I. Basic Principles I-N. Epoxides - University of...

24
1 I-N. Epoxides I. Basic Principles 1. High-Valent TM(d0) Epoxidations Mo, V, W (H 2 WO 4 ), Ti, Al serve as catalysts with t-BuO 2 H or other peroxides as stoichiometric oxidants. Toluene is a frequent solvent. Mo(CO) 6 is the catalyst of choice for substrates lacking directing groups. Dr. P. Wipf Chem 2320 3/10/2007

Transcript of I. Basic Principles I-N. Epoxides - University of...

  • 1

    I-N. Epoxides

    I. Basic Principles

    1. High-Valent TM(d0) Epoxidations

    Mo, V, W (H2WO4), Ti, Al serve as catalysts with t-BuO2H orother peroxides as stoichiometric oxidants. Toluene is afrequent solvent. Mo(CO)6 is the catalyst of choice forsubstrates lacking directing groups.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 2

    More detailed references:Oshima, THL 1980, 21, 1657,4843; Sharpless, THL 1979,20, 4733; Kishi JACS 1978,100, 2933.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 3

    The extent to which a hydroxyl group is involved in the epoxidationof cyclic alkenes and alkadienes is determined not only by its positionrelative to the double bond but also by the conformation of themolecule as a whole (Dryuk, V. G.; Kartsev, V. G., "Mechanism ofthe directing influence of functional groups and the geometry ofreactant molecules on peroxide epoxidation of alkenes." Russ. Chem.Rev. 1999, 68, 183-201):

    2. Sharpless Asymmetric Epoxidation (SAE)

    1980: Katsuki & Sharpless; Ti(IV)alkoxide, tartrate, t-BuOOH.References: Comprehensive Organic Synthesis 1991, vol. 7, chapter3.2; pp 389; Chem. Rev. 1991, 91, 437. Org. React. 1996, 48, 1-300.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 4

    mechanism: dimer is active species (Finn, M. G.; Sharpless, K. B.J. Am. Chem. Soc. 1991, 113, 112).

    • incompatible functional groups: amines, -CO2H, -SH, phenols,phosphines.

    Stoichiometry: 5% Ti / 6% tartrate to 10% Ti / 12% tartrate:

    Dr. P. Wipf Chem 2320 3/10/2007

  • 5

    Masamune, S.; Sharpless, K. B. Tetrahedron 1990, 46, 245. Totalsynthesis of L-hexoses.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 6

    Kinetic resolution of allylic alcohols (J. Am. Chem. Soc. 1981, 103,6237).

    Dr. P. Wipf Chem 2320 3/10/2007

  • 7

    Especially interesting in this context is the potential of the Sharplessasymmetric epoxidation in bi-directional synthesis and for thedifferentiation of diastereotopic alkenes:

    Assuming that no significant bis-epoxidation has occurred after 3 h, theee of this reaction would be 84% forthe major product, and the de wouldbe 87% (anti/syn) for the reaction.

    If we allow the reaction to proceed, the ee and de should increase!3 h @ -25°C ee 84% de 87%24 h @ -25 °C ee 93% de 92%140 h @ -25 °C ee >97% de >95%

    Dr. P. Wipf Chem 2320 3/10/2007

  • 8

    Schreiber, S. L. et al. J. Am. Chem. Soc. 1987, 109, 1525. Two-directional chain synthesis with end-group differentiation.For a general discussion of chain synthesis strategies, see: Poss, C. S.;Schreiber, S. L., "Two-directional chain synthesis and terminusdifferentiation." Acc. Chem. Res. 1994, 27, 9.

    Application in synthesis: Schreiber, S. L. et al. J. Org. Chem. 1989, 54, 15):

    Dr. P. Wipf Chem 2320 3/10/2007

  • 9

    Preparation of starting diepoxide:

    Leung, L. M. H.; Gibson, V.; Linclau, B., "Improved synthesis of enantiopure pseudo-C2-symmetric 1,4-bis-epoxide building blocks from arabitol." Tetrahedron: Asymmetry 2005, 16,2449-2453.

