IandQ and Sideband 7 10

download IandQ and Sideband 7 10

of 37

Transcript of IandQ and Sideband 7 10

  • 8/2/2019 IandQ and Sideband 7 10

    1/37

    S H A R L E N E K A T Z

    D A V I D S C H W A R T Z

    J A M E S F L Y N N

    I and Q Components inCommunications Signals

    and Single Sideband

    7/22/2010

    1

  • 8/2/2019 IandQ and Sideband 7 10

    2/37

    OVERVIEW

    Description of I and Q signal representation

    Advantages of using I and Q components

    Using I and Q to demodulate signals

    I and Q signal processing in the USRP Single Sideband (SSB)

    Processing I and Q components of a SSB signal in the

    USRP

    7/22/2010

    2

  • 8/2/2019 IandQ and Sideband 7 10

    3/37

    Standard Representation of CommunicationsSignals

    Modulation Time Domain Frequency Domain

    AM

    DSB

    FM

    XAM(f)

    f

    -fc fc

    7/22/2010

    3

  • 8/2/2019 IandQ and Sideband 7 10

    4/37

    Overview of I and Q Representation

    I and Q are the In-phase and Quadraturecomponents of a signal.

    Complete description of a signal is:

    x(t) can therefore be represented as a vector withmagnitude and phase angle.

    Phase angle is not absolute, but relates to somearbitrary reference.

    ( ) ( ) ( )x t I t jQ t

    7/22/2010

    4

  • 8/2/2019 IandQ and Sideband 7 10

    5/37

    Overview of I and Q Representation

    In Digital Signal Processing (DSP), ultimatereference is local sampling clock.

    DSP relies heavily on I and Q signals for processing.

    Use of I and Q allows for processing of signals nearDC or zero frequency. If we use real signals (cosine) to shift a modulated signal to

    baseband we get sum and difference frequencies

    If we use a complex sinusoid to shift a modulated signal tobaseband we ONLY get the sum

    This avoids problems with images

    7/22/2010

    5

  • 8/2/2019 IandQ and Sideband 7 10

    6/37

    Overview of I and Q Representation

    Nyquist frequency is twice highest frequency, nottwice bandwidth of signal.

    For example: common frequency used in analog

    signal processing is 455 kHz. To sample in digitalprocessing, requires 910 kS/s. But if the signalbandwidth is only 10 kHz. With I & Q, samplingrequires only 20 kS/s.

    7/22/2010

    6

  • 8/2/2019 IandQ and Sideband 7 10

    7/37

    Overview of I and Q Representation

    I and Q allows discerning of positive and negativefrequencies.

    If :

    Then:

    ( )H f a jb

    ( )H f a jb

    7/22/2010

    7

  • 8/2/2019 IandQ and Sideband 7 10

    8/37

    Overview of I and Q Representation

    Representing familiar characteristics of a signal with Iand Q:

    Amplitude:

    Phase:

    Frequency:

    2 2( ) ( ) ( )A t I t Q t

    1 ( )( ) tan( )

    Q tt

    I t

    2 2

    ( ) ( )( ) ( )( )

    ( )( ) ( )

    Q t I t I t Q tt t tf t

    t I t Q t

    7/22/2010

    8

  • 8/2/2019 IandQ and Sideband 7 10

    9/37

    DEMODULATION

    AM:

    SSB:

    FM:

    PM:

    2 2( ) ( ) ( )x t i t q t

    ( ) ( )x t i t

    11 ( ) ( 1) ( ) ( 1)( ) tan( ) ( 1) ( ) ( 1)

    i t q t q t i t x t

    t i t i t q t q t

    1 ( )( ) tan ( )

    q tx t i t

    7/22/2010

    9

  • 8/2/2019 IandQ and Sideband 7 10

    10/37

    Overview of I and Q Representation

    The traditional FM equation:

    The analytic equation:

    Modulation and Demodulation methods are differentwhen I and Q representation is used

    ( ) cos( ( ) )FM c mx t t k x t dt

    ( ) ( ) cos( ) ( )sin( )FM c cx t I t t jQ t t

    7/22/2010

    10

  • 8/2/2019 IandQ and Sideband 7 10

    11/37

    USRP DAUGHTER BOARD

    I

    Q

    cos c t

    sin c t

    LPF

    LPF

    ADC

    ADC

    AMP

    7/22/2010

    11

  • 8/2/2019 IandQ and Sideband 7 10

    12/37

    FPGA

    I

    Q

    complexmultiply

    sin ftn

    cos ftn

    decimate

    decimate

    n = samplenumber

    I

    Q

    To USBand PC

    7/22/2010

    12

  • 8/2/2019 IandQ and Sideband 7 10

    13/37

    Complex Multiply

    I

    Qcos (ftn )

    cos (ftn )I

    Q

    (A + j B) * (C + j D) = AC BD + j (BC + AD)

    I + j Q

    cosft +

    sinft 7/22/2010

    13

  • 8/2/2019 IandQ and Sideband 7 10

    14/37

    Sideband Modulation

    7/22/2010

    Wheres the intelligence?

    A signal carries useful information only when it changes.

    Change ofANYcarrier parameter produces sidebands.

    The intelligence or information is in the sidebands.

    Why not just send the sidebands or just a sideband?

    14

  • 8/2/2019 IandQ and Sideband 7 10

    15/37

    AM Review

    7/22/2010

    AM review:

    Carrier is modulated by varying amplitude linearlyproportional to intelligence (baseband) signal amplitude.

