Hydroelectric Dam Environmental Impacts (detailed)

171
Hydroelectric Dam Environmental Impacts (detailed) Environmental Impacts of Hydroelectric Power http://www.ucsusa.org/clean_energy/ourenergychoices/renewableenergy/environmentalimpactshydroelectricpower.html December 07, 2014 Hydroelectric power includes both massive hydroelectric dams and small runoftheriver plants, both of which have associated environmental impacts. Hydroelectric power includes both massive hydroelectric dams and small runoftheriver plants. Largescale hydroelectric dams continue to be built in many parts of the world (including China and Brazil), but it is unlikely that new facilities will be added to the existing U.S. fleet in the future. Instead, the future of hydroelectric power in the United States will likely involve increased capacity at current dams and new runoftheriver projects. There are environmental impacts at both types of plants. The size of the reservoir created by a hydroelectric project can vary widely, depending largely on the size of the hydroelectric generators and the topography of the land. Hydroelectric plants in flat areas tend to require much more land than those in hilly areas or canyons where deeper reservoirs can hold more volume of water in a smaller space. At one extreme, the large Balbina hydroelectric plant, which was built in a flat area of Brazil, flooded 2,360 square kilometers—an area the size of Delaware—and it only provides 250 MW of power generating capacity (equal to more than 2,000 acres per MW) [1]. In contrast, a small 10 MW run oftherive plant in a hilly location can use as little 2.5 acres (equal to a quarter of an acre per MW) [2]. Flooding land for a hydroelectric reservoir has an extreme environmental impact: it destroys forest, wildlife habitat, agricultural land, and scenic lands. In many instances, such as the Three Gorges Dam in China, entire communities have also had to be relocated to make way for reservoirs [3]. Dammed reservoirs are used for multiple purposes, such as agricultural irrigation, flood control, and recreation, so not all wildlife impacts associated with dams can be directly attributed to hydroelectric power. However, hydroelectric facilities can still have a major impact on aquatic ecosystems. For example, though there are a variety of methods to minimize the impact (including fish ladders and intake screens), fish and other organisms can be injured and killed by turbine blades. Apart from direct contact, there can also be wildlife impacts both within the dammed reservoirs and downstream from the facility. Reservoir water is usually more stagnant than normal river water. As a result, the reservoir will have higher than normal amounts of sediments and nutrients, which can cultivate an excess of algae and other aquatic weeds. These weeds can crowd out other river animal and plantlife, and they must be controlled through manual harvesting or by introducing fish that eat these plants [4]. In addition, water is lost through evaporation in dammed reservoirs at a much higher rate than in flowing rivers. In addition, if too much water is stored behind the reservoir, segments of the river downstream from the reservoir can dry out. Thus, most hydroelectric operators are required to release a minimum amount of water at certain times of year. If not released appropriately, water levels downstream will drop and animal and plant life can be harmed. In addition, reservoir water is typically low in dissolved oxygen and colder than normal river water. When this water is released, it could have negative impacts on downstream plants and animals. To mitigate these impacts, aerating turbines can be installed to increase dissolved oxygen and multilevel water intakes can help ensure that water released from the reservoir comes from all levels of the reservoir, rather than just the bottom (which is the coldest and has the lowest dissolved oxygen). Global warming emissions are produced during the installation and dismantling of hydroelectric power plants, but recent research suggests that emissions during a facility’s operation can also be significant. Such emissions vary greatly depending on the size of the reservoir and the nature of the land that was flooded by the reservoir. Small runoftheriver plants emit between 0.01 and 0.03 pounds of carbon dioxide equivalent per kilowatthour. Lifecycle emissions from largescale hydroelectric plants built in semiarid regions are also modest: approximately 0.06 pounds of carbon dioxide equivalent per kilowatthour. However, estimates for lifecycle global warming emissions from hydroelectric plants built in tropical areas or temperate peatlands are much higher. After the area is flooded, the vegetation and soil in these areas decomposes and releases both carbon dioxide and methane. The exact amount of emissions depends greatly on sitespecific characteristics. However, current estimates suggest that lifecycle emissions can be over 0.5 pounds of carbon dioxide equivalent per kilowatthour [5,6]. To put this into context, estimates of lifecycle global warming emissions for natural gas generated electricity are between 0.6 and 2 pounds of carbon dioxide equivalent per kilowatthour and estimates for coalgenerated electricity are 1.4 and 3.6 pounds of carbon dioxide equivalent per kilowatthour [7]. [1] Fearnside, Phillip M. 1989. Brazil's Balbina Dam: Environment versus the legacy of the Pharaohs in Amazonia. Environmental Management, July/Aug 1989, Volume 13, Issue 4, pp 401423. [3] Yardley, Jim. November 19, 2007. Chinese Dam Projects Criticized for Their Human Costs. New York Times. [5] IPCC, 2011: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. PichsMadruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp. (Chapter 5 & 9). [6] National Academy of Sciences. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. Online at http://www.nap.edu/openbook.php?record_id=12619 Hydroelectricity http://www.epa.gov/cleanenergy/energyandyou/affect/hydro.html December 07, 2014 Environmental Impacts. Although hydropower has no air quality impacts, ... Hydroelectric dams can cause erosion along the riverbed upstream and downstream, ... Hydropower is considered a renewable energy resource because it uses the Earth's water cycle to generate electricity. Water evaporates from the Earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. The movement of water as it flows downstream creates kinetic energy that can be converted into electricity. A hydroelectric power plant converts this energy into electricity by forcing water, often held at a dam, through a hydraulic turbine that is connected to a generator. The water exits the turbine and is returned to a stream or riverbed below the dam. Hydropower is mostly dependent upon precipitation and elevation changes; high precipitation levels and large elevation changes are necessary to generate significant quantities of electricity. Therefore, an area such as the mountainous Pacific Northwest has more productive hydropower plants than an area such as the Gulf Coast, which might have large amounts of precipitation but is comparatively flat.

Transcript of Hydroelectric Dam Environmental Impacts (detailed)

  • HydroelectricDamEnvironmentalImpacts(detailed)EnvironmentalImpactsofHydroelectricPowerhttp://www.ucsusa.org/clean_energy/ourenergychoices/renewableenergy/environmentalimpactshydroelectricpower.htmlDecember07,2014

    Hydroelectricpowerincludesbothmassivehydroelectricdamsandsmallrunoftheriverplants,bothofwhichhaveassociatedenvironmentalimpacts.

    Hydroelectricpowerincludesbothmassivehydroelectricdamsandsmallrunoftheriverplants.Largescalehydroelectricdamscontinuetobebuiltinmanypartsoftheworld(includingChinaandBrazil),butitisunlikelythatnewfacilitieswillbeaddedtotheexistingU.S.fleetinthefuture.

    Instead,thefutureofhydroelectricpowerintheUnitedStateswilllikelyinvolveincreasedcapacityatcurrentdamsandnewrunoftheriverprojects.Thereareenvironmentalimpactsatbothtypesofplants.

    Thesizeofthereservoircreatedbyahydroelectricprojectcanvarywidely,dependinglargelyonthesizeofthehydroelectricgeneratorsandthetopographyoftheland.Hydroelectricplantsinflatareastendtorequiremuchmorelandthanthoseinhillyareasorcanyonswheredeeperreservoirscanholdmorevolumeofwaterinasmallerspace.

    Atoneextreme,thelargeBalbinahydroelectricplant,whichwasbuiltinaflatareaofBrazil,flooded2,360squarekilometersanareathesizeofDelawareanditonlyprovides250MWofpowergeneratingcapacity(equaltomorethan2,000acresperMW)[1].Incontrast,asmall10MWrunoftheriveplantinahillylocationcanuseaslittle2.5acres(equaltoaquarterofanacreperMW)[2].

    Floodinglandforahydroelectricreservoirhasanextremeenvironmentalimpact:itdestroysforest,wildlifehabitat,agriculturalland,andsceniclands.Inmanyinstances,suchastheThreeGorgesDaminChina,entirecommunitieshavealsohadtoberelocatedtomakewayforreservoirs[3].

    Dammedreservoirsareusedformultiplepurposes,suchasagriculturalirrigation,floodcontrol,andrecreation,sonotallwildlifeimpactsassociatedwithdamscanbedirectlyattributedtohydroelectricpower.However,hydroelectricfacilitiescanstillhaveamajorimpactonaquaticecosystems.Forexample,thoughthereareavarietyofmethodstominimizetheimpact(includingfishladdersandintakescreens),fishandotherorganismscanbeinjuredandkilledbyturbineblades.

    Apartfromdirectcontact,therecanalsobewildlifeimpactsbothwithinthedammedreservoirsanddownstreamfromthefacility.Reservoirwaterisusuallymorestagnantthannormalriverwater.Asaresult,thereservoirwillhavehigherthannormalamountsofsedimentsandnutrients,whichcancultivateanexcessofalgaeandotheraquaticweeds.Theseweedscancrowdoutotherriveranimalandplantlife,andtheymustbecontrolledthroughmanualharvestingorbyintroducingfishthateattheseplants[4].Inaddition,waterislostthroughevaporationindammedreservoirsatamuchhigherratethaninflowingrivers.

    Inaddition,iftoomuchwaterisstoredbehindthereservoir,segmentsoftheriverdownstreamfromthereservoircandryout.Thus,mosthydroelectricoperatorsarerequiredtoreleaseaminimumamountofwateratcertaintimesofyear.Ifnotreleasedappropriately,waterlevelsdownstreamwilldropandanimalandplantlifecanbeharmed.Inaddition,reservoirwateristypicallylowindissolvedoxygenandcolderthannormalriverwater.Whenthiswaterisreleased,itcouldhavenegativeimpactsondownstreamplantsandanimals.Tomitigatetheseimpacts,aeratingturbinescanbeinstalledtoincreasedissolvedoxygenandmultilevelwaterintakescanhelpensurethatwaterreleasedfromthereservoircomesfromalllevelsofthereservoir,ratherthanjustthebottom(whichisthecoldestandhasthelowestdissolvedoxygen).

    Globalwarmingemissionsareproducedduringtheinstallationanddismantlingofhydroelectricpowerplants,butrecentresearchsuggeststhatemissionsduringafacilitysoperationcanalsobesignificant.Suchemissionsvarygreatlydependingonthesizeofthereservoirandthenatureofthelandthatwasfloodedbythereservoir.

    Smallrunoftheriverplantsemitbetween0.01and0.03poundsofcarbondioxideequivalentperkilowatthour.Lifecycleemissionsfromlargescalehydroelectricplantsbuiltinsemiaridregionsarealsomodest:approximately0.06poundsofcarbondioxideequivalentperkilowatthour.However,estimatesforlifecycleglobalwarmingemissionsfromhydroelectricplantsbuiltintropicalareasortemperatepeatlandsaremuchhigher.Aftertheareaisflooded,thevegetationandsoilintheseareasdecomposesandreleasesbothcarbondioxideandmethane.Theexactamountofemissionsdependsgreatlyonsitespecificcharacteristics.However,currentestimatessuggestthatlifecycleemissionscanbeover0.5poundsofcarbondioxideequivalentperkilowatthour[5,6].

    Toputthisintocontext,estimatesoflifecycleglobalwarmingemissionsfornaturalgasgeneratedelectricityarebetween0.6and2poundsofcarbondioxideequivalentperkilowatthourandestimatesforcoalgeneratedelectricityare1.4and3.6poundsofcarbondioxideequivalentperkilowatthour[7].

    [1]Fearnside,PhillipM.1989.Brazil'sBalbinaDam:EnvironmentversusthelegacyofthePharaohsinAmazonia.EnvironmentalManagement,July/Aug1989,Volume13,Issue4,pp401423.

    [3]Yardley,Jim.November19,2007.ChineseDamProjectsCriticizedforTheirHumanCosts.NewYorkTimes.

    [5]IPCC,2011:IPCCSpecialReportonRenewableEnergySourcesandClimateChangeMitigation.PreparedbyWorkingGroupIIIoftheIntergovernmentalPanelonClimateChange[O.Edenhofer,R.PichsMadruga,Y.Sokona,K.Seyboth,P.Matschoss,S.Kadner,T.Zwickel,P.Eickemeier,G.Hansen,S.Schlmer,C.vonStechow(eds)].CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA,1075pp.(Chapter5&9).

    [6]NationalAcademyofSciences.2010.ElectricityfromRenewableResources:Status,Prospects,andImpediments.Washington,DC:TheNationalAcademiesPress.Onlineathttp://www.nap.edu/openbook.php?record_id=12619

    Hydroelectricityhttp://www.epa.gov/cleanenergy/energyandyou/affect/hydro.htmlDecember07,2014

    EnvironmentalImpacts.Althoughhydropowerhasnoairqualityimpacts,...Hydroelectricdamscancauseerosionalongtheriverbedupstreamanddownstream,...

    HydropowerisconsideredarenewableenergyresourcebecauseitusestheEarth'swatercycletogenerateelectricity.WaterevaporatesfromtheEarth'ssurface,formsclouds,precipitatesbacktoearth,andflowstowardtheocean.

    Themovementofwaterasitflowsdownstreamcreateskineticenergythatcanbeconvertedintoelectricity.Ahydroelectricpowerplantconvertsthisenergyintoelectricitybyforcingwater,oftenheldatadam,throughahydraulicturbinethatisconnectedtoagenerator.Thewaterexitstheturbineandisreturnedtoastreamorriverbedbelowthedam.

