Hyperspectral Imagers

16
1 Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07 Jens Nieke and Klaus I. Itten Remote Sensing Laboratories Department of Geography, University of Zurich Winterthurerstrasse 190 8057 Zurich [email protected], [email protected] Hyperspectral Imagers 2 Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07 From Pinhole Camera to Pushbroom Spectrometers Sir Isaac Newton’s prism experiment, 1666-72 Camera obscuras, Reinerus Gemma-Frisius, 1555 APEX experiment 2008 The Design Requirements: High Data Rate High Signal-to-Noise Ratio High Performance Detectors High Image Uniformity High Calibration Accuracy MOS experiment 1997

Transcript of Hyperspectral Imagers

Page 1: Hyperspectral Imagers

1Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Jens Nieke and Klaus I. Itten

Remote Sensing LaboratoriesDepartment of Geography, University of Zurich

Winterthurerstrasse 190

8057 Zurich

[email protected], [email protected]

Hyperspectral Imagers

2Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

From Pinhole Camera to PushbroomSpectrometers

Sir Isaac Newton’s prism experiment, 1666-72

Camera obscuras,

Reinerus Gemma-Frisius, 1555

APEX experiment

2008

The Design Requirements:• High Data Rate• High Signal-to-Noise Ratio• High Performance Detectors• High Image Uniformity• High Calibration Accuracy

MOS experiment 1997

Page 2: Hyperspectral Imagers

3Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Imaging Unit (foreoptics)

Whiskbroom Pushbroom Staring

Scanning

approach

Advantages Disadvantages

Whiskbroom • simple over-all design • wide FOV • easy calibration

• mechanical scanner (moving parts in

vacuum) • post-processing required (spatial

incongruence) • constraints of high spectral and spatial

resolution requirements (low integration

time)

Pushbroom • no moving parts • congruence of spectral

images • longer integration time

for each ground pixel

• complex focal plane • narrow FOV • complex calibration • complex optics • spectral curvature

Staring • simple and compact

• post-processing required (spatial and

spectral incongruence) • constraints when many spectral bands

and high spatial resolution requirements

4Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Objective Apertur

fixed mirrors

Interferometer

Collimator

Entrance SlitLens

Detector Area ArraySpatial Dimension y

Spe

ctra

l Dim

ensi

on

Filter MethodAbsorption / Interference Filter

Spectral Unit of Pushbroomers

Detector Area ArrayImager

Dispersing Element (Grating, Prism, Grism)

Collimator

Entrance Slit

Objective Aperture

y

Spatial D

imensio

n y

x

xy

x1

x n

x

1

n

x1

x n

Objective

Wedge Filter

Detector Area Array

Spa

tial D

imen

sion

y

Spectral and spatial Dimension ,x

Dispersion MethodGrating: Diffraction of LightPrisma: Refraction of Light

Fourier Transform Spectrometers (FTS)Time Domain FTS:

=> Michelson InterferometerSpatial Domain FTS

=> Sagnac Interferometer

Page 3: Hyperspectral Imagers

5Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

CHRIS

Comparison of spectral selection systems

6Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Design challenge: Data stream

• Data Rates of well-known systems:• Hyperion 220 x 12bit x 254pix x 233 Hz = 150 Mbit/sec = 18 MB/s• AVIRIS: 224 x 12bit x 614 pix x 12 Hz = 22 Mbit/sec = 2.8 MB/s

• APEX Data Rates:• High Spatial: (114+199) x 16bit x 1024 pix x 50 Hz = 256 Mbit/sec = 32 MB/s• High Spectral: (312+199) x 16bit x 1024 pix x 17 Hz = 140 Mbit/sec = 18 MB/s

AVIRIS 2.8 MB/s

Hyperion: 18 MB/s

APEX: 32 MB/s

MODIS: 1.35 MB/s

MERIS (FR): 6.25 MB/s

ASAR HR: 12.5 MB/s

Page 4: Hyperspectral Imagers

7Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Design challenge: Detector

• Requirements for “Scientific Detectors”• “Large Area” Detector• “Large” pixel size• Low read out noise• Dynamic range• High quantum efficiency• High fill factor• High radiation hardness (for space applications)• Low system power • Low system mass

• System volume• Low calibration complexity

• Constraints• The Detector Market is driven by consumer electronics needs• Only very few manufacturers (E2V, SOFRADIR, AIM) having developed

detectors for the niche of scientific imaging• Export restricted due to military or custom design• Certain fiscal restrictions

8Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Design challenge: Image Uniformity

PSF in ideal position

PSF in real position

Dell Endice, et al. Appl. Opt. 2007

Schläpfer, et al. IEEE TGARS 2007

• Punctual defects,• Linear defects,• Areal defects,(spectral and spatial misregistration)

• Stability defects,• Discontinuity defects.