    Block Diagram

    m x +

    Accosct

    x(t) xAM(t)=Ac [1+mx(t)]cosct

    15

  • 8/2/2019 IandQ and Sideband 7 10

    16/37

    AM: Time Domain

    7/22/2010

    AM in the Time Domain

    Unmodulated

    carrier

    100% modulatedcarrier

    16

  • 8/2/2019 IandQ and Sideband 7 10

    17/37

    AM: Frequency Domain

    7/22/2010

    AM in the Frequency Domain

    carrier

    uppersideband

    lowersideband

    17

  • 8/2/2019 IandQ and Sideband 7 10

    18/37

    Double Sideband Modulation (DSB)

    7/22/2010

    Lets just transmit the sidebands

    m x

    Accosct

    x(t) +

    X

    xDSB(t) = Ac*m*x(t)*cosct

    18

  • 8/2/2019 IandQ and Sideband 7 10

    19/37

    DSB: Time Domain

    7/22/2010

    Double Sideband in the Time Domain

    19

  • 8/2/2019 IandQ and Sideband 7 10

    20/37

    DSB: Frequency Domain

    7/22/2010

    Double Sideband in the Frequency Domain

    carrier was here

    uppersideband

    lowersideban

    d

    20

  • 8/2/2019 IandQ and Sideband 7 10

    21/37

    Example of a DSB Signal

    7/22/2010

    21

  • 8/2/2019 IandQ and Sideband 7 10

    22/37

    DSB Spectrum

    7/22/2010

    Note: the upper and lower sidebands are the same

    Do we need both of them?carrier was here

    uppersideband

    lowersideband

    22

  • 8/2/2019 IandQ and Sideband 7 10

    23/37

    SSB Signals

    7/22/2010

    A sideband signal is obtained by adding a sidebandfilter to capture the upper or lower sideband.

    x

    Accosct

    x(t)Lower

    SidebandFilter

    Low Pass Filter

    f

    f f

    f

    23

  • 8/2/2019 IandQ and Sideband 7 10

    24/37

    Example of a USB Signal

    7/22/2010

    24

  • 8/2/2019 IandQ and Sideband 7 10

    25/37

    Comparison of DSB and SSB

    7/22/2010

    Power: SSB requires half of the power of DSB

    Bandwidth: SSB requires half of the bandwidth ofDSB

    Complexity: SSB modulators/demodulators aremore complex

    25

  • 8/2/2019 IandQ and Sideband 7 10

    26/37

    SSB Example

    Start with arbitrary waveform in baseband:

    7/22/2010

    26

  • 8/2/2019 IandQ and Sideband 7 10

    27/37

    SSB Example

    Modulate as Upper Sideband Signal:

    7/22/2010

    27

  • 8/2/2019 IandQ and Sideband 7 10

    28/37

    SSB Example

    I

    Q

    cos c t

    sin c t

    LPF

    LPF

    ADC

    ADC

    AMP

    7/22/201028

  • 8/2/2019 IandQ and Sideband 7 10

    29/37

    SSB Example

    I

    Q

    cos c t

    sin c t

    LPF

    LPF

    ADC

    ADC

    AMP

    7/22/2010

    29

  • 8/2/2019 IandQ and Sideband 7 10

    30/37

    SSB Example

    I

    Q

    cos c t

    sin c t

    LPF

    LPF

    ADC

    ADC

    AMP

    7/22/201030

  • 8/2/2019 IandQ and Sideband 7 10

    31/37

    SSB Example

    I

    Q

    cos c t

    sin c t

    LPF

    LPF

    ADC

    ADC

    AMP

    7/22/201031

  • 8/2/2019 IandQ and Sideband 7 10

    32/37

    SSB Example

    I

    Q

    cos c t

    sin c t

    LPF

    LPF

    ADC

    ADC

    AMP

    7/22/201032

  • 8/2/2019 IandQ and Sideband 7 10

    33/37

    SSB Example

    I

    Q

    complexmultiply

    sin ftn

    cos ftn

    decimate

    decimate

    n = samplenumber

    I

    Q

    To USBand PC

    7/22/201033

  • 8/2/2019 IandQ and Sideband 7 10

    34/37

    SSB Example

    I

    Q

    complexmultiply

    sin ftn

    cos ftn

    decimate

    decimate

    n = samplenumber

    I

    Q

    To USBand PC

    7/22/201034

  • 8/2/2019 IandQ and Sideband 7 10

    35/37

    SSB Example

    I

    Q

    complexmultiply

    sin ftn

    cos ftn

    decimate

    decimate

    n = samplenumber

    I

    Q

    To USBand PC

    7/22/201035

  • 8/2/2019 IandQ and Sideband 7 10

    36/37

    SSB Example

    I

    Q

    complexmultiply

    sin ftn

    cos ftn

    decimate

    decimate

    n = samplenumber

    I

    Q

    To USBand PC

    7/22/201036

  • 8/2/2019 IandQ and Sideband 7 10

    37/37

    Practical SSB Reception

    7/22/2010

    37

    Example above assumed no other signals on theband and perfectly synchronized oscillators

    Need to isolate (filter) the signal of interest and deal

    with oscillators slightly out of sync GRC tutorial demonstrates Weavers Method of

    demodulating SSB that solves these problems