IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

36
IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9

Transcript of IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

Page 1: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEAInternational Atomic Energy Agency

Automatic Analysis of Chromosomal Assays

LectureModule 9

Page 2: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Chromosomal aberrations seen in mitosis phase

Dicentrics And rings

Two waytranslocation

Terminal translocation

+ …

Unstable chromosomal aberrations

Stable chromosomal aberrations

2

Page 3: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Cytokinesis block micronucleus (CBMN) assay

3

Page 4: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Needs for automation

Several steps require operator intervention during the process

•Setting up cultures

•Processing cultures through to making slides

• In case of mass casualty many tubes have to be handled: Difficult; Risk of mistakes

•Most time consuming is scoring

4

Page 5: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Methodology for automated sample processing

2 days incubation time

Staining

Blood sampling

Cell culture

Cell division arrest

Red cells lysis

Spreading

Robotic blood handler

1

Metaphase harvester

2

Metaphase spreader

Slide auto-stainer

4

3

5

Page 6: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Robotic blood handler1

Tecan Genesis (Hanson et al, 2001)

Tecan Freedom Evo (Martin et al, 2007)

Automatic liquid handling system:

automatic scan of barcodes

pipettor

96 samples per run 6

Page 7: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Metaphase harvester2

Hanabi PII (Martin et al, 2007)

• Automatic metaphase harvester:

centrifugation

hypotonic treatment with incubation at 37°C

fixative treatment

• 24 samples per run = 2 hours

7

Page 8: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

• Manual spreading

• Temperature, humidity and airflow controlled

• 5 slides per run = 5 mins

3 Metaphase spreader

Hanabi Metaphase Spreader

(Martin et al, 2007)

8

Page 9: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Slide auto-stainer4

Thermo Shandon Varistain

Gemini slide stainer (Martin et al, 2007)

Thermo Shandon Consul coverslipper

(Martin et al, 2007)

• Automatic staining and coverslips

• 150 slides per run = 40 mins9

Page 10: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Automating the microscopy

• Aberration scoring is time consuming

• Cytogenetic labs only have few technical staff

• Many victims could require dose estimation

• Many cells have to be scored

This lecture will concentrate

on the dicentric assay

10

Page 11: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Scoring more cells contributes to reduction of confidence intervals

Number of

cells scored

Number of

dicentrics to

have a

significant dose

Correspondi

ng dose

(Gy)

Low CI

(Gy)

High CI

(Gy)

1000 7 0.11 0.006 0.28

10000 34 0.04 0.001 0.10

100000 259 0.03 0.001 0.06

1000000 2400 0.02 0.001 0.05

11

Page 12: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Several options for automation

• Develop your own system:• Customized system

• Not so expensive

• Technically demanding

• Buy a ready to use system (METASYSTEMS, CELLSSCAN, IMSTAR, CYTOVISION…)

• More expensive

• Already validated

• Build with available components (Furukawa 2010)

• Less expensive

• Depends on previous developments

12

Page 13: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Validation process

• Compare efficiency with manual processing (reference)

• Evaluating sources of variations

• Construct calibration curves under identical conditions used for dose estimation

13

Page 14: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Methodology for Automatic Detection of Dicentrics

From lymphocytes metaphases spread over microscopy

slide

Search and acquisition of

metaphases by a microscope

Analysis of metaphase Images by DCScore

software

Estimation of the dose with a

dose-effect curve

Estimation of the yield of dicentrics

per cell

Validation of detected

dicentrics by an operator

Deletion of non analyzable

metaphases

1 2 3

4

567

14

Page 15: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

History

• First metaphase finder • Developed in 1960s for conventional staining (Wald, 1967)

• Developed in 1990s for fluorescence staining (Vrolijk, 1994)

• Aberration scoring systems• For dicentrics: Bayley, 1991 and Lörch 1989

• For translocation by FISH: and Piper 1994

• For micronuclei: Castelain, 1993 and Verhaegen, 2994

• In 2000s development of machines for cell culture and samples management

15

Page 16: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

1. Search and acquisition of metaphases by microscope

Search for metaphases on slide (objectivex10)

1Acquisition of metaphases of gallery (objectivex63)

2

Microscope drive by Metafer 4 software

(MetaSystems)

16

Page 17: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

2. Deletion of non-analyzable metaphases

What is “non-analyzable metaphase”?

Second division metaphase

Unscorable metaphase

Image with 2 metaphases

Why?

To obtain realistic distribution of dicentrics per cell

17

Page 18: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

3. Image of metaphase analyzed by DCScore software

On all metaphase images, detection of:

Chromosomes, Dicentrics (red square)

Criteria:

Contrast, Object size, Form

Classifier:

Configurable (different according to laboratory)

Microscope driven by Metafer 4 software (MetaSystems)

18

Page 19: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

4. Validation step

• Each dicentric candidate is confirmed or rejected

False positive dicentrics

19

Page 20: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

5. Estimation of yield of dicentric

• Validated dicentrics/number of cells evaluated (whatever number of chromosomes identified)

• Result is used either to construct calibration curves or to estimate dose

20

Page 21: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Dose-effect Curves (Cesium 137)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.5 1 1.5 2 2.5 3Doses (Gy)