    Hydropowerismostlydependentuponprecipitationandelevationchangeshighprecipitationlevelsandlargeelevationchangesarenecessarytogeneratesignificantquantitiesofelectricity.Therefore,anareasuchasthemountainousPacificNorthwesthasmoreproductivehydropowerplantsthananareasuchastheGulfCoast,whichmighthavelargeamountsofprecipitationbutiscomparativelyflat.

    http://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environmental-impacts-hydroelectric-power.htmlhttp://www.epa.gov/cleanenergy/energy-and-you/affect/hydro.html

  • Althoughhydropowerhasnoairqualityimpacts,constructionandoperationofhydropowerdamscansignificantlyaffectnaturalriversystemsaswellasfishandwildlifepopulations.Assessmentoftheenvironmentalimpactsofaspecifichydropowerfacilityrequirescasebycasereview.

    Althoughpowerplantsareregulatedbyfederalandstatelawstoprotecthumanhealthandtheenvironment,thereisawidevariationofenvironmentalimpactsassociatedwithpowergenerationtechnologies.

    Thepurposeofthefollowingsectionistogiveconsumersabetterideaofthespecificecologicalimpactsassociatedwithhydropower.

    Hydropower'sairemissionsarenegligiblebecausenofuelsareburned.However,ifalargeamountofvegetationisgrowingalongtheriverbedwhenadamisbuilt,itcandecayinthelakethatiscreated,causingthebuildupandreleaseof>methane,apotentgreenhousegas.

    Hydropoweroftenrequirestheuseofdams,whichcangreatlyaffecttheflowofrivers,alteringecosystemsandaffectingthewildlifeandpeoplewhodependonthosewaters.

    Often,wateratthebottomofthelakecreatedbyadamisinhospitabletofishbecauseitismuchcolderandoxygenpoorcomparedwithwateratthetop.Whenthiscolder,oxygenpoorwaterisreleasedintotheriver,itcankillfishlivingdownstreamthatareaccustomedtowarmer,oxygenrichwater.

    Inaddition,somedamswithholdwaterandthenreleaseitallatonce,causingtheriverdownstreamtosuddenlyflood.Thisactioncandisruptplantandwildlifehabitatsandaffectdrinkingwatersupplies.

    Hydroelectricpowerplantsreleasewaterbackintoriversafteritpassesthroughturbines.Thiswaterisnotpollutedbytheprocessofcreatingelectricity.

    Theuseofwatertocreateelectricitydoesnotproduceasubstantialamountofsolidwaste.

    Theconstructionofhydropowerplantscanaltersizableportionsoflandwhendamsareconstructedandlakesarecreated,floodinglandthatmayhaveonceservedaswildlifehabitat,farmland,andscenicretreats.Hydroelectricdamscancauseerosionalongtheriverbedupstreamanddownstream,whichcanfurtherdisturbwildlifeecosystemsandfishpopulations.

    Hydroelectricpowerplantsaffectvariousfishpopulationsindifferentways.Mostnotably,certainsalmonpopulationsintheNorthwestdependonriversfortheirlifecycles.ThesepopulationshavebeendramaticallyreducedbythenetworkoflargedamsintheColumbiaRiverBasin.1Whenyoungsalmontraveldownstreamtowardtheocean,theymaybekilledbyturbinebladesathydropowerplants.Whenadultsalmonattempttoswimupstreamtoreproduce,theymaynotbeabletogetpastthedams.Forthisreason,somehydroelectricdamsnowhavespecialsidechannelsorstructurestohelpthefishcontinueupstream.

    IntheUnitedStates,hydropowergeneratesnearlyninepercentofthetotalelectricitysupply.InthePacificNorthwestalone,hydropowerprovidesabouttwothirdsoftheregion'selectricitysupply.2Currently,facilitiesintheU.S.cangenerateenoughhydropowertosupplyelectricityto28millionhouseholds,whichisequivalenttoabout500millionbarrelsofoil.In2003,totalhydropowercapacityintheUnitedStateswas96,000MW.3TheundevelopedcapacityfortheUnitedStatesisapproximately30,000MW.4

    Environmentalimpactofreservoirshttp://en.wikipedia.org/wiki/Environmental_impacts_of_damsDecember07,2014

    Theenvironmentalimpactofreservoirscomesundereverincreasingscrutinyastheglobaldemandforwaterandenergyincreasesandthenumberandsizeofreservoirs...

    Theenvironmentalimpactofreservoirscomesundereverincreasingscrutinyastheglobaldemandforwaterandenergyincreasesandthenumberandsizeofreservoirsincreases.

    Damsandreservoirscanbeusedtosupplydrinkingwater,generatehydroelectricpower,increasethewatersupplyforirrigation,providerecreationalopportunities,andimprovecertainaspectsoftheenvironment.[citationneeded]However,adverseenvironmentalandsociologicalimpactshavebeenidentifiedduringandaftermanyreservoirconstructions.[citationneeded]Whetherreservoirprojectsareultimatelybeneficialordetrimentaltoeithertheenvironmentorsurroundinghumanpopulationshasbeendebatedsincethe1960sandlikelybeforethen,aswell.[citationneeded]In1960theconstructionofLlynCelynandthefloodingofCapelCelynprovokedpoliticaluproarwhichcontinuestothisday.Morerecently,theconstructionofThreeGorgesDamandothersimilarprojectsthroughoutAsia,AfricaandLatinAmericahavegeneratedconsiderableenvironmentalandpoliticaldebate.

    Adamalsoactsasabarrierbetweentheupstreamanddownstreammovementofmigratoryriveranimals,suchassalmonandtrout.[2]

    Somecommunitieshavealsobegunthepracticeoftransportingmigratoryfishupstreamtospawnviaabarge.[2]

    Riverscarrysedimentdowntheirriverbeds,allowingfortheformationofdepositionalfeaturessuchasriverdeltas,alluvialfans,braidedrivers,oxbowlakes,leveesandcoastalshores.Theconstructionofadamblockstheflowofsedimentdownstream,leadingtodownstreamerosionoftheseSedimentarydepositionalenvironments,andincreasedsedimentbuildupinthereservoir.Whiletherateofsedimentationvariesforeachdamandeachriver,eventuallyallreservoirsdevelopareducedwaterstoragecapacityduetotheexchangeofstoragespaceforsediment.[3]Diminishedstoragecapacityresultsindecreasedabilitytoproducehydroelectricpower,reducedavailabilityofwaterforirrigation,andifleftunaddressed,mayultimatelyresultintheexpirationofthedamandriver.[4]

    Asalldamsresultinreducedsedimentloaddownstream,adammedriverissaidtobe"hungry"forsediment.Becausetherateofdepositionofsedimentisgreatlyreducedsincethereislesstodepositbuttherateoferosionremainsnearlyconstant,thewaterflowerodestherivershoresandriverbed,threateningshorelineecosystems,deepeningtheriverbed,andnarrowingtheriverovertime.Thisleadstoacompromisedwatertable,reducedwaterlevels,homogenizationoftheriverflowandthusreducedecosystemvariability,reducedsupportforwildlife,andreducedamountofsedimentreachingcoastalplainsanddeltas.[4]Thispromptscoastalerosion,asbeachesareunabletoreplenishwhatwaveserodewithoutthesedimentdepositionofsupportingriversystems.Channelerosionofrivershasitsownsetofconsequences.Theerodedchannelcouldcreatealowerwatertablelevelintheaffectedarea,impactingbottomlandcropssuchasalfalfaorcorn,andresultinginasmallersupply.[5]

    Thewaterofadeepreservoirintemperateclimatestypicallystratifieswithalargevolumeofcold,oxygenpoorwaterinthehypolimnion.Ifthiswaterisreleasedtomaintainriverflow,itcancauseadverseimpactsonthedownstreamecosystemincludingfishpopulations.[6]

    Diseases

    Whilstreservoirsarehelpfultohumans,theycanalsobeharmfulaswell.Onenegativeeffectisthatthereservoirscanbecomebreedinggroundsfordiseasevectors.Thisholdstrueespeciallyintropicalareaswheremosquitoes(whicharevectorsformalaria)andsnails(whicharevectorsforSchistosomiasis)cantakeadvantageofthisslowflowingwater.[7]

    Resettlement

    Damsandthecreationofreservoirsalsorequirerelocationofpotentiallylargehumanpopulationsiftheyareconstructedclosetoresidentialareas.

    http://en.wikipedia.org/wiki/Environmental_impacts_of_dams

  • TherecordforthelargestpopulationrelocatedbelongstotheThreeGorgesdambuiltinChina.Itsreservoirsubmergedalargeareaofland,forcingoveramillionpeopletorelocate."Damrelatedrelocationaffectssocietyinthreeways:aneconomicdisaster,humantrauma,andsocialcatastrophe",statesDr.MichaelCerneaoftheWorldBankandDr.ThayerScudder,aprofessorattheCaliforniaInstituteofTechnology.[1]Aswell,asresettlementofcommunities,caremustalsobetakennottodamageirreparablesitesofhistoricalorculturalvalue.TheAswanDamforcedthemovementoftheTempleatAswantopreventitsdestructionbythefloodingofthereservoir.

    Damsoccasionallybreakcausingcatastrophicdamagetocommunitiesdownstream.Damsbreakduetoengineeringerrors,attackornaturaldisaster.ThegreatestdambreakdisasterhappenedinChinakilling200,000Chinesecitizens.However,theyhavehappenedinCaliforniakilling600people,GermanyduringWorldWarIIandothercountries.

    Inmanydevelopingcountriesthesavannaandforestecologyofthefloodplainsdependonseasonalfloodingfromrivers.Also,floodrecessioncroppingispracticedextensivelywherebythelandiscultivatedtakingadvantageoftheresidualsoilmoistureafterfloodsrecede.Damsattenuatefloodswhichmayaffecttheecologyandagricultureseriously.[citationneeded]

    ReservoirsmaycontributetochangesintheEarth'sclimate.Warmclimatereservoirsgeneratemethane,agreenhousegaswhenthereservoirsarestratified,inwhichthebottomlayersareanoxic(i.e.theylackoxygen),leadingtodegradationofbiomassthroughanaerobicprocesses.[11][pageneeded]Insomecases,wherefloodedbasinsarewideandbiomassvolumesarehightheamountofbiomassconvertedtomethaneresultsinpollutionpotential3.5timesmorethananoilfiredpowerplantwouldforthesamegenerationcapacity.[12]Hydroelectricdamsarethenumberonesourceofmethanegasemissionscausedbyhumans.[13]Methanegascontributesmuchmoretoclimatechangethencarbondioxide.

    TheEnvironmentalLiteracyCouncilhttp://enviroliteracy.org/article.php/59.htmlDecember07,2014

    HydroelectricPower....Hydroelectricplantscanalsohaveanimpact...ThisNationalGeographicactivityexaminestheeffectsexistingdamshaveontheenvironment...

    Waterhaslongbeenusedasasourceofenergy,beginningwiththeGreeksuseofwaterwheelsover2,000yearsago.Foroveracentury,hydropowerhasbeenusedtogenerateelectricityfromfallingwater.Hydroelectricpowerstemsfromtheprocessofusingwater'senergyasitflowsfromhighertolowerelevation,rotatinghydraulicturbinestocreateelectricity.Tidalpower,althoughnotwidelyused,canalsogeneratehydroelectricitybyutilizingthesameprinciple.

    Hydropowerisconsideredtobeaclean,renewablesourceofenergy,emittingaverylowlevelofgreenhousegaseswhencomparedtofossilfuels.Ithasalowoperatingcostonceinstalledandcanbehighlyautomated.Anadditionalbenefitisthatthepowerisgenerallyavailableondemandsincetheflowofwatercanbecontrolled.Usinghydroelectricpoweralsohasdisadvantages.Damscanblockfishpassagetospawninggroundsortotheocean,althoughmanyplantsnowhavemeasuresinplacetohelpreducethisimpact.Thediversionofwatercanimpactstreamflow,orevencauseariverchanneltodryout,degradingbothaquaticandstreamsidehabitats.Hydroelectricplantscanalsohaveanimpactonwaterqualitybyloweringtheamountofdissolvedoxygeninthewater.Inthereservoir,sedimentsandnutrientscanbetrappedandthelackofwaterflowcancreateasituationforundesirablegrowthandthespreadofalgaeandaquaticweeds.

    Oneincentiveforhydroelectricfacilitiestohelpmitigatetheiroverallimpactontheenvironmentisthroughgreenpowercertification.TheLowImpactHydropowerInstitute(LIHI)createdavoluntarycertificationprogramwherebyfacilitiesareclassifiedaslowimpactafterpassingaseriesofteststhatdemonstrateminimalimpact.In2007,lessthan30facilitiesintheU.S.hadthatdistinction.Certificationprograms,suchastheonesetbytheLIHI,canbenefithydropowereffortsbyattractingconsumersconcernedaboutenergysourceimpacts.

    Whiletheuseofwatertoproduceelectricityisanattractivealternativetofossilfuels,thetechnologymuststillovercomeobstaclesrelatedtospacerequirements,buildingcosts,environmentalimpacts,andthedisplacementofpeople.However,withintheU.S.,possiblelocationsfornewhydropowerprojectsarebeginningtodiminish.

    HowHydropowerPlantsWork

    HowStuffWorks.comdetailsthebasiccomponentsofahydropowerplantandhowitoperates.