Page 5: Hyperspectral Imagers

9Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Design challenge: Calibration accuracy

• State-of-the-art are new generation of satellites, which deliver remotesensing data in unprecedented quantity and quality, such as SeaWiFS,ENVISAT, TERRA, AQUA and ADEOS-2.

• Driver applications:• Climatology• Ocean color

• Various methods were developed to improve the accuracy of remotesensing systems, such as

• Spectral calibration

• Geometric calibration• Radiometric calibration• Onboard calibration

• and vicarious calibration of the senor output (Level 1B data)• Validation of scientific algorithms (higher level output)

10Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Airborne Hyperspectral Imager

1D whiskbroomgrating

65°2 mrad

30-12564-100

0.4-2.58-12

128 (VIS-SWIR); 30(TIR)

from2006

ARES (IntergratedSpectronics,AU/DLR, DE)

1D whiskbroom

grating

65°

2 mrad

30-1250.4-2.51281994HYMAP (IntergratedSpectronics, AU)

28°

0.5 mrad

40°1.5 mrad

70°

1.3 mrad

30°

1 mrad

3.7°2 mrad

FOV,/ IFOV(°, mrad)

2D pushbroom

prism

1000-2770.4-2.5313-500from2008

APEX (ESA /CH,BE)

2D pushbroomgrating

0.4-1.02881990CASI (ITRES, CA)

2D pushbroom

grating

200-3000.4-0.82881984FLI (Moniteq, Itres,CA)

1D whiskbroom

grating

40-2000.4 - 2.52241989AVIRIS (JPL, US)

1D whiskbroomgrating

80-2000.9-2.41281982AIS (JPL, US)

Imaging TechniqueSpectralResolution

( / )

SpectralRange(μm)

Numberof

SpectralBands

YearAirborne Hyper-IS

Page 6: Hyperspectral Imagers

11Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

AISA Airborne Hyperspectral System

AISA EagleSpectral bands: 340Range: 400 - 970 nmFOV: 37.7 degCross-track pixels: 1024

AISA HawkSpectral bands: 255Range: 97 - 2450 nmFOV: 24 degCross-track pixels: 320

Prism-Grating-Prism (GRISM)Mass: 47.5 kgcompany: SPECIM

1024 pix 320 pix

12Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

AVIRIS Instrument

AVIRIS Technology Development•• Thermal control 1997 Thermal control 1997

•• Low Altitude 1998Low Altitude 1998

•• INU/GPS 1998INU/GPS 1998

•• Geo rectification 1998Geo rectification 1998

•• Onboard calibrator 1999Onboard calibrator 1999

•• Detector arrays 2000Detector arrays 2000

•• Digital signal chain 2001Digital signal chain 2001

•• Onboard data storage 2001Onboard data storage 2001

•• Scanner and fore optics 2003Scanner and fore optics 2003

Spectral bands: 224Range: 400 - 2500 nmFOV: 34 degCross-track pixels: 677four whiskbroom grating spectrometerwith four detectors (200 x 200 micron)Mass: 300 kgCompany: JPL/NASA

Page 7: Hyperspectral Imagers

13Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Hyperspectral Spaceborne Imaging Spectrometer

LEO, multi-viewing

Prism, pushbroom

13 km

25 - 50 m

1.25-11nm0.4-1.019-622001CHRIS (SIRA,PROBA, ESA)

LEO, 30deg tiling

grating, pushbroom

30 km

30 m

10nm0.43-2.52202011ENMAP (KeyserTrede, DLR)

Moon orbit, OffnerGrating, onChandrayaan-1(ISRO)

40 km

70 m

10 nm0.45-3.02612008Moon MineralogyMapper (JPL,NASA) on

15 km

50 m

7.5 km

30 m

15 km770 m

FOV,/ IFOV(km, m)

LEO

FTS, pushbroom

2-6 nm0.4-1.02562000AFRL MightySat II(Sindri) FTHSI

LEO

grating, pushbroom

10 nm0.4-2-52202000HYPERION (TRW,EO-1, NASA)

LEOgrating, pushbroom

15 nm0.4-1.02721996SPIMs (JohnHopkins University,MSX,DoD)

Imaging TechniqueSpectralResolution

SpectralRange(μm)

Numberof

SpectralBands

YearSpaceborne-IS(Producer,

Satellite, Agency)

14Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

EO-1, launched November 21, 2000Payload (90kg):•• Advanced Land Imager (ALI)Advanced Land Imager (ALI)

•• HYPERION HYPERION first high spatial resolution imaging spectrometerfirst high spatial resolution imaging spectrometer •• LEISA (Linear Etalon Imaging Spectral Array)LEISA (Linear Etalon Imaging Spectral Array)

•• AtmoAtmospheric Corrector (AC)spheric Corrector (AC)

Hyperion• 220 x 10nm bands in 400nm - 2500nm range• 6% absolute radiometric accuracy• Image swath width of 7.5 km• IFOV of 42.4 microradian• GSD of 30 m at 705 km altitude• 12-bit image data• Power: 51W orbit avg.,126W peak• Mass: 49kg• One year Life (2 year Goal)• Lewis Hyperspectral Imager (HSI) heritage• using JPL convex grating design• and Offner configuration

HYPERION on EO-1

HYPERION

Page 8: Hyperspectral Imagers

15Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Platform: PROBA*

• PROBA is the ESA Project for

On-Board Autonomy

• Launched: 22nd October 2001,

by Indian PSLV

• 100 kg, 100W,

• 800 x 600 x 600 mm3

Orbit: Sun-synchronous, polar, 553km

Platform agility:

Pitch range: ±55° -

Images at ±55°, ±36° and 0°

Roll range: ±25°

Pitch during imaging to increase integration time x 3

CHRIS on PROBA

* Prime: Verhaert Design and Development (BE)** SIRA (UK)*** OIP Systems (BE)**** Contraves (CH)

Payload:

CHRIS (Compact High Resolution Imaging Spectrometer)**:

Front baffle, carries solar calibration device

Telescope , images ground onto entrance slit

Prism dispersed image relayed to area-array CCD detector

LED and diffuser placed close to detector

Wide Angle Camera (WAC), High Resolution Camera (HRC)***

Standard Radiation Environment Monitor (SREM)****

Total costs US$ 14.5m (1996)

CHRIS SNR

16Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Airborne Prism Experiment (APEX)

Page 9: Hyperspectral Imagers

17Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

APEX Organization

Koen Meuleman

18Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

APEX Timeline

CDR = Critical Design ReviewATP = Acceptance To ProceedAR = Acceptance ReviewPM = Progress Meeting

OSU = Optical Sub-UnitTRR = Test Readiness ReviewMIP = Mechanical Interface Plate

AR (CHB)

FinalCDR/ATP

Calibration Home Base (CHB)

Institutes Phase C/D Phase E(5+5 years)

Industry Phase C/D

Delivery

Today

Construction

Integration

2007

Acceptance

2006 2008 2009

PM7 PM9 TRRPM10 PM11 AR TRR AR

Testing & Calibration

Calibration Test Master (CTM)

PM7 (Delivery of OBP): 15-Feb-2007PM9 (Delivery of MIP): 16-Mar-2007OSU TRR: 17-05-2007PM 10 (OSU tests): 11-Jul-2007PM 11 (OSU Assembly): 03-Dec-2007AR (OSU): 18-Feb-2008System TRR: 24-Mar-2008AR (APEX): 01-Jul-2008IFAR: 05-Nov-2008 PAF End to End Test

Data Format Testing Instr. Tests System Tests

First Light ofpreassembled

OSU

First Light offlight OSU

SW Concept & Development

Test A Test BConfig

Page 10: Hyperspectral Imagers

19Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

APEX Team during Exploitation Phase E

SupportSupport

Standard ProductStandard Product(Custom/Research Product)(Custom/Research Product)

RequestRequest

ApplicationsApplicationsDevelopmentDevelopment(PAF, Algorithms (PAF, Algorithms ……))

Specialist,Specialist,DeveloperDeveloper User communityUser community

APEX science centerAPEX science center APEX operations centerAPEX operations center

AdviceAdvice

Science PolicyFoster the use of imaging spectrometer dataFoster the use of imaging spectrometer data Implementation of the science policy defined Implementation of the science policy defined

in the APEX science boardin the APEX science board Conception of the Level 2/3 product strategy Conception of the Level 2/3 product strategy Call for experiments, workshopsCall for experiments, workshops

New ApplicationsDevelopment of new scientific algorithmsDevelopment of new scientific algorithms Interaction with scientistsInteraction with scientists

Quality Control

APEX Operations Delivery of

Standard, Custom and ResearchStandard, Custom and Researchproductsproducts

Quality Control

wwwwwwinterfaceinterface

20Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

APEX Selected Specifications

Page 11: Hyperspectral Imagers

21Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Instrument Set-up in Aircraft