Yie

ld o

f d

icen

tric

s

Manual Scoring

Automatic Detection of Dicentrics

12 doses 0 to 3Gy 75 000cells scored

11 doses 0 to 2.5Gy 10 000cells scored

21

Page 22: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Application to population triage

• Objectives• Analyse large number of samples quickly

• First step :• Discriminate individuals in 3 classes:

• Exposed

• Potentially exposed

• Unexposed

• Second step : • Dose estimation with best accuracy possible

22

Page 23: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Application to population triage

Methodology currently used First step: Manual scoring on 50 metaphases Second step: Manual scoring on 500 metaphases

Response First step: Quick but low accuracy Second step: Very long and good accuracy

What is response of automatic detection of dicentrics? Experimental model

• Dakar accident - 63 individuals potentially exposed

23

Page 24: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

0

5

10

15

20

25

500metaphases 50metaphases 1000cells 3000cells

Tim

e (d

ay)

per

6 o

per

ator

s

Timing

Manual Scoring Automatic Detection

of Dicentrics of Dicentrics

0

5

10

15

20

25

500metaphases 50metaphases 1000cells 3000cells

Analysis of metaphase

Search/Acquisition of metaphases

Slide preparation

Culture of lymphocytes20.4 days

5.9 days

8.6 days

15.1 days

24

Page 25: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

First step: victims classification according to first dose estimation

Manual Scoring 50 metaphases

17.4%

10.9%

71.7%

Automatic Detection of Dicentrics

26.1%

54.3%

19.6%

Manual Scoring 500 metaphases

class 0

class 1

class 2

28.3%

54.3%

17.4%

= the reference

50% under-estimation 4.3% under-estimation

Better results with automatic system25

Page 26: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

First conclusion on population triage

Automatic detection of dicentrics performance:

• Timing quite similar to manual scoring on 50 metaphases but slightly longer

• Classification similar to manual scoring on 500 metaphases

26

Page 27: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Second step: dose estimation

• Dose obtained with automatic dicentric scoring close to dose obtained with manual scoring of 500 metaphases

(Vaurijoux et al, 2009)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 7 9 10 13 14 16 17 20 21 22 23 24 25 26 27 30 31 33 34 35 36 37 38 39 40 42 43 45 46

Individuals

Dos

e (G

y)

500MS

ADS

27

Page 28: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Conclusion of second step

• Automatic detection of dicentrics is

• 3 times faster than manual scoring on 500 metaphases

• Dose estimation close to manual scoring on 500 metaphases

28

Page 29: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Application to individual biological dosimetry

• Question• Can automatic detection of dicentrics detect

heterogeneity of exposure?

• Experimental models• In vitro simulations with blood irradiated to 2Gy

and diluted with unexposed blood

• Real cases of accidental exposure previously analysed manually

29

Page 30: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

In vitro simulations of exposure eterogeneity

With automatic detection of dicentrics:

• Range of heterogeneity detection - from 5% to 75% irradiated blood to 2Gy

0% -0.085% 5.7015% 6.9125% 8.2450% 7.0660% 3.8475% 2.6090% 0.092Gy 0.61

Proportion of blood irradiated at 2 Gy

u-test

0% -0.085% 5.7015% 6.9125% 8.2450% 7.0660% 3.8475% 2.6090% 0.092Gy 0.61

Proportion of blood irradiated at 2 Gy

u-test

With manual scoring of 500 metaphases: (Barquinero, 1997):

• Range of heterogeneity detection - from 12.5% to 75% irradiated blood to 2Gy

30

Page 31: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Real cases of accidental exposure (1)

• Heterogeneity was detected similarly with automatic and manual scoring

• One exception - case 6

Manual Scoring 500 metaphases

Automatic Detection of Dicentrics

1 3.42 6.332 4.73 2.853 4.68 2.804 2.47 3.295 21.2 11.86 5.81 -0.717 3.12 3.458 1.93 0.459 -0.10 -0.1110 -0.28 -0.33

u-test

Individuals

31

Page 32: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Doses obtained are similar by both methods

(Vaurijoux, Gruel et al, in submission)

Real cases of accidental exposure (2)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 7Individuals

Dos

es C

alcu

late

s by

Dol

phin

(Gy)

MS

ADS

32

Page 33: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Real cases of accidental exposure (3)

Fraction of irradiated blood are similar by both methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7Individuals

Fra

ctio

ns

of ir

radia

ted b

lood

MS

ADS

33

Page 34: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Telescoring

• Acquired images can be shared electronically between laboratories

• Sent via the Internet

• Requires homogeneous scoring criteria• Several networks are working on this

34

Page 35: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Conclusion for automatic detection of dicentrics

Applications• population triage

• individual cases

Automatic detection of dicentrics can• estimate doses with results close to those obtained

by manual scoring on 500 metaphases

• detect heterogeneous exposure

• allow dose reconstitution of irradiated fraction using Dolphin mathematical model

35

Page 36: IAEA International Atomic Energy Agency Automatic Analysis of Chromosomal Assays Lecture Module 9.

IAEA

Other assays

Micronucleus (CBMN)

This is covered separately in another lecture

Translocation• DAPI stained metaphase finder is well developed

and validated

• No commercial software yet for translocation scoring

• Digitally captured images do not fade

36