    Wind&HydropowerTechnologiesProgram:HydropowerTechnologies

    TheU.S.DepartmentofEnergy's(DOE)OfficeofEnergyEfficiencyandRenewableEnergy'swebsitefortheirhydropowertechnologiesprogramgivesanoverviewofhowhydropowerworks,advantagesanddisadvantagesofusinghydropower,thehistoryofthetechnology,andthelatestinresearchdevelopments.

    IdahoNationalLaboratory(INL):StateResourceAssessmentReports

    INL'swebsiteincludesindividualreportsonthehydropowerpotentialandcurrentcapacityofeachstate(exceptDelaware).

    WaterPower

    TheU.S.FederalEnergyRegulatoryCommission(FERC)providesinformationonthelicensing,compliance,andsafetyandinspectionofhydroelectricpowerintheU.S.

    NewScientist:HydroelectricPower'sDirtySecretRevealed

    InthisFebruary2005articlefromNewScientist.com,DuncanGrahamRowearguesthathydroelectricpowercandamagetheclimateviagreenhousegasemissions,sometimesemittingmoregreenhousegasesthanfossilfuels.

    PBS:GreatWallAcrosstheYangtze

    PBSdetailstheThreeGorgesDamprojectandpresentsbothsidesofthecontroversysurroundingitsconstruction,includinganinternationalperspectiveontheissue.

    EnergyStory:HydroPower

    TheCaliforniaEnergyCommission'sEnergyQuestwebsitepresentsasimplechapterabouthydroelectricpowerthatdescribesthetechnology'shistory,itsuseintheU.S.,andhowdamsoperate.

    FoundationforWaterandEnergyEducation(FWEE):HydroTours

    TheFWEEwebsiteoffersavarietyofvisualtours,includinga'walk'throughahydroelectricproject.Theyalsoprovidealistofeducationalactivitiesandresources,includingahandsonsciencecurriculumformiddleschoolcalled?TheNatureofWaterPower?.

    BigDams,BigDilemmas

    http://enviroliteracy.org/article.php/59.html

  • ThisNationalGeographicactivityexaminestheeffectsexistingdamshaveontheenvironmentandpredictspossibleeffectsofproposeddams.[Grades912]

    ThreeGorgesDam:TheBiggestDamintheWorld

    DiscoveryEducationcreatedthisactivityforstudentstolearnaboutthebackgroundandcontroversysurroundingtheThreeGorgesDam.Studentswillalsobuildtheirowndamsinordertolearnabouttheengineeringprinciplesusedintheirconstruction.[Grades68]

    GreatWallAcrosstheYangtzefromPBS.

    Griffiths,Dan.ThreeGorgesDamReachesfortheSky,BBCNews,May19,2006.

    Wind&HydropowerTechnologiesProgram:HydropowerTechnologiesfromtheU.S.DepartmentofEnergy'sOfficeofEnergyEfficiencyandRenewableEnergy,August2005.

    HowaHydroelectricProjectCanAffectaRiverhttp://fwee.org/environment/howahydroelectricprojectcanaffectariver/December07,2014

    Reviewingpossiblechangestoariversecosystemisagoodplacetobeginconsideringtheenvironmentalimpactsthatahydroelectric...HydroelectricDams...

    Hydropowerhastraditionallybeenconsideredenvironmentallyfriendlybecauseitrepresentsacleanandrenewableenergysource.Thetermrenewablereferstothehydrologiccyclethatcirculateswaterbacktoourrivers,streams,andlakeseachyear.Athydroelectricprojects,thiswaterisusedasfueltogenerateelectricity.Incontrast,fossilfuelslikecoal,naturalgas,oroilmustbeextractedfromtheearthandburnedtoproduceelectricity.Thetermcleanisalsousedbecauseproductionofelectricitywithhydropowerdoesnotpollutetheair,contributetoacidrainorozonedepletionbecauseofcarbondioxideemissions,or(likenuclearpower)leavehighlytoxicwastethatisdifficulttodisposeof.

    AsthesectionHydropowerFactsgraphicallyillustrates,hydropoweraccountsfor98%ofrenewableenergyintheUnitedStates.Wind,solarandothersourcesaccountfortheother2%.Andwhiletherearemanybenefitstousinghydropowerasarenewablesourceofelectricity,therearealsoenvironmentalimpacts.Theseimpactsgenerallyrelatetohowahydroelectricprojectaffectsariversecosystemandhabitats.

    Becausethereareover250hydroelectricprojectsintheNorthwest,understandingsuchecosystemandhabitatissuesisvitallyimportant.Examiningtheseissues,however,needstobedoneinabroadcontextforthreereasons.First,notwohydroelectricprojectsareexactlyalike,andmanyareverydifferent.Thus,whileissuescanbeexaminedingeneralterms,oneshouldnotdrawconclusionsthatallorevenmostprojectshavesimilarenvironmentalimpacts.

    Second,whilethisdiscussionfocusesonhydroelectricprojects,oneshouldnotconcludethatalldamsareusedtoproduceelectricity.Nationally,forinstance,onlythreepercentofthenations80,000damsareusedtoproduceelectricity.Mostdamsareusedforpurposessuchasirrigation,floodcontrol,andwatertreatment.Further,manydamssupportacombinationofactivities.Forexample,damsonthemainstemoftheColumbiaRiverareusedforirrigation,floodcontrol,transportation,recreation,andtheproductionofelectricity.

    Third,thissectiondoesnotprovidedetailedinformationaboutahostofotheractivitiesthatcansignificantlyimpactariversecosystemandthespeciesthatrelyonitforsurvival.Examplesofothernonhydropowerrelatedimpactsincludegrazing,logging,agriculturalactivities,mining,landdevelopment,andtheharvestingoffish.Determiningtherelativeimpactoftheseactivitiesversushydroelectricprojectsisverycomplexandthesubjectofongoingdebate.

    Forinformationaboutthemanystepsthatarebeingtakentoreduceoreliminateongoingimpacts,refertotheProtection,Mitigation,andEnhancementStrategiesAtHydroelectricProjects.Reviewingpossiblechangestoariversecosystemisagoodplacetobeginconsideringtheenvironmentalimpactsthatahydroelectricprojectmaycause.Fromthisunderstanding,possiblechangestofishandwildlifehabitatcanbeexplored.

    Wikipedia,thefreeencyclopediahttp://en.wikipedia.org/wiki/HydroelectricityDecember07,2014

    Thisdecreasedenvironmentalimpactdependsstronglyonthebalancebetweenstreamflowandpowerproduction....Sincehydroelectricdamsdonotburnfossilfuels,...

    Hydroelectricityisthetermreferringtoelectricitygeneratedbyhydropowertheproductionofelectricalpowerthroughtheuseofthegravitationalforceoffallingorflowingwater.Itisthemostwidelyusedformofrenewableenergy,accountingfor16percentofglobalelectricitygeneration3,427terawatthoursofelectricityproductionin2010,[1]andisexpectedtoincreaseabout3.1%eachyearforthenext25years.

    Hydropowerisproducedin150countries,withtheAsiaPacificregiongenerating32percentofglobalhydropowerin2010.Chinaisthelargesthydroelectricityproducer,with721terawatthoursofproductionin2010,representingaround17percentofdomesticelectricityuse.Therearenowfourhydroelectricitystationslargerthan10GW:theThreeGorgesDamandXiluoduDaminChina,ItaipuDamacrosstheBrazil/Paraguayborder,andGuriDaminVenezuela.[1]

    Thecostofhydroelectricityisrelativelylow,makingitacompetitivesourceofrenewableelectricity.Theaveragecostofelectricityfromahydrostationlargerthan10megawattsis3to5U.S.centsperkilowatthour.[1]Itisalsoaflexiblesourceofelectricitysincetheamountproducedbythestationcanbechangedupordownveryquicklytoadapttochangingenergydemands.However,damminginterruptstheflowofriversandcanharmlocalecosystems,andbuildinglargedamsandreservoirsofteninvolvesdisplacingpeopleandwildlife.[1]Onceahydroelectriccomplexisconstructed,theprojectproducesnodirectwaste,andhasaconsiderablyloweroutputlevelofthegreenhousegascarbondioxide(CO

    2)thanfossilfuelpoweredenergyplants.[2]

    Hydropowerhasbeenusedsinceancienttimestogrindflourandperformothertasks.Inthemid1770s,FrenchengineerBernardForestdeBlidorpublishedArchitectureHydrauliquewhichdescribedverticalandhorizontalaxishydraulicmachines.Bythelate19thcentury,theelectricalgeneratorwasdevelopedandcouldnowbecoupledwithhydraulics.[5]ThegrowingdemandfortheIndustrialRevolutionwoulddrivedevelopmentaswell.[6]In1878theworld'sfirsthydroelectricpowerschemewasdevelopedatCragsideinNorthumberland,EnglandbyWilliamGeorgeArmstrong.Itwasusedtopowerasinglearclampinhisartgallery.[7]TheoldSchoelkopfPowerStationNo.1nearNiagaraFallsintheU.S.sidebegantoproduceelectricityin1881.ThefirstEdisonhydroelectricpowerstation,theVulcanStreetPlant,beganoperatingSeptember30,1882,inAppleton,Wisconsin,withanoutputofabout12.5kilowatts.[8]By1886therewere45hydroelectricpowerstationsintheU.S.andCanada.By1889therewere200intheU.S.alone.[5]

    Atthebeginningofthe20thcentury,manysmallhydroelectricpowerstationswerebeingconstructedbycommercialcompaniesinmountainsnearmetropolitanareas.Grenoble,FranceheldtheInternationalExhibitionofHydropowerandTourismwithoveronemillionvisitors.By1920as40%ofthepowerproducedintheUnitedStateswashydroelectric,theFederalPowerActwasenactedintolaw.TheActcreatedtheFederalPowerCommissiontoregulatehydroelectricpowerstationsonfederallandandwater.Asthepowerstationsbecamelarger,theirassociateddamsdevelopedadditionalpurposestoincludefloodcontrol,irrigationandnavigation.Federalfundingbecamenecessaryforlargescaledevelopmentandfederallyownedcorporations,suchastheTennesseeValleyAuthority(1933)andtheBonnevillePowerAdministration(1937)werecreated.[6]

    http://en.wikipedia.org/wiki/Hydroelectricityhttp://fwee.org/environment/how-a-hydroelectric-project-can-affect-a-river/

  • Additionally,theBureauofReclamationwhichhadbegunaseriesofwesternU.S.irrigationprojectsintheearly20thcenturywasnowconstructinglargehydroelectricprojectssuchasthe1928HooverDam.[9]TheU.S.ArmyCorpsofEngineerswasalsoinvolvedinhydroelectricdevelopment,completingtheBonnevilleDamin1937andbeingrecognizedbytheFloodControlActof1936asthepremierfederalfloodcontrolagency.[10]

    Hydroelectricpowerstationscontinuedtobecomelargerthroughoutthe20thcentury.Hydropowerwasreferredtoaswhitecoalforitspowerandplenty.[11]HooverDam'sinitial1,345MWpowerstationwastheworld'slargesthydroelectricpowerstationin1936itwaseclipsedbythe6809MWGrandCouleeDamin1942.[12]TheItaipuDamopenedin1984inSouthAmericaasthelargest,producing14,000MWbutwassurpassedin2008bytheThreeGorgesDaminChinaat22,500MW.Hydroelectricitywouldeventuallysupplysomecountries,includingNorway,DemocraticRepublicoftheCongo,ParaguayandBrazil,withover85%oftheirelectricity.TheUnitedStatescurrentlyhasover2,000hydroelectricpowerstationsthatsupply6.4%ofitstotalelectricalproductionoutput,whichis49%ofitsrenewableelectricity.[6]

    Mosthydroelectricpowercomesfromthepotentialenergyofdammedwaterdrivingawaterturbineandgenerator.Thepowerextractedfromthewaterdependsonthevolumeandonthedifferenceinheightbetweenthesourceandthewater'soutflow.Thisheightdifferenceiscalledthehead.Theamountofpotentialenergyinwaterisproportionaltothehead.Alargepipe(the"penstock")deliverswatertotheturbine.[13]

    Thismethodproduceselectricitytosupplyhighpeakdemandsbymovingwaterbetweenreservoirsatdifferentelevations.Attimesoflowelectricaldemand,excessgenerationcapacityisusedtopumpwaterintothehigherreservoir.Whenthereishigherdemand,waterisreleasedbackintothelowerreservoirthroughaturbine.Pumpedstorageschemescurrentlyprovidethemostcommerciallyimportantmeansoflargescalegridenergystorageandimprovethedailycapacityfactorofthegenerationsystem.Pumpedstorageisnotanenergysource,andappearsasanegativenumberinlistings.[14]

    Runoftheriverhydroelectricstationsarethosewithsmallornoreservoircapacity,sothatthewatercomingfromupstreammustbeusedforgenerationatthatmoment,ormustbeallowedtobypassthedam.IntheUnitedStates,runoftheriverhydropowercouldpotentiallyprovide60,000MW(about13.7%oftotalusein2011ifcontinuouslyavailable).[15]

    Atidalpowerstationmakesuseofthedailyriseandfallofoceanwaterduetotidessuchsourcesarehighlypredictable,andifconditionspermitconstructionofreservoirs,canalsobedispatchabletogeneratepowerduringhighdemandperiods.Lesscommontypesofhydroschemesusewater'skineticenergyorundammedsourcessuchasundershotwaterwheels.Tidalpowerisviableinarelativelysmallnumberoflocationsaroundtheworld.InGreatBritain,thereareeightsitesthatcouldbedeveloped,whichhavethepotentialtogenerate20%oftheelectricityusedin2012.[16]

    Althoughnoofficialdefinitionexistsforthecapacityrangeoflargehydroelectricpowerstations,facilitiesfromoverafewhundredmegawattstomorethan10GWaregenerallyconsideredlargehydroelectricfacilities.Currently,onlythreefacilitiesover10GW(10,000MW)areinoperationworldwideThreeGorgesDamat22.5GW,ItaipuDamat14GW,andGuriDamat10.2GW.Largescalehydroelectricpowerstationsaremorecommonlyseenasthelargestpowerproducingfacilitiesintheworld,withsomehydroelectricfacilitiescapableofgeneratingmorethandoubletheinstalledcapacitiesofthecurrentlargestnuclearpowerstations.

    Smallhydroisthedevelopmentofhydroelectricpoweronascaleservingasmallcommunityorindustrialplant.Thedefinitionofasmallhydroprojectvariesbutageneratingcapacityofupto10megawatts(MW)isgenerallyacceptedastheupperlimitofwhatcanbetermedsmallhydro.Thismaybestretchedto25MWand30MWinCanadaandtheUnitedStates.Smallscalehydroelectricityproductiongrewby28%during2008from2005,raisingthetotalworldsmallhydrocapacityto85GW.Over70%ofthiswasinChina(65GW),followedbyJapan(3.5GW),theUnitedStates(3GW),andIndia(2GW).[19]

    Smallhydrostationsmaybeconnectedtoconventionalelectricaldistributionnetworksasasourceoflowcostrenewableenergy.Alternatively,smallhydroprojectsmaybebuiltinisolatedareasthatwouldbeuneconomictoservefromanetwork,orinareaswherethereisnonationalelectricaldistributionnetwork.Sincesmallhydroprojectsusuallyhaveminimalreservoirsandcivilconstructionwork,theyareseenashavingarelativelylowenvironmentalimpactcomparedtolargehydro.Thisdecreasedenvironmentalimpactdependsstronglyonthebalancebetweenstreamflowandpowerproduction.

    Microhydroisatermusedforhydroelectricpowerinstallationsthattypicallyproduceupto100kWofpower.Theseinstallationscanprovidepowertoanisolatedhomeorsmallcommunity,oraresometimesconnectedtoelectricpowernetworks.Therearemanyoftheseinstallationsaroundtheworld,particularlyindevelopingnationsastheycanprovideaneconomicalsourceofenergywithoutpurchaseoffuel.[20]Microhydrosystemscomplementphotovoltaicsolarenergysystemsbecauseinmanyareas,waterflow,andthusavailablehydropower,ishighestinthewinterwhensolarenergyisataminimum.

    Picohydroisatermusedforhydroelectricpowergenerationofunder5kW.Itisusefulinsmall,remotecommunitiesthatrequireonlyasmallamountofelectricity.Forexample,topoweroneortwofluorescentlightbulbsandaTVorradioforafewhomes.[21]Evensmallerturbinesof200300Wmaypowerasinglehomeinadevelopingcountrywithadropofonly1m(3ft).APicohydrosetupistypicallyrunoftheriver,meaningthatdamsarenotused,butratherpipesdivertsomeoftheflow,dropthisdownagradient,andthroughtheturbinebeforereturningittothestream.

    Anundergroundpowerstationisgenerallyusedatlargefacilitiesandmakesuseofalargenaturalheightdifferencebetweentwowaterways,suchasawaterfallormountainlake.Anundergroundtunnelisconstructedtotakewaterfromthehighreservoirtothegeneratinghallbuiltinanundergroundcavernnearthelowestpointofthewatertunnelandahorizontaltailracetakingwaterawaytotheloweroutletwaterway.

    Asimpleformulaforapproximatingelectricpowerproductionatahydroelectricstationis:,where

    Annualelectricenergyproductiondependsontheavailablewatersupply.Insomeinstallations,thewaterflowratecanvarybyafactorof10:1overthecourseofayear.

    Hydroisaflexiblesourceofelectricitysincestationscanberampedupanddownveryquicklytoadapttochangingenergydemands.[1]Hydroturbineshaveastartuptimeoftheorderofafewminutes.[22]Ittakesaround60to90secondstobringaunitfromcoldstartuptofullloadthisismuchshorterthanforgasturbinesorsteamplants.[23]Powergenerationcanalsobedecreasedquicklywhenthereisasurpluspowergeneration.[24]Hencethelimitedcapacityofhydropowerunitsisnotgenerallyusedtoproducebasepowerexceptforvacatingthefloodpoolormeetingdownstreamneeds.[25]Instead,itservesasbackupfornonhydrogenerators.[24]

    Themajoradvantageofhydroelectricityiseliminationofthecostoffuel.Thecostofoperatingahydroelectricstationisnearlyimmunetoincreasesinthecostoffossilfuelssuchasoil,naturalgasorcoal,andnoimportsareneeded.Theaveragecostofelectricityfromahydrostationlargerthan10megawattsis3to5U.S.centsperkilowatthour.[1]

    Hydroelectricstationshavelongeconomiclives,withsomeplantsstillinserviceafter50100years.[26]Operatinglaborcostisalsousuallylow,asplantsareautomatedandhavefewpersonnelonsiteduringnormaloperation.

    Whereadamservesmultiplepurposes,ahydroelectricstationmaybeaddedwithrelativelylowconstructioncost,providingausefulrevenuestreamtooffsetthecostsofdamoperation.IthasbeencalculatedthatthesaleofelectricityfromtheThreeGorgesDamwillcovertheconstructioncostsafter5to8yearsoffullgeneration.[27]Additionally,somedatashowsthatinmostcountrieslargehydropowerdamswillbetoocostlyandtaketoolongtobuildtodeliverapositiveriskadjustedreturn,unlessappropriateriskmanagementmeasuresareputinplace.[28]

    Whilemanyhydroelectricprojectssupplypublicelectricitynetworks,somearecreatedtoservespecificindustrialenterprises.Dedicatedhydroelectricprojectsareoftenbuilttoprovidethesubstantialamountsofelectricityneededforaluminiumelectrolyticplants,forexample.TheGrandCouleeDamswitchedtosupportAlcoaaluminiuminBellingham,Washington,UnitedStatesforAmericanWorldWarIIairplanesbeforeitwasallowedtoprovide

  • irrigationandpowertocitizens(inadditiontoaluminiumpower)afterthewar.InSuriname,theBrokopondoReservoirwasconstructedtoprovideelectricityfortheAlcoaaluminiumindustry.NewZealand'sManapouriPowerStationwasconstructedtosupplyelectricitytothealuminiumsmelteratTiwaiPoint.

    Sincehydroelectricdamsdonotburnfossilfuels,theydonotdirectlyproducecarbondioxide.Whilesomecarbondioxideisproducedduringmanufactureandconstructionoftheproject,thisisatinyfractionoftheoperatingemissionsofequivalentfossilfuelelectricitygeneration.OnemeasurementofgreenhousegasrelatedandotherexternalitycomparisonbetweenenergysourcescanbefoundintheExternEprojectbythePaulScherrerInstitutandtheUniversityofStuttgartwhichwasfundedbytheEuropeanCommission.[29]Accordingtothatstudy,hydroelectricityproducestheleastamountofgreenhousegasesandexternalityofanyenergysource.[30]Cominginsecondplacewaswind,thirdwasnuclearenergy,andfourthwassolarphotovoltaic.[30]Thelowgreenhousegasimpactofhydroelectricityisfoundespeciallyintemperateclimates.TheabovestudywasforlocalenergyinEuropepresumablysimilarconditionsprevailinNorthAmericaandNorthernAsia,whichallseearegular,naturalfreeze/thawcycle(withassociatedseasonalplantdecayandregrowth).Greatergreenhousegasemissionimpactsarefoundinthetropicalregionsbecausethereservoirsofpowerstationsintropicalregionsproducealargeramountofmethanethanthoseintemperateareas.[31]

    Reservoirscreatedbyhydroelectricschemesoftenprovidefacilitiesforwatersports,andbecometouristattractionsthemselves.Insomecountries,aquacultureinreservoirsiscommon.Multiusedamsinstalledforirrigationsupportagriculturewitharelativelyconstantwatersupply.Largehydrodamscancontrolfloods,whichwouldotherwiseaffectpeoplelivingdownstreamoftheproject.[32]

    Largereservoirsrequiredfortheoperationofhydroelectricpowerstationsresultinsubmersionofextensiveareasupstreamofthedams,destroyingbiologicallyrichandproductivelowlandandriverinevalleyforests,marshlandandgrasslands.Thelossoflandisoftenexacerbatedbyhabitatfragmentationofsurroundingareascausedbythereservoir.[33]

    Hydroelectricprojectscanbedisruptivetosurroundingaquaticecosystemsbothupstreamanddownstreamoftheplantsite.Generationofhydroelectricpowerchangesthedownstreamriverenvironment.Waterexitingaturbineusuallycontainsverylittlesuspendedsediment,whichcanleadtoscouringofriverbedsandlossofriverbanks.[34]Sinceturbinegatesareoftenopenedintermittently,rapidorevendailyfluctuationsinriverflowareobserved.

    Whenwaterflowsithastheabilitytotransportparticlesheavierthanitselfdownstream.Thishasanegativeeffectondamsandsubsequentlytheirpowerstations,particularlythoseonriversorwithincatchmentareaswithhighsiltation.Siltationcanfillareservoirandreduceitscapacitytocontrolfloodsalongwithcausingadditionalhorizontalpressureontheupstreamportionofthedam.Eventually,somereservoirscanbecomefullofsedimentanduselessorovertopduringafloodandfail.[35][36]

    Changesintheamountofriverflowwillcorrelatewiththeamountofenergyproducedbyadam.Lowerriverflowswillreducetheamountoflivestorageinareservoirthereforereducingtheamountofwaterthatcanbeusedforhydroelectricity.Theresultofdiminishedriverflowcanbepowershortagesinareasthatdependheavilyonhydroelectricpower.Theriskofflowshortagemayincreaseasaresultofclimatechange.[37]OnestudyfromtheColoradoRiverintheUnitedStatessuggestthatmodestclimatechanges,suchasanincreaseintemperaturein2degreeCelsiusresultingina10%declineinprecipitation,mightreduceriverrunoffbyupto40%.[37]Brazilinparticularisvulnerableduetoitsheavingrelianceonhydroelectricity,asincreasingtemperatures,lowerwaterflowandalterationsintherainfallregime,couldreducetotalenergyproductionby7%annuallybytheendofthecentury.[37]

    Lowerpositiveimpactsarefoundinthetropicalregions,asithasbeennotedthatthereservoirsofpowerplantsintropicalregionsproducesubstantialamountsofmethane.Thisisduetoplantmaterialinfloodedareasdecayinginananaerobicenvironment,andformingmethane,agreenhousegas.AccordingtotheWorldCommissiononDamsreport,[38]wherethereservoirislargecomparedtothegeneratingcapacity(lessthan100wattspersquaremetreofsurfacearea)andnoclearingoftheforestsintheareawasundertakenpriortoimpoundmentofthereservoir,greenhousegasemissionsfromthereservoirmaybehigherthanthoseofaconventionaloilfiredthermalgenerationplant.[39]

    InborealreservoirsofCanadaandNorthernEurope,however,greenhousegasemissionsaretypicallyonly2%to8%ofanykindofconventionalfossilfuelthermalgeneration.Anewclassofunderwaterloggingoperationthattargetsdrownedforestscanmitigatetheeffectofforestdecay.[40]

    Anotherdisadvantageofhydroelectricdamsistheneedtorelocatethepeoplelivingwherethereservoirsareplanned.In2000,theWorldCommissiononDamsestimatedthatdamshadphysicallydisplaced4080millionpeopleworldwide.[41]

    Becauselargeconventionaldammedhydrofacilitiesholdbacklargevolumesofwater,afailureduetopoorconstruction,naturaldisastersorsabotagecanbecatastrophictodownriversettlementsandinfrastructure.Damfailureshavebeensomeofthelargestmanmadedisastersinhistory.

    TheBanqiaoDamfailureinSouthernChinadirectlyresultedinthedeathsof26,000people,andanother145,000fromepidemics.Millionswerelefthomeless.Also,thecreationofadaminageologicallyinappropriatelocationmaycausedisasterssuchas1963disasteratVajontDaminItaly,wherealmost2,000peopledied.[42]

    Smallerdamsandmicrohydrofacilitiescreatelessrisk,butcanformcontinuinghazardsevenafterbeingdecommissioned.Forexample,thesmallKellyBarnesDamfailedin1967,causing39deathswiththeToccoaFlood,tenyearsafteritspowerstationwasdecommissioned.[43]

    Hydroelectricityeliminatesthefluegasemissionsfromfossilfuelcombustion,includingpollutantssuchassulfurdioxide,nitricoxide,carbonmonoxide,dust,andmercuryinthecoal.Hydroelectricityalsoavoidsthehazardsofcoalminingandtheindirecthealtheffectsofcoalemissions.Comparedtonuclearpower,hydroelectricitygeneratesnonuclearwaste,hasnoneofthedangersassociatedwithuraniummining,nornuclearleaks.

    Comparedtowindfarms,hydroelectricitypowerstationshaveamorepredictableloadfactor.Iftheprojecthasastoragereservoir,itcangeneratepowerwhenneeded.Hydroelectricstationscanbeeasilyregulatedtofollowvariationsinpowerdemand.

    Therankingofhydroelectriccapacityiseitherbyactualannualenergyproductionorbyinstalledcapacitypowerrating.Hydroaccountedfor16percentofglobalelectricityconsumption,and3,427terawatthoursofelectricityproductionin2010,whichcontinuestherapidrateofincreaseexperiencedbetween2003and2009.[1]

    Hydropowerisproducedin150countries,withtheAsiaPacificregiongenerated32percentofglobalhydropowerin2010.Chinaisthelargesthydroelectricityproducer,with721terawatthoursofproductionin2010,representingaround17percentofdomesticelectricityuse.Brazil,Canada,NewZealand,Norway,Paraguay,Austria,Switzerland,andVenezuelahaveamajorityoftheinternalelectricenergyproductionfromhydroelectricpower.Paraguayproduces100%ofitselectricityfromhydroelectricdams,andexports90%ofitsproductiontoBrazilandtoArgentina.Norwayproduces9899%ofitselectricityfromhydroelectricsources.[44]

    Therearenowthreehydroelectricstationslargerthan10GW:theThreeGorgesDaminChina,ItaipuDamacrosstheBrazil/Paraguayborder,andGuriDaminVenezuela.[1]

    Ahydroelectricstationrarelyoperatesatitsfullpowerratingoverafullyeartheratiobetweenannualaveragepowerandinstalledcapacityratingisthecapacityfactor.Theinstalledcapacityisthesumofallgeneratornameplatepowerratings.[45]

    EnvironmentalImpactofHydroelectricityhttp://renewableenergyindex.com/hydro/environmentalimpactofhydroelectricityDecember07,2014

    Hydroelectricity:EnvironmentalImpactSummary.Althoughitisconsideredacleansourceofenergy,hydroelectricpowerisnotwithoutits

    http://renewableenergyindex.com/hydro/environmental-impact-of-hydroelectricity

  • environmentalproblems.

    Hydroelectricpowerisconsideredtobeaclean,renewablesourceofelectricityandinfactcurrentlyaccountsforupto96%oftherenewableenergyintheUnitedStates.Hydroelectricpowergenerationhastheadvantageofbeingabletocreatelargeamountsofelectricitywhileproducingzeropollutants.Itburnsnofuelduringoperationsothereisnoairpollutionanditputsnothingintothewaterorsoil.Outsideoftheimpactofproducingconcreteandotherconstructionmaterialshydropowerwouldseemtobetheidealsolutiontoourelectricalneeds.Butwhatenvironmentalimpactscomewithhydropower?Everythingmanmadecomeswithaprice.Thisarticlewillexaminetheenvironmentalimpactofhydroelectricity.

    Buildingahydroelectricdamisahugeundertaking.Forexample,theconstructionofHooverDam,themostfamoushydroelectricdamintheUnitedStates,producedatremendousamountoflanddamage.WhiletheconstructionfirmswerebusybuildingBoulderCity,Nevadatohousetheworkforce,itwasnecessarytodiverttheColoradoRiverfromitsnaturalcourse.Fourdiversionarytunnels56feetindiameterandnearly3mileslongwereblastedthroughthecanyonwalls.Thesetunnelswerelaterincorporatedintothedamandformthemainbodiesofthedamsspillways.Withtheriverdiverted,precautionarycofferdamswerebuiltupstreamtoprotectagainsttheriveraccidentallyflooding.Theuppercofferdamalonewas96feethigh,750feetthickatitsbase,andcontained650,000cubicyardsofmaterial.

    Additionally,twomassiveconcreteplantswerebuilttosupplytheconstructioneffort,aswellasdedicatedrailwaysandaseriesofaerialcablewaystomovetheconcretefromeachplanttowhereitwasneededonthedam.Inall,4.4millioncubicyardsofconcretewereusedintheconstructionofHooverDam.ThedamcreatedLakeMeadbyflooding247squaremilesoflandbehindit.Ittook6.5yearstofillLakeMead,arequirementtopreventsmallearthquakesfromthelandsettlingundertheweightofthewater.LakeMeadsubmergedamassiveareaoflandbelowwaterwhichisthemostsignificantimpactofhydroelectricityonland,iteliminatesit.fail

    Eventhoughsomedamsarebuilttopreventfloodingandincreaseusablelanddownstreamtheyoccasionallyfailcausingevenlargerfloods.ThevideobelowshowsthefailureoftheTetonDamwhenareservoirwalldevelopedcracksandeventuallyburst.

    TheconstructionofHooverDamhadaprofoundimpactontheecosystemoftheColoradoRiver.Theriverdeltaestuaryoncehadasaltwater/freshwatermixingzonethatreached40milessouthoftheriversmouth.Whilethedamwasfilling,almostnofreshwaterreachedthemouthoftheriver,allowingsaltwatertoflowupstream.TheColoradoRivernowhasaninverseestuarywithhighsaltlevelsclosertothemouthoftheriver.Nativefishpopulationsweredestroyedandfourspeciesarecurrentlylistedasendangered.

    Thingsbecomeworseifadaminconstructedinanareawithhighlevelsofvegetation.Whenthereservoirbehindadamfills,plants,trees,andleaves,orbiomass,willbegintorot.WhentheNamLeukHydropowerProjectinLaoswascompleted,therottingbiomasscausedanimmediatedropinwaterquality.Theartificiallakecreatedhabitatsfordiseasecarryingmosquitoesandsnails,increasingthelikelihoodofoutbreaksofmalaria,denguefever,andschistosomiasis.Waterqualitydeterioratedtotheextentthatusefulspeciesoffishdisappearedandwerereplacedbyundesirableones.

    Removingthebiomasscomeswithitsownproblems.Themostobvioussolutiontoremovingsuchahugeamountofvegetationwouldbetocutandburnit.Theproblemisthatburningbiomassreleasesgreenhousegassesintotheair.Nutrientssuchasnitrogenandphosphorousarealsoreleasedfromburningbiomass,whichinturnwouldfacilitatesthegrowthofbacterialandalgaebloomswhenthereservoirisfilled.Thiscancauseachainreactionofwaterqualityproblemsthatmaynevergoaway.Reducedoxygenlevelsproducefishkills,cyanobacteriareleasetoxicmetabolites,andreservoirsedimentsreleasetoxicsubstancessuchasmercuryandhydrogensulfide.

    Anotherunforeseenproblemrelatingtohydroelectricdamsandwaterisdroughtsandgeologicalchangestriggeringearthquakesandlandslides.ThevideobelowoutlinestheseeffectafterthebuildingofthethreegorgesdamontheYangtzeriver,China.

    Perhapsthecleanestformofhydropower,tidalpowergenerationisnotwithoutitsownenvironmentalproblems.Atidalbarrageisadamlikestructurethatisbuiltacrossariverestuarytotakeadvantageoftheebbandflowofthetides.Ratherthanretainingthewater,however,atidalbarrageallowsittopassfreelythroughaseriesofturbinestoproducepower.Abarragebuiltacrossanestuarywillhaveasignificantimpactonthewaterinitsbasin(theareaupstreamofthebarrage)andonthefishpopulationaswell.

    Lesswaterisexchangedbetweenthebasinandthesea,reducingtheamountofmattersuspendedinthewater(turbidity).Asturbiditydecreases,sunlightisbetterabletopenetratethewater,creatingidealconditionsforthegrowthofphytoplankton.Alargerplanktonpopulationcausesarippleeffectupthefoodchainandaffectstheentireecosystem.Anotherresultofthedecreasedamountofwaterexchangeisthatlesssaltwaterisallowedintothebasin,reducingsalinityandagainaffectingtheecosystemparticularspeciesthatpreferbrackishwater.

    Waterflowingdownstreamtowardtheseacarrieshighamountsofsedimentwithit.Thissedimentcouldbuildupbehindandwithinthebarrage,affectingtheenvironmentandpossiblytheoperationofthebarrageitself.Anypollutantsflowingdownstreammayalsobecometrappedbehindthebarrageandcanbecomeconcentrated.Ifthosepollutantswerebiodegradable,theresultinggrowthinbacterialmayimpacthumanhealthandtheecosystem.

    Fishattempttoswimthroughtheturbineswithdireresults.Whenthetidesarenotmovingandtheturbinesareidle,alliswell.Whentheturbinesareinuse,however,fishcanbesuckedintothem.Themortalityrateforfishpassingthroughaturbineisapproximately15%,whichcanbedevastatingforfishthatmovetoandfromthebasineveryday.Sofar,aneffectivesolutiontoallowthesafepassageoffisharoundatidalbarragehasyettobedevelopedalthoughsomebarragestrytodiscourageandredirectfishpopulationsthroughspeciallydesignedpassages.

    Belowisavideooutlininganddiscussingtheaboveissues.Istidalpowerasgreenaswethink?

    Althoughitisconsideredacleansourceofenergy,hydroelectricpowerisnotwithoutitsenvironmentalproblems.Theconstructionofadamisatremendousundertaking,onethatwillleavethefootprintofmanscarredontotheareaforgenerations.Thehabitatsofmanycreaturesaredestroyedbytheimmenseamountofworkthatgoesintobuildingone.Greatestamongthesecausesforconcernseemstobewaterqualityissuesthatarisewhenthereservoirisfilled.Ifthebiomassisnotproperlyremoved,thegasesreleasedbyitsdecompositioncouldcreateanenvironmentaldisasterforbothhumansandanimals.

    Ifproperlyimplementedhydroelectricpowerisoneofthecleanestandcosteffectivewaysofproducingelectricityinthelongrun.Itusesnofuelandproducesnopollutants.Thecostofproducinghydroelectricpowerisconstant.Theinfrastructureisbuilttolastdamscanlastfordecadeswiththepropermaintenance.Ifpropercareistakentoprotecttheenvironmentatthestartofahydroelectricprojectimpactcanbeminimized.

    EnvironmentalImpactofHydroelectricDamshttp://www.azocleantech.com/news.aspx?newsID=2152December07,2014

    Riversaroundtheworldarebeingtamedbymassivehydroelectricdams,withhighprofileprojectsunderconstructioninLaosandChinaandseveralproposedforthe...

    Afterdamconstruction,thereisanimmediatedropinwaterqualitythatdestroysusefulfishpopulationsandposesathreattolivestockandhumans,saysLanza,anaquaticbiologistandmicrobiologistwhoconsultsfortheenvironmentalorganizationInternationalRivers.Convertingriversystemsintolakesalsocreatesmorehabitatforthesnailsandmosquitoesthatcarrymalaria,denguefeverandschistosomiasis,leadingtoanincreaseinthenumberofcasesofthesediseases.

    LanzarecentlycritiquedtheNamTheun2HydroelectricProject,a1,200footwideexpanseacrosstheNamTheunRiverinLaosthatwillbe

    http://www.azocleantech.com/news.aspx?newsID=2152

  • completedinDecember2009.DamgateclosureandreservoirfillingwillbegininJune2008,andpowerfromthedamwillbeexportedtoThailandaspartoftheLaotiangovernmentsplantogenerateexportrevenuebybuildingmorethan30damsby2020.

    AfterreviewingtheNT2EnvironmentalAssessmentandManagementPlan,LanzaworkedwithInternationalRivers,andtogethertheireffortshelpedtoconvincetheNamTheun2PowerCompanytoremovesomeofthebiomass,intheformoffallentreesandleaves,priortofillingthereservoirinsteadofsimplyleavingitbehindtorot.TheexperiencewithNamTheun2hashighlightedtheimportanceofclearingbiomassfromfuturedamprojects,arequirementtheLaotiangovernmentisreportedlyconsidering.

    Lanzasays,however,thattheNamTheun2biomassclearanceplans,whichincludecuttingandburningbiomassfrompartofthereservoirarea,maynotpreventsignificantwaterqualityproblems.Burningbiomassaddsairpollutants,includingcarbondioxide,ozoneandothergreenhousegasses,andtoxicsubstancessuchasmercury,hesays.Burningwillalsoreleasemercurytothesoilandgreatlyacceleratethereleaseofnutrientssuchasnitrogenandphosphorusfromthebiomass.

    Afterburning,nutrientsfromtheashwouldtriggerandsupportthesuddengrowthofexcessbacteriaandalgaeinthewaterasthereservoirfills,triggeringacascadeofwaterqualityproblems,includinggreatlyreduceddissolvedoxygen,fishkills,theformationoftoxicmetabolitesbycyanobacteriaandthereleaseoftoxicgassesandmetalssuchashydrogensulfideandmercuryfromreservoirsediments.

    Leavingthebiomassbehindwouldalsobeproblematic,saysLanza,sincerottingvegetationwouldincreasegreenhousegasemissionsfromthereservoir,usetheavailableoxygeninthewater,causefishkillsandresultinwaterthatwasunsuitablefordrinkingandirrigation.

    LanzastartedhiscareerasanaquaticecologistfortheSmithsonianInstitutionin1971,livinginThailandanddoingthedetectiveworktopredicttheecologicalimpactsofaproposedhydroelectricdamontheMekongRiver.Thatresearchledtotwonewdiscoveries:anewspeciesofschistosomeparasite(theMekongschistosome),andanewspeciesofsnailthattransmitstheMekongschistosome.Hesaysitwasobviousthenthatwaterqualitywoulddecrease,andtheshoresoflakebehindthedamwouldprovidetheidealhabitatforthesnailsandinsectsthatcarrydisease.

    In1996,LanzareviewedtheenvironmentalimpactreportfortheNamLeukHydropowerProjectinLaosandvisitedthesiteafterthedamwascomplete,whichreinforcedhisconcernsandconfirmedhispredictions.

    AfterthecompletionofNamLeuk,therewasasharpdropintheoxygencontentofwaterinthelakeandbloomsofcyanobacteriathatreleasetoxinsthataredeadlytolivestockandcancauselivercancerinhumans,saysLanza.Thedatashowthatwaterqualityproblemseliminatedusefulspeciesoffishthatpeopledependonforfoodandlivelihood,replacingthemwithlessdesirablespecies.

    Villagersdownstreamoftheprojectwereexperiencingwaterqualityproblems,andtheNamLeukreservoirprovidedexpandedhabitatsforthesnailsandmosquitoesthatcarryschistosomiasisandmalaria,threateningariseinthenumberofcasesofthesediseases.

    MidstreamdamsareagainbeingproposedfortheMekongRiver,andwearefindingthatdiseasecausingschistosomesaremuchmoreprevalentinthisareathanweoriginallythought.Thismustbeconsideredwhendevelopingfutureenvironmentalassessmentandmanagementplans,saysLanza.

    26685FSULR363textFloridaStateUniversityCollege...http://www.law.fsu.edu/journals/lawreview/downloads/363/clemons.pdfDecember07,2014

    commenthydroelectricdams:transboundaryenvironmentaleffectsandinternationallawkarliesheaclemonsi.introduction...

    COMMENT

    HYDROELECTRICDAMS:TRANSBOUNDARYENVIRONMENTALEFFECTSANDINTERNATIONALLAW

    KARLIESHEACLEMONS

    I.INTRODUCTION..................................................................................................488II.BACKGROUND....................................................................................................489III.BENEFITSORHARMS:WHICHPREVAILS?..........................................................490A.Benefits.......................................................................................................490B.Harms.........................................................................................................4911.MethaneGasandCarbonDioxideEmissions.....................................4912.RiverFlowandAffectedEcosystems...................................................493(a)NaturalFlooding...........................................................................493(b)EcosystemFragmentation.............................................................494(c)SedimentDisplacement.................................................................4953.Cultural,Historical,andHealthConcerns.........................................497C.ThreeGorgesDam:YangtzeRiver,China.................................................498IV.INTERNATIONALENVIRONMENTALLAW............................................................501A.BroadSourcesofInternationalEnvironmentalLaw................................5021.RelevantSources..................................................................................5022.RelevantThemes..................................................................................503(a)DevelopmentandResourceExploitation.......................................503(b)EnvironmentalPreservation.........................................................504(c)StatesDutytoCooperate...............................................................508B.SourcesofTransboundaryWaterLaw.......................................................5091.RelevantSources..................................................................................5092.RelevantThemes..................................................................................512(a)EquitableUtilization.....................................................................512(b)NoSignificantHarm.....................................................................515(c)CompetingDoctrinesWithintheUNConvention?:EquitableUtilizationVersusNoSignificantHarm.......................................515(d)StatesDutytoCooperate...............................................................517(e)DisputeAvoidanceandSettlement................................................518(f)AdditionalRelevantArticlesoftheUNConvention......................519V.ENFORCEMENTANDITSCOMPLICATIONS..........................................................520A.LegalEnforcement.....................................................................................5201.RelevantLawIsNonbinding...............................................................5202.NoAttachedEnforcementMechanism.................................................5213.RenderedDecisionMayNotMeanthattheProblemIsSolved...........522B.NonlegalFormsofEnforcement.................................................................522VI.APPLICATIONTOHYDROELECTRICDAMS..........................................................523A.UnitedStatesandCanada.........................................................................524B.HungaryandSlovakia...............................................................................527

    .J.D.,May2009,FloridaStateUniversityCollegeofLaw2009;B.S.,May2006,

    http://www.law.fsu.edu/journals/lawreview/downloads/363/clemons.pdf

  • Finance,FloridaStateUniversity.IwouldliketothanktheFloridaStateUniversityLawReviewseditorialstafffortheirhelpfulcommentaryandadvice.Also,specialthankstomyfriendsandfamilyfortheirconstantencouragement.488FLORIDASTATEUNIVERSITYLAWREVIEW[Vol.36:487

    C.BrazilandBolivia......................................................................................528VII.CONCLUSION.....................................................................................................533A.RegardingEnvironmentalHarm...............................................................533B.RegardingBrazilandBoliviaSpecifically................................................533C.RegardingTransboundaryWaterLaw......................................................534

    I.INTRODUCTIONBytheyear2050,thehumanpopulationisexpectedtoincreasebymorethanthirtyfivepercent.1Atpresent,wearethussimultaneouslyfacingpressureforanefficientenergyincrease,2whilealsotryingtoadheretoaninternationalregimetoslowclimatechange.TheresultisaninternationalstrugglebetweeneachStatesabilitytoprovideefficientandreliableenergywhilealsodoingitsparttopreservetheatmosphere.ThemajorcomplicationtoallofthisisthequestionofhowfareachStatewillgotoaccomplishsuchefficientenergy:willaStatestaywithintheboundsofitsdutiespresentedbyinternationalenvironmentallawandadheretoitsdutiesforenvironmentalandatmosphericpreservation,orwillitpushfurtherwithnoadherencetoeitherthelaworrecognitionoftheenvironmentalharmtoitsownterritoryortheterritoryofothers?ThisCommentwillpresentandanalyzeinternationalenvironmentallawasitappliestotheconstructionanduseofhydroelectricdams.Overall,thisCommentwillshowthatwhiletherearerelevantlaws,manytimesaharmedStatestillhasnorecourse.Todemonstratethisconclusion,thisCommentwillfirstprovidegeneralbackgroundregardinghydroelectricdamsandfollowwithanexplanationoftheresultingbenefitsandharms,focusingprimarilyonenvironmentalconcerns.Second,thisCommentwillidentifyandthoroughlyanalyzerelevantsourcesofinternationalenvironmentallaw,anditwillhighlightbothstrengthsandweaknessesofthesesources.Third,thisCommentwillofferspecificexamplesoftransboundaryagree

    1.U.N.DeptofEcon.andSoc.Aff.,PopulationDiv.,WorldPopulationProspects:The2006RevisionExecutiveSummary,2,U.N.Doc.ST/ESA/SER.A/261/ES[hereinafterWorldPopulationProspects],availableathttp://www.un.org/esa/population/publications/wpp2006/English.pdf.Specifically,the2006Revisionestimatesthatby2050theworldpopulationwillreach9.2billionfromthe6.7billionestimateatthetime.Id.2.Inadditiontoneedingmoreenergyasaresultofincreasedpopulation,almosttwobillionpeopledonothaveaccesstoaffordableenergyservicesatall,particularlyindevelopingcountries.U.N.DEV.PROGRAMMEETAL.,WORLDENERGYASSESSMENT:OVERVIEW,2004UPDATE,at34,U.N.SalesNo.E.04.111.B.6(2004)[hereinafterWORLDENERGYASSESSMENT],availableathttp://www.undp.org/energy/docs/WEAOU_full.pdf;seealsoWorldPopulationProspects,supranote1.Thus,anincreaseinenergysourcesisnecessaryinordertoalleviatesignificanthealthimpacts,andsuchanincreasemayevenraisethelevelofeducation,especiallyforwomenandchildren.WORLDENERGYASSESSMENT,supra.Inordertocook,womenandchildrenareforcedtospendlongperiodsoftimegatheringfirewoodandwater.Id.Becauseofthephysicalenergyrequired,womenandchildrenoftenhavenoopportunitiesforeducationandotherproductiveactivities,whiletheirhealthsuffers.Id.2009]HYDROELECTRICDAMS489

    mentsor,inmanysituations,thelackofagreements.Theseexampleswillillustratedirectapplicationofinternationallawsandportraytheextremedeficienciesinenforceability.Lastly,thisCommentwillofferabriefconclusionregardingbothaspecifichydroelectricdamdisputeandthestateoftherelevantlawingeneral.

    II.BACKGROUNDHydroelectricdamsexistoninternationalwatercoursesworldwide,andsomeStatesevenusehydropowerastheirprimarysourceofenergy.3Thereareapproximately45,000largedamsintheworld,includingbothhydroelectricandnonhydroelectricdams.4Between1990and1997,hydropowergeneratedapproximately18.5%oftheworldselectricity,andasof2004,hydropoweraccountedfor16%oftheworldsenergyproduction.5Whilehydroelectricdamscontributetoatmosphericpreservation,theystillpresentmuchconcern.Whetherthesebenefitsoutweightheconcernsiscontroversial,debatable,andacontributingfactortomanyinternationalpoliticaldisputes.ThemainproblemisaddressingtheissuesthatarisebetweenStatesgiventheapplicableinternationalenvironmentallaw.WhileoneStatemaydeterminethattheadvantagesofaparticularhydroelectricdamoutweighsthepotentialdisadvantages,anothernation,alsoaffectedbythepotentialdam,maynotagree.ThepossibilityforthisscenarioisquitelikelysincenearlyfiftypercentofEarthslandsurface(notincludingAntarctica)andsixtypercentofallfreshwaterarepartoftransboundarywater

    3.ROYL.NERSESIAN,ENERGYFORTHE21STCENTURY:ACOMPREHENSIVEGUIDETOCONVENTIONALANDALTERNATIVESOURCES29091(2007)(notingthatsixtyfivecountriesrelyonhydropowerformorethanfiftypercentoftheirelectricitygeneration);seealsoMustafaBalat,ElectricityfromWorldwideEnergySources,1ENERGYSOURCESPARTB:ECON.PLAN.&POLY395,401(2006)(citingG.Bergkampetal.,Dams,EcosystemFunctions,andEnvironmentalRestoration(2000)).Canadaisthelargestproducerofhydroelectricpower,followedbyNorwayandtheUnitedStates.Id.Hydroelectricpower,alsoknownashydropower,referstotheprocessofusingwatersenergytocreateelectricity.U.S.DeptofEnergy,WindandHydropowerTechnologiesProgram:HowHydropowerWorks,http://www1.eere.energy.gov/windandhydro/hydro_how.html(lastvisitedJune1,2009)[hereinafterHowHydropowerWorks].Whileseveraltypesofhydropowerplantsexist,thisCommentspecificallypertainstohydroelectricdamusethroughanimpoundmentfacility,whichisthemostcommontypeofhydroelectricpowerfacility.U.S.DeptofEnergy,Wind&HydropowerTechnologiesProgram:TypesofHydropowerPlants,http://www1.eere.energy.gov/windandhydro/hydro_plant_types.html(lastvisitedJune1,2009).Onceadamisbuilt,areservoir(anar

  • tificialmanmadelake)iscreatedontheupstreamsideofthedam.Seeid.Whenitistimetogenerateelectricity,waterisreleasedfromthereservoir,movingthroughaturbinecreatingenergy.Id.Thisenergyisthenputontotheelectricalgridandeventuallyusedinhomes,businesses,andindustries.HowHydropowerWorks,supra.4.NERSESIAN,supranote3,at29091.5.Id.at300.490FLORIDASTATEUNIVERSITYLAWREVIEW[Vol.36:487

    basins,meaningthatthemajorityofEarthswaterissharedwater.6Whenfacedwithdisputes,aharmedStateisultimatelyleftonlytorelyonsourcesofinternationalenvironmentallawforguidance.

    III.BENEFITSORHARMS:WHICHPREVAILS?A.BenefitsIncomparisontootherexistingformsofenergyproduction,themostnotablebenefitofhydropoweristhathydroelectricdamsdonotdirectlyemitgreenhousegasses.7Specifically,sincewateristhemaincomponentofhydropowergeneration,burningofcoaloruseofeitheroilorfuelsisnotnecessary.8Likewise,thewaterusedandthustheriverasawholeisnotpolluted.9Additionally,althoughtheconstructionofhydroelectricdamsandtheirturbinesisquitecostly,10thecostofenergygenerationisratherinexpensive.11Incomparisontoothersourcesofenergyproduction,hydroelectricdamsalsoprovidepowerthatisbothpredictableandreliable.12Thesedamsallowthestorageofwater(inthereservoir)untilitisneededandthenallowarapidincreaseinenergyproduction(more

    6.WaterEncyclopedia,TransboundaryWaterTreaties,http://www.waterencyclopedia.com/StTs/TransboundaryWaterTreaties.html(lastvisitedJune1,2009)(Atransboundarywaterwayisdefinedasallterritorywhichcontributestoastream,atleastoneofthetributariesofwhichcrossesaboundary.);seealsoLUDWIKA.TECLAFF,THERIVERBASININHISTORYANDLAW4246(1967)(emphasizing,throughmultipleexamples,thevastamountoftradethatwasfacilitatedbecauseoftheexistenceofalargenumberoftransboundaryriversandnotingthat[t]heinfluenceofthephysicalunityofthebasinprovedstrongerthanpoliticaldivisions).7.SeeU.S.DeptofEnergy,WindandHydropowerTechnologiesProgram:AdvantagesandDisadvantagesofHydropower,http://www1.eere.energy.gov/windandhydro/hydro_ad.html(lastvisitedJune1,2009);seealsoThomasMoran,TheEnvironmentalandSocioEconomicImpactsofHydroelectricDamsinTurkishKurdistan2425(June10,2004)(unpublishedthesis,RoskildeUniversity),availableathttp://rudar.ruc.dk/handle/1800/403.8.SeeWILLIAMWHIPPLE,JR.,WATERRESOURCES:ANEWERAFORCOORDINATION6465(1998);seealsoU.S.DeptofEnergy,supranote7.9.SeeNERSESIAN,supranote3,at291.10.Id.;see,e.g.,NASASatellitesWatchasChinaConstructsGiantDam,SCIENCEDAILY,June13,2007,http://www.sciencedaily.com/releases/2007/06/070612134358.htm(statingthatthetotalconstructioncostoftheThreeGorgesDamontheYangtzeRiverinChina,whichisnowthelargesthydroelectricdamintheworld,wasatleast$625billion).11.NERSESIAN,supranote3,at291(notingthathydropowerhasnofuelcostandalowoperatingcost);seealso25x25,WhyRenewables:HydroelectricandTidalPower,http://www.25x25.org/index.php?option=com_content&task=view&id=19&Itemid=48(lastvisitedJune1,2009).25x25isanallianceoriginallycreatedbyagroupoffarmleaderswhohadagoalofobtainingtwentyfivepercentofAmericasenergyfromrenewablesourcessuchaswind,solar,andbiofuelsby2025.About25x25,http://www.25x25.org/index.php?option=com_content&task=view&id=12&Itemid=41(lastvisitedJune1,2009).Additionally,hydroelectricpowercanbehighlyautomated.SeeU.S.DeptofEnergy,supranote7(notingthatengineerscancontroltheamountofwaterflowingthroughtheturbinestoproduceelectricityondemand).12.25x25,supranote11.2009]HYDROELECTRICDAMS491

    quicklythanpowerplantsusingfossilfuelforenergyproduction)duringperiodsofhigherdemand.13Similartoothertypesofdams,hydroelectricdamsalsoserveasafloodcontrolmechanism.14Comparedtoariverfunctioninginitsnaturalstate,adamcanmaintainmorewaterinthereservoirandthusallowlesswatertomovedownstream.15Manytimes,thiscanprotectdownstreamcommunitiesfromflooding.16Additionalindirectbenefitsofhydroelectricdamconstructionarethatit[e]nhancesknowledgeandimprovesmanagementofvaluedspeciesduetostudyresultsandthatitcansometimescreatenewfreshwaterecosystemswhicharemoreproductive.17Immediatelyafterfloods,fishpopulationstypicallyincreasebecausethefloodsenablefishtomoveoutintofloodplain[18]wetlandstofeedandreproduce.19Similarly,floodsrechargegroundwatersuppliesandwetlandsandnaturalfertilizefarmland.20

    B.HarmsDespitetheundoubtedbenefits,manystillfeelthathydroelectricdamspresentseriousenvironmentalconcerns,whichshouldbeconsideredinconjunction.21

    1.MethaneGasandCarbonDioxideEmissionsHydroelectricdamsareconsideredacleansourceofrenewableenergy22becausetheydonotdirectlyemitgreenhousegases.However,evidencethatdamsreservoirsemitmethanegasmayarguably

    13.Id.14.Id.15.Seeid.16.Id.Butseeinfratextaccompanyingnotes8486(questioningdamsefficacyinprotectingdownstreamcommunities).17.Moran,supranote7,at25.18.Ariversfloodplainisanimportantpartoftheriversystem.InstituteforEcologicalHealth,FloodplainManagement,http://www.instituteforecologicalhealth.org/floodplain_management.html(lastvisitedJune1,2009).Inariversnaturalstate,adynamicriverwillmoveitscoursetoandfrooveralongtimeframe....Riparianvegetationandwetlandsassociatedwithstreamsandriversareessentialhabitatsforagreatnumberofanimalandplantspecies.Id.19.MistyHerrin,TheNatureConservancy,China:MinimizingDamImpactontheYangtzeRiver,http://www.nature.org/wherewework/asiapacific/china/features/

  • yangtzedams.html(lastvisitedJune1,2009)(interviewwithQiaoyuGou,ProjectManager,TheNatureConservancysChinaProgram).20.Id.21.SeeNERSESIAN,supranote3,at291.22.EnvironmentalLiteracyCouncil,HydroelectricPower,http://www.enviroliteracy.org/article.php/59.html(lastvisitedJune1,2009)[hereinafterELC,HydroelectricPower].TheEnvironmentalLiteracyCouncilisanindependent,nonprofitorganizationprovidinggeneralenvironmentalscienceinformationforeducatorsandthepublic.EnvironmentalLiteracyCouncil,AboutUs,http://www.enviroliteracy.org/subcategory.php?id=1(lastvisitedJune1,2009).492FLORIDASTATEUNIVERSITYLAWREVIEW[Vol.36:487

    refutetheclaimthatthesedamsareenvironmentallyfriendly.23Essentially,manmadereservoirsconvertcarbondioxideintheatmosphereintomethane.24Accordingtocritics,intropicalareasofBrazilwherelargedamsproducemorethanninetypercentofelectricity,thedamsreservoirsemitsuchahighamountofmethanegasthatthedamscontributiontoclimatechangeisevengreaterthanthatofequivalentfossilfuelpowerplants.25Forexample,estimatesshowthattheBalbinaDaminBrazilproducesbetweentwentyandfortytimesmorecarbondioxidethanpowerplantsusingcoal.26AccordingtotheestimatesofPhilipFearnsideofBrazilsNationalInstituteforResearchintheAmazoninManaus,suchhighemissionratesarefromcarbonthatistiedupintreesandotherplants[whichis]releasedwhenthereservoirisinitiallyfloodedandtheplantsrot.27Aftertheinitialdecay,plantpartsthensettleonthefloorofthereservoirandcontinuetodecompose,whichresultsinanincreaseofdissolvedmethanebecausetheplantsaredecomposingwithnooxygen.28Whenwaterpassesthroughtheturbine,thisdissolvedmethaneisreleasedintotheair.29FernandoRamos,leadscientistfortheNationalSpaceResearchInstitute(INPE)inBrazil,statedthat[i]tslikeopeningabottleofsoda.Alargepartofthemethaneisdissolvedinthewaterbubbles,anditsreleasedtotheatmosphere.30Whilegreatuncertaintyexistsastohowmuchmethanehydroelectricdamsactuallyemitintotheatmosphere,31INPEscientistsestimatethatlargedamsmayberesponsibleforworldwideannualemissionsof800milliontonsofcarbondioxide,whereastheUnitedKingdomstotalgreenhousegasemissionsin2006wasaround660milliontons.32

    23.SeeDuncanGrahamRowe,HydroelectricPowersDirtySecretRevealed,NEWSCIENTIST,Feb.24,2005,http://www.newscientist.com/article.ns?id=dn7046;TimHirsch,ProjectAimstoExtractDamMethane,BBCNEWS,May10,2007,http://news.bbc.co.uk/1/hi/sci/tech/6638705.stm.24.GrahamRowe,supranote23.25.Id.26.InternationalRivers,FrequentlyAskedQuestionsAboutDams,http://www.internationalrivers.org/en/node/480(lastvisitedJune1,2009)[hereinafterFrequentlyAskedQuestionsAboutDams].27.GrahamRowe,supranote23.28.Id.29.Id.30.Hirsch,supranote23.31.Seeid.Eachdammayemitdifferentlevelsofmethanegas.Id.Theamountofmethanegasemitteddependson,amongotherthings,theamountofvegetationinthewater,thewaterstemperature,andthereservoirsshape.Id.32.Id.AlthoughnotwithinthescopeofthisComment,itisrelevanttonotethattheINPEscientistshaveproposedthatwithrelativelysimpletechnology,thisunwantedbyproductofhydroelectricpowergenerationcouldbeturnedintoanextrasourceofclean,renewableelectricity.Seeid.(providingabriefnoteonandadetailedchartregardingsuchtechnology).2009]HYDROELECTRICDAMS493

    2.RiverFlowandAffectedEcosystems

    Freshwaterecosystemsprovidemanythingsthathumansdependon,suchasfoodandfiber,waterpurification,andfishandwildlife.33Butinordertoprovidethesethings,freshwaterecosystemsaredependentuponthecyclingofwaterandonfunctioningecologicalprocessesandspeciesassemblages.34Inordertomaintainthehealthoftheseecosystems,thewatermustmaintainaparticularlevelofbothqualityandquantity.35Thousandsofspeciesandactivitiesdependuponfreshwaterecosystems.36Specifically,approximatelyfortypercentoffishareofafreshwaterspeciesandapproximately200newfreshwaterspeciesareidentifiedyearly.37And,ofthe10,000freshwaterspeciesthathavealreadybeenidentified,approximately2,000arealreadyendangered,vulnerable,orextinct.38Giventhelargenumberofspeciesrelyingontheseecosystemsandthenumberofthesespeciesthatareendangeredandvulnerable,maintainingtheecosystemsisofgraveimportance.39Themostsignificantenvironmentalimpactofhydroelectricdamsis,arguably,thealterationoftheaffectedriversflow.40Whenriverflowsarealtered,itisnotmerelythevisibleappearanceoftheriverthatischanged.Rather,itisacyclethathasmuchdeeperimpactsevenbeyondtheriveritself.41

    (a)NaturalFloodingWhilefloodcontrolisundoubtedlybeneficialtosomeextent,especiallyforthosewhowouldotherwiselosetheircommunitiesandbusinesses,arguably[t]heeliminationofthebenefitsprovidedby

    33.KarinM.Krchnak,TheNatureConservancy,GreeningHydropower:IntegratingEnvironmentalFlowConsiderations2(2006),http://www.nature.org/initiatives/freshwater/files/hydropower_2006_krchnak_paper_final.pdf.34.Id.35.Id.

  • 36.Id.37.Id.38.Id.39.Seeid.40.InternationalRivers,EnvironmentalImpactsofDams,http://internationalrivers.org/en/node/1545(lastvisitedJune1,2009)[hereinafterEnvironmentalImpactsofDams].Notethatthisimpactiscausedbyothertypesoflargedamsaswell.Id.Alsonotethathydroelectricdamsimpactgroundwaterandwetlands.SeeKrchnak,supranote33,at2.Otherthangeneralreferences,however,theseissuesareoutsidethescopeofthisComment.41.SeeinfraPartIII.B.2(focusingontheharmstoariversflowandsurroundingecosystemcausedbyhydroelectricdamconstructionanduse).494FLORIDASTATEUNIVERSITYLAWREVIEW[Vol.36:487

    naturalfloodingmaybethesinglemostecologicallydamagingimpactofadam.42Biologistsgenerallyrecognizedamsasthemostdamagingofthesourcesthatcontributetothedisappearanceofriverinespecies.43Thelossofnaturalfloodingaffectsriverandfloodplainecosystemsoverall.Suchecosystemsarecloselyadaptedtoariversfloodingcycle.Thenativeplantsandanimalsdependonitsvariationsforreproduction,hatching,migration,andotherimportantlifecyclestages.Annualfloodsdepositnutrientsontheland,flushoutbackwaterchannels,andreplenishwetlands.44

    (b)EcosystemFragmentationDammingariverfragmentstheriverineecosystembyisolatingtheupstreamanddownstreamecosystemsandcuttingoffspeciesmigrationhabits;45thiscausesseriouschangestospecieshistoricalspawninghabits.46Forexample,inthecurrentconstructionoftheBrazilianMadeiraRiverhydroelectricdams,47catfishhavebecomethemainsymbolofthecontroversy.48Thesefishhaveanintricate2,000milemigrationtothemouthoftheAmazon,and,accordingtoexperts,thedamswilldisruptthismigration.49Riverecosystemfragmentationhasresultedinaseriousreductioninwatershedspecies.50Forexample,intheNorthwestUnitedStates,asaresultofhydroelectricdamconstruction(amongotherreasons,suchasover

    42.PATRICKMCCULLY,SILENCEDRIVERS:THEECOLOGYANDPOLITICSOFLARGEDAMS31(2001).43.LoriPottinger,InternationalRivers,EnvironmentalImpactsofLargeDams:AfricanExamples(Oct.1,1996),http://www.internationalrivers.org/en/africa/environmentalimpactslargedamsafricanexamples.44.Id.45.MCCULLY,supranote42,at31;seealsoWHIPPLE,supranote8,at65.Itshouldbenotedthatcertaintechnologieshavebeenusedonhydroelectricdamsinordertoalleviatesomefishmigrationproblems.SeeWHIPPLE,supranote8,at6667([T]hedamsontheColumbia[River]andmanyotherrivershavefishladders,whicharequiteefficientinallowingmovementofadultfishmigratingupstreaminordertospawn.However,theproblemsofmovingtheimmaturefingerlingsdownstreamafterspawninghaveprovedmuchmoredifficulttohandle.).46.SeegenerallyD.D.Daubleetal.,ImpactsoftheColumbiaRiverHydroelectricSystemonMainStemHabitatsofFallChinookSalmon,23N.AM.J.FISHERIESMGMT.641(2003)(describingthechangesinthespawninghabitsandtheresultingdecreaseinanadromousfishrunpopulationsintheColumbiaandSnakeriversasaresultofhydroelectricdams).47.SeeinfraPartVI.C.48.LarryRohter,BothSidesSayProjectIsPivotalIssueforBrazil,N.Y.TIMESONLINE,June11,2007,http://www.nytimes.com/2007/06/11/world/americas/11amazon.html.49.Id.50.MCCULLY,supranote42,at31.Itisnoteworthy,however,thatspeciesisolationmaybebeneficialforsomespecies,becausedamsprovideareservoirthatallowsforthecreationofhabitatforlakefish.Id.Additionally,theincreaseintheamountofcoolwaterreleasedasaresultofcreationofthereservoirmayallowsomefishtothrivethatcouldnothavedonesowhenthewaterwaswarm.Id.2009]HYDROELECTRICDAMS495

    fishing)ontheColumbiaRiver,anadromousfishpopulationshavedecreasedfromanaverageof10to16millionfishperyearatthebeginningofthetwentiethcenturytoanannualrunsizeofonly2.5million.51Currently,theexactglobalextentofriverecosystemfragmentationcausedbydamshasnotbeendetermined.52However,Swedishecologists,MatsDynesiusandChristerNilsson,fromtheUniversityofUme,estimatedthedegreeofdamagetoriversystemsintheUS,Canada,EuropeandtheformerUSSR....[and]foundthatfully77percentofthetotalwaterdischargeofthe139largestriversystemsinthesecountriesisstronglyormoderatelyaffectedbyfragmentationoftheriverchannelsbydamsandbywaterregulationresultingfromreservoiroperation,interbasindiversionandirrigation.53DynesiusandNilssonalsoconcludedthat[a]saresultofhabitatdestructionandobstructiontoorganismdispersal,...manyriverinespeciesmayhavebecomeextinctovervastareas,whereaspopulationsofothershavebecomefragmentedandruntheriskoffutureextinction.54

    (c)SedimentDisplacementSedimentarydeposits,tobothriverchannelsandbanks,arepertinent:toomuchsedimentcanaggradechannelsandcausefloodingproblems,whereaserosionofsedimentcandegradehabitat.55Whilenaturalsedimentlevelsvarybetweenregionsoftheworld(andthussedimentationaffectsareasdifferently)accordingtotheWorldCommissiononDams,assumingthatnocontrolsareimplementedtocontrolsedimentation,inthenexttwentyfivetofiftyyears,reservoir

    51.Daubleetal.,supranote46,at641(Althoughtheexactamountoffishlosttohydropowerdevelopmentisuncertain,salmonidhabitatsinthemainstemColumbiaand

  • Snakerivershavechangeddramaticallyduringthepast60years.Forexample,manyareaswheresalmonidsspawnedarenowaseriesoflowvelocityimpoundments,andaccesstootherhabitatsisblockedbyimpassablebarriers.).Foramorerecentexampleofamajorreductioninfreshwaterspeciesresultingfromdamconstruction,seeinfranotes33437andaccompanyingtext,whichdiscussarecentmasskillingoffishduringtheinitialconstructionphasesoftheSantoAntoniodaminBrazil.52.MCCULLY,supranote42,at31;accord,e.g.,Daubleetal.,supranote46,at641.53.MCCULLY,supranote42,at31.54.Id.55.MICHAELCOLLIERETAL.,U.S.DEPT.OFTHEINTERIOR,CIRCULARNO.1126,DAMSANDRIVERS:APRIMERONTHEDOWNSTREAMEFFECTSOFDAMS,U.S.GEOLOGICALSURVEY3(2drev.ed.2000).496FLORIDASTATEUNIVERSITYLAWREVIEW[Vol.36:487

    sedimentationwilleliminatetwentyfivepercentoftheworldsstoragecapacityforfreshwater.56Inariversnormalstate,sedimentsallownaturalreplenishmentofthedownstreamecosystemsbymovingsedimentsdownstreamanddepositingthemalongtheriverbedsandriverbanks;thisessentiallyservesasanaturalfertilizer.57Adam,however,capturesthesenaturalsedimentsandpreventsthemfrommovingdownstream,thusdeprivingthedownstreamportionoftheriver.58Whenariverisdeprivedofnormalsedimentplacement,theriverseekstonourishitselfbyerodingtheriversbankanddownstreamriverbed.59Thiscanevenunderminebridgesandstructuresbuiltalongtheriverbank.60Withinadecadeofadamsinitialoperation,downstreamriverbedsmaybeerodedbyseveralmeters,anddamagemayevenbefelthundredsofkilometersdownstreamofthedam.61Sedimentreductionalsoaffectsthefishandwildliferelyingonthenaturalsedimentprocess.62Forexample,becausesedimentreductioncausesthewatertobecomeclearer,manyfishandwildlifespecieswillbeatgreaterriskofdangerbecausetheyarelesscamouflaged.63Ariverslossofnaturalsedimentsalsoaffectstheupstreamportionoftheriver.64Justasthedownstreamportionoftheriverisdeprivedofthesevaluablesediments,adamsreservoircanbedamagedbyanaccumulationandbuildupofthesesamesediments.65Becausesedimentsandnutrientsaretrappedbehindthedam,thelackofwaterflowisthenlikelytocausegrowthandspreadofalgaeandotheraquaticweeds.66Further,duetolackofmovement,waterinthereservoirbecomesstagnant,resultinginlossofoxygen.67Ultimately,thiscyclecanreducethenumberoforganismslivinginthereservoir.68Inextremecases,sedimentbuildupcanputadditionalpressureonthedamitself,whichcanactuallyweakenthedam.69

    56.Moran,supranote7,at2223(notingthattheWCDpredictsthatmostofthegloballossoffreshwaterstoragecapacitywilloccurinthedevelopingcountriesaswellasthosewithhighersedimentationrates).57.EnvironmentalImpactsofDams,supranote40.58.Id;see,e.g.,infranote322andaccompanyingtext(describingstudyoftheexpectedeffectsofBrazilsMadeiraRiverdamprojectswithregardtosedimentation).59.EnvironmentalImpactsofDams,supranote40.60.Id.61.Id.62.SeeMoran,supranote7,at23.63.Id.at24.64.Seeid.at2324.65.Id.at22.66.ELC,HydroelectricPower,supranote22.67.Moran,supranote7,at23.68.Id.69.Id.at22.2009]HYDROELECTRICDAMS497

    Groundwaterpollutionmayalsoresultfromsedimentdeprivation.70Specifically,farmersdownstreamwhorelyonthewaterasasourceoffertilizerarethenforcedtousesubstitutetypesoffertilizer,whichmayultimatelypolluteboththeriverandtherelatedgroundwater.71

    3.Cultural,Historical,andHealthConcernsThehumaneffectisoneofthemostsignificantharmsofhydroelectricdams.72Theinitialconstructionitselfresultsinmassnumbersofindividualslosingtheirhomes,villages,communities,andwaysoflife.73ConsidertheThreeGorgesDamontheYangtzeRiverinChina,forexample.74Itwasanticipatedthattherisingwatersoftheexpansivereservoircouldsubmergeover140towns,326townships,and1,351villages,causingoveronemillionpeopletobemovedfromthegeneralarea.75TheWorldCommissiononDamsestimatedthatbetweenfortyandeightymillionpeoplehavebeenphysicallydisplaced,76butthismaybeaconservativeestimate.TheWorldBankestimatesthatapproximatelyfourmillionpeoplearedisplacedannuallyfromapproximately300largedams(above15mhigh)thatonaverageenterconstructionphaseannually.77Thisnumber,however,doesnotaccountforthosewhoselivelihoodsareaffectedbydams.78Forexample,acitysunemploymentmayultimatelyriseasaresultofdamconstruc

    70.Id.71.Id.72.WhilethesocialandeconomicimpactsofhydroelectricdamsareimportantandrelevanttoaStatesconstructiondecision,theyareoutsidethescopeofthisComment.73.SeeMatthewCoonCome,SurvivalintheContextofMegaResourceDevelopment:ExperiencesoftheJamesBayCreesandtheFirstNationsofCanada,inINTHEWAYOFDEVELOPMENT:INDIGENOUSPEOPLES,LIFEPROJECTSANDGLOBALIZATION153,155(MarioBaseretal.eds.,2004).MatthewComedescribedtheeffectsofdevelopmentonindigenouscommunitiesinNorthernCanadaintheearly1970s:In1972Iwasayoungstudent...,andIreadinthenewspaperonedayaboutQuebecshydroelectricprojectofthecentury.[sic]IlookedatamapandsawthatmycommunityslandsatMistissiniweretobesubmergedbecausetheyweregoingtouseLakeMistissiniasareservoir.Itwasthenthatourpeople

  • realizedthattheplansofHydroQuebectodamanddivertmorethanadozenriversinourterritorywouldspellanendtoourwayoflife.Id.;seealsoELC,HydroelectricPower,supranote22.74.SeeinfraPartIII.C.75.DAIQING,THERIVERDRAGONHASCOME!:THETHREEGORGESDAMANDTHEFATEOFCHINASYANGTZERIVERANDITSPEOPLE41,52(JohnG.Thibodeau&PhilipB.Williamseds.,YiMingTrans.,1998).76.THAYERSCUDDER,THEFUTUREOFLARGEDAMS:DEALINGWITHSOCIAL,ENVIRONMENTAL,INSTITUTIONALANDPOLITICALCOSTS22(2005);WORLDCOMMNONDAMS,DAMSANDDEVELOPMENT:ANEWFRAMEWORKFORDECISIONMAKING104(2000),availableathttp://www.dams.org//docs/report/wcdreport.pdf.77.SCUDDER,supranote76,at22.78.Id.498FLORIDASTATEUNIVERSITYLAWREVIEW[Vol.36:487

    tionbecausefarmersaredisplacedasaresultoftheirlandbeingfloodedforthecreationofthereservoir.79Evenifriverdwellersarenotphysicallydisplacedbydamconstruction,theyarestillimpacted.Wheredamconstructionblocksmigrationandultimatelycausescompleteorpartialdiminishmentofaspecies,riverdwellersrelyingonthosespeciesalsosuffer.80Forexample,inthecaseoftheMadeiraRiverconstructioninBrazil,81fishspecieslikelytobenegativelyaffected(whichsomeclaimcouldbecomeextinct)serveasthemainproteinsourceofthoselivingalongtheMadeiraandAmazon.82Additionally,sincethesefishprovideeconomicallyforpeoplelivingalongtherivers,83eliminationofthespeciesintheareawould,presumably,furthercontributetothelargenumberofindigentpeopleinthearea.Anotherproblemisoverrelianceondamsasfloodprotection.84Oftentimes,thisreliancemayprovetobeafalsesenseofsecurityduringlargefloods,whendamsarenotsufficienttoholdbackallofthewater.85Specifically,reliancehasledpeopletoincreasedevelopmentinfloodplains,andthusduringlargefloodstheresultingdamagemaybeevengreaterthanitotherwisewouldhavebeenwithoutthedam.86

    C.ThreeGorgesDam:YangtzeRiver,ChinaTheThreeGorgesDamprojectontheYangtzeRiverinChinademonstratesthedifficultyofstrikingabalancebetweenthebenefitsandharmsofhydroelectricdams.ThedamwasstructurallycompletedinMay2006andistheworldslargestreinforcedconcretehydroelectricdam.87Inlate2008,thefinalgeneratingunitwasinstalled,andonMarch3,2009,theprojectannouncedthat,liketheothertwentyfivegeneratingunits,thefinalgeneratingunithadsuc

    79.Moran,supranote7,at7.80.See,e.g.,GlennSwitkes,TheAmericasProgram,BrazilianGovernmentMovestoDamPrincipalAmazonTributary2(2007),http://americas.irconline.org/pdf/reports/0706amazoneng.pdf.81.Id.;seealsoinfraPartVI.C.82.Switkes,supranote80,at2.ForarecentmasskillingofthesefishalongtheMadeiraRiver,seeinfranotes33437andaccompanyingtext.83.Id.84.SeeInstituteforEcologicalHealth,supranote18.85.Id.86.SeeBobSchildgen,UnnaturalDisasters,SIERRAMAG,MayJune1999,availableathttp://www.sierraclub.org/sierra/199905/floods.asp.87.ThreeGorgesDamWallCompleted,BBCNEWS,May20,2006,http://news.bbc.co.uk/2/hi/asiapacific/5000092.stm.ProposalsfordamconstructionontheYangtzeRiverdatebacktoaround1918,butsuchaprojectwasnotactuallyaccepteduntil1992andnotactuallybegununtil1994.SeeChinaThreeGorgesProject,History,http://www.ctgpc.com/history/history_a.php(lastvisitedJune1,2009).2009]HYDROELECTRICDAMS499

    cessfullyoperatedforitsfirst100days.88Thecompletedreservoirspans401squaremiles.89ConstructionoftheThreeGorgesDamhasalwaysbeen,andremains,controversialespeciallybetweenscientistswhoclaimthatthedamwillcauseextremeenvironmentalharmandthepoliticalproponentswithintheChinesegovernment.90TheChinesegovernmentsupportedthedamfortwomainreasonsenergygenerationandfloodcontrol.91Regardingenergygeneration,incomparisontocoalfiredpowerstationswithelectricitygeneration,theplantwilldecreasecarbondioxideemissionsby100milliontonsandwillhelppreventacidrainandthegreenhouