K spontaneous?

Reactant Product

∆Ssysθ = ∑Sf

θ(pro) - ∑Sf

θ(react)∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react)

kJH sys 168)1564(1732

5 6N2(g) + 3H2(g) → 2NH3(g)

N2(g) + 3H2 (g) → 2NH3(g) ∆Hf

0 0 0 - 46 x 2S0 + 192 + 131 x 3 + 192 x 2

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

201.0

201

5853841

)tan()(

4KCIO3(s) → 3KCIO4(s) + KCI(s)

4KCIO3(s) → 3KCIO4(s) + KCI(s) ∆Hf

0 - 391 x 4 - 432 x 3 - 436S0 + 143 x 4 + 151 x 3 + 82

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

037.0

37

5725351

)tan()(

kJGG

STHG

32)2.0(29892

∆G < 0 NH3 production at 298K - Spontaneous

kJGG

STHG

157)037.0(298168

∆G < 0 KCIO3 production at 298K - Spontaneous

Page 33: IB Chemistry on Gibbs Free Energy and Entropy

Entropy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Predict entropy change - quatitatively

Gas mixesSolution diffuse Heat flow hot →cold

X X X

Reactant Product

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

kJH sys 178)1206(1028

Reactant Product

∆Ssysθ = ∑Sf

θ(pro) - ∑Sf

θ(react)∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react)

7 8CaCO3 (s) → CaO(s) + CO2(g)

CaCO3 (s) → CaO (s) + CO2(g) ∆Hf

0 - 1206 - 635 - 393S0 + 93 + 40 + 213

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

16.0

160

932531

)tan()(

Decomposition at 298K Decomposition at 1500K

CaCO3 (s) → CaO(s) + CO2(g)

CaCO3 (s) → CaO (s) + CO2(g) ∆Hf

0 - 1206 - 635 - 393S0 + 93 + 40 + 213

kJH sys 178)1206(1028

Rxn Temp dependentSpontaneous at High ↑ temp

1500K298K (25C)

Decomposition limestone CaCO3 spontaneous?

kJGG

STHG

130)16.0(298178

∆G > 0 Decomposition at 298K – Non Spontaneous

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

16.0

160

932531

)tan()(

kJGG

STHG

62)16.0(1500178

∆G < 0 Decomposition at 1500 K - Spontaneous

At Low Temp At High Temp

Page 34: IB Chemistry on Gibbs Free Energy and Entropy

Entropy

Why gas mixes and not unmix?

Why conc solution diffuse and not undiffuse?

Why heat flow from hot to cold?

Predict entropy change - quatitatively

Gas mixesSolution diffuse Heat flow hot →cold

X X X

Reactant Product

∆Hsysθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react) ∆Ssys

θ = ∑Sfθ(pro) - ∑Sf

θ(react)

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

022.0

22

70481

)tan()(

kJH sys 6)286(292

Is Freezing spontaneous?

Reactant Product

∆Ssysθ = ∑Sf

θ(pro) - ∑Sf

θ(react)∆Hsys

θ = ∑∆Hfθ(pro) - ∑∆Hf

θ(react)

kJS

JKS

S

SSS

sys

sys

sys

treacproductsys

022.0

22

70481

)tan()(

kJH sys 6)286(292

9 10 H2O (l) → H2O(s)

H2O (l) → H2O(s)

H2O (l) → H2O(s) ∆Hf

0 - 286 - 292S0 + 70 + 48

H2O (l) → H2O(s) ∆Hf

0 - 286 - 292S0 + 70 + 48

Freezing at 298K (25C) Freezing at 263K (-10C)

Rxn Temp dependentSpontaneous at Low ↓ temp

263K (-10C)298K (25C)kJG

GSTHG

55.0)022.0(2986

∆G > 0 Freezing at 298K – Non Spontaneous

kJGG

STHG

21.0)022.0(2636

∆G < 0 Freezing at 263K – Spontaneous

At High Temp At Low Temp

Page 35: IB Chemistry on Gibbs Free Energy and Entropy

Acknowledgements

Thanks to source of pictures and video used in this presentation

Thanks to Creative Commons for excellent contribution on licenseshttp://creativecommons.org/licenses/

Prepared by Lawrence Kok

Check out more video tutorials from my site and hope you enjoy this tutorialhttp://lawrencekok.blogspot.com