APEX Instrument

with Stabilizing Platform integrated in

Environmental Thermal Control Box

Aircraft I/F

Control and StorageUnit

Power DistributionUnit

Navigation SubSystem

Operator

Monitor

Flight ManagementSystem

Rack

22Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Opto/Mechanical UnitOpto/Mechanical Unit(spectrometer hermetic sealed) with IFC*(spectrometer hermetic sealed) with IFC*

Optical Baseplate

(actively cooled)

* In-Flight/on-board Characterisation facility

QTH-Lamp, stabilized

Connectors

Baffle

Page 12: Hyperspectral Imagers

23Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Spectrometer - Design ConceptSpectrometer - Design Concept

24Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Spectrometer - Optical Design ConceptSpectrometer - Optical Design Concept

Page 13: Hyperspectral Imagers

25Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

CCD 55-30 from E2V Technologies (GB)• Frame transfer mode,• 1252 x 1152 pixel (used 1000 x 393)• Pixel pitch 22.5 x 22.5 μm2,• fill factor 100%,• Back illuminated,• Read out frequency 7 Mpix/s.

VNIRVNIR and SWIR - Detector Technology and SWIR - Detector Technology

0

20

40

60

80

100

380 400 500 650 750 900 1000

Wavelength [nm]

Qu

an

tum

Eff

icie

nc

y

[%] Dewar

Cooler

Sapphire Window

Transfer Line

Detector with Cryostat/Dewar Assembly

HgCdTe CMOS from SOFRADIR (F)*• hybridized on multiplexer,

• 1000 x 256 square pixel, 30 micron,

• addressable readout, fast operation,

• Integrated in cryostat cooler assembly,

• wavelength range: 0.94 – 2.50 micron,

• QE: > 70 % average, Top.: 150 K.

*under ESA-EOP contract

26Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

APEX Electronic: Data Streams Overview

Page 14: Hyperspectral Imagers

27Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Calibration Home Base (CHB)APEX-instrument

Rotary stage with foldingmirror, mounted on linearstage

Mirror-Collimatorsfor spectral andspatial calibration

Optical bench (granite)

28Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Calibration Home Base (CHB)*

* Under ESA-EOP Contract* Under ESA-EOP ContractStatus: Acceptance review successfully in Jan 2007Status: Acceptance review successfully in Jan 2007

1.6 m Integrating Sphere

Optical bench (granite)

APEXCollimator

Monochromator

Page 15: Hyperspectral Imagers

29Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

APEX PAF: The Processor Foundation

PAF Hardware: Linux,PAF Hardware: Linux,Archiving SystemArchiving System

PAF: PAF: IDL-emacsIDL-emacs, XML-tools,, XML-tools,CVS, CVS, TCL/webshTCL/websh

PAF Processor: PAF Processor: IDL, XML, CIDL, XML, C

APEX PAF

SearchAPEX

Archive

Server

Core

Web

Processor

Input

ToolsProcessing

ToolsCollaboration

ToolsBrowsing

Docs

Co-Developers

Users

Operators

CHB Data

Schläpfer et al. SPIE 2003Kaiser et al. SPIE 2003

30Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

Conclusions

APEX Instrument is in the manufacturing phase, PAF version 0.6 will be released in Dec-2007, Calibration Home Base CHB:

• Acceptance review was in Jan 2007

current activities:

• Establishment of the APEX Science Center (2006-2011)

• Preparation of the HALO “Earth Observation” Demo-Mission

• EU-FP6 Project HYPER-I-NET

• EU-FP6 Project HYRESSA

• JP-CH Scientific Seminar on “Remote Sensing of the Cryosphere” in 2007

• Support activity for ENMAP, TRAQ and other EO missions.

First data for the scientific user community shall be available in 2009!

Page 16: Hyperspectral Imagers

31Advanced Imaging and Spectroscopy SSOM Engelberg Lectures 5.3.07

APEX Collaborations

HALO Earth Observation

Programme

DFGSCALAapplied

Special ApplicationsarmasuisseSpectralSignatures

ongoing

Science ApplicationsSNSFAlgorithmDevelopment

ongoing

Simulation and Calibration of GCOM-CJSPS/JAXAGCOM-C-simongoing

Infrastructure for hyperspectralresearch in Europe (10 partners)

EU FP-6HYRESSAongoing

Marie-Curie Hyperspectral NetworkingProgramme (15 partners)

EU FP-6HYPER-I-NETongoing

SubjectFounding SourceProject nameStatus