    Moffat reagent(J. Am. Chem. Soc.1973, 95, 4016):

    Related to Moffatt’s reagent is the use of Viehe’s reagent (Fraser-Reid, B.et al. Tetrahedron Lett. 1986, 27, 4697).

    Dr. P. Wipf Chem 2320 3/10/2007

  • 10

    3. Jacobsen-Katsuki Epoxidations

    Jacobsen, JACS 1990, 112, 2801; JACS 1991, 113, 7063; Katsuki,THL 1990, 31, 7345. Based on Kochi’s achiral salen catalyst.

    Mcgarrigle, E. M.; Gilheany, D. G., "Chromium- and manganese-salen promoted epoxidation of alkenes." Chem. Rev. 2005, 105,1563-1602.

    Application in process chemistry (THL 1995, 36, 3993):

    The use of the co-catalyst P3NOallowed for a decreased charge of theMn salen catalyst in the Jacobsenepoxidation. P3NO stabilized thecatalyst, increased the rate, andtransported bulk oxidant HOCl into theorganic phase (JOC 1997, 62, 2222).

    Dr. P. Wipf Chem 2320 3/10/2007

  • 11

    Mechanistic considerations (Linker, T. Angew. Chem. Int. Ed. Engl. 1997, 36,2060).

    Preferred directions of attack of alkenes according to Jacobsen (a) and Katsuki(b):

    3 possible mechanisms regarding the oxygentransfer to the double bond:

    Epoxidation of styrene derivatives leads to mixtures:

    Radical clock experiments giveconflicting results:

    There is clear evidence for theformation of radical intermediates,however, manganooxetanes, forwhich there is electrospray MSevidence, can also play a part inthe mechanism. The influence ofreaction conditions has to betaken into account.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 12

    Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N.,"Mechanistic investigation leads to a synthetic improvement in thehydrolytic kinetic resolution of terminal epoxides (HKR)." J. Am. Chem.Soc. 2004, 126, 1360-1362.

    The (salen)-Co(III) complex 1provides a general and effectivemethod for the preparation ofenantioenriched terminalepoxides. 1a is the mostcommonly used variant.

    The catalyst shows a second-order dependence, and a cooperative bimetallicmechanism has been suggested:

    Dominant catalytic cycle in HKR reactions (RDS = rate determining step):

    Dr. P. Wipf Chem 2320 3/10/2007

  • 13

    4. Peracid/Peroxide Epoxidations

    Standard peracids are: MCPBA, CH3CO3H, MMP, CF3CO3H, 3,5-dinitroperbenzoic acid.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 14

    Epoxidation under Payne conditions:

    Bachmann, C.; Gesson, J.-P.; Renoux, B.; Tranoy, I. Tetrahedron Lett.1998, 39, 379.

    With the less acidicMCPBA, epoxidationof allylic ethers isdirected by sterichindrance and is anti-selective.

    Diastereomeric control in the epoxidation with peracids is quitegood, if appropriate directing groups are present, or if the substrateis sterically biased.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 15

    Wipf, P.; Kim, Y.; Fritch, P. C. J. Org. Chem. 1993, 58, 7195.

    Diastereocontrol in acyclic substrates:Kishi, Y. et al. Tetrahedron Lett. 1980, 21, 4229.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 16

    mechanistic consideration of the relative stability of ground stateconformational isomers:

    more calc.: Houk, K. N. J. Am. Chem. Soc. 1991, 113, 5006.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 17

    Catalytic Asymmetric Epoxidation with Chiral Dioxiranes

    Wang, Z.-Y.; Tu, Y.; Frohn, M.; Shi, Y. J. Org. Chem. 1997, 62,2328. Biphasic reactions, inexpensive oxidants; turnover and catalyticefficiency need to be improved for this chemistry to become a viablecompetitor to transition metal catalysts for asymmetric epoxidation.For recent progress, see: J. Org. Chem. 1997, 62, 8622.Shi, Y., "Organocatalytic asymmetric - epoxidation of olefins by chiralketones." Acc. Chem. Res. 2004, 37, 488-496.Yang, D., "Ketone-catalyzed asymmetric epoxidation reactions." Acc.Chem. Res. 2004, 37, 497-505.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 18

    Epoxidation of enones: H2O2, t-BuO2H, cumene hydroperoxide

    Ooi, T.; Ohara, D.; Tamura, M.; Maruoka, K., "Design of new chiralphase-transfer catalysts with dual functions for highly enantioselectiveepoxidation of α,β-unsaturated ketones." J. Am. Chem. Soc. 2004,126, 6844-6845.

    Presently limited to aryl or t-Bu ketones

    Dr. P. Wipf Chem 2320 3/10/2007

  • 19

    Kakei, H.; Tsuji, R.; Ohshima, T.; Shibasaki, M., "Catalytic asymmetricepoxidation of α,β-unsaturated esters using an yttrium-biphenyldiolcomplex." J. Am. Chem. Soc. 2005, 127, 8962-8963.

    5. Alternative Methods for Epoxide Formations

    Epoxides from diols:

    Martin, T.; Soler, M. A.; Betancort, J. M.; Martin, V. S. J. Org. Chem. 1997, 62,1570.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 20

    Gardinier, K. M.; Leahy, J. W. J. Org. Chem. 1997, 62, 7098. Thebasic transesterification required with standard esters in the final stepof the Sharpless conversion of vicinal diols into epoxides (Kolb, H. C.;Sharpless, K. B. Tetrahedron 1992, 48, 10515) was incompatible withthe target molecule (cryptophycin).

    Ireland, R. E.; Wipf, P.; Roper, T. D. J. Org. Chem. 1990, 55, 2284.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 21

    Via halohydrins:

    Cardillo-Epoxidation (TH 1990, 46, 3321):

    Guo, J.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.; Hayward,M. M.; Kishi, Y. Angew. Chem. Int. Ed. 1998, 37, 187.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 22

    Arai, S.; Shioiri, T., "Catalytic asymmetric Darzens condensation underphase-transfer-catalyzed conditions." Tetrahedron Lett. 1998, 39, 2145.

    Corey-Chaykovski Reaction: Aggarwal, V. K.; Ford, J. G.;Fonquerna, S.; Adams, H.; Jones, R. V. H.; Fieldhouse, R., "CatalyticAsymmetric Epoxidation of Aldehydes. Optimization, Mechanism, andDiscovery of Stereoelectronic Control Involving a Combination ofAnomeric and Cieplak Effects in Sulfur Ylide Epoxidations with Chiral1,3-Oxathianes." J. Am. Chem. Soc. 1998, 120, 8328-8339.

    Aggarwal, V. K.; Winn, C. L., "Catalytic, asymmetric sulfur ylide-mediated epoxidation of carbonyl compounds: Scope, selectivity, andapplications in synthesis." Acc. Chem. Res. 2004, 37, 611-620.

    Dr. P. Wipf Chem 2320 3/10/2007

  • 23

    Review: Hanson, R. M. Chem. Rev. 1991, 91, 437.

    6. Epoxide Opening Reactions

    on rings: trans-diaxial opening is preferred (Fürst-Plattner rule):

    Dr. P. Wipf Chem 2320 3/10/2007

  • 24

    Wipf, P.; Lim, S. J. Am. Chem. Soc. 1995, 117, 558; Wipf, P.; Lim, S.Chimia 1996, 50, 157.

    Yamamoto, H. et al. J. Am. Chem. Soc. 1989, 111, 6431.

    Dr. P. Wipf Chem 2320 3/10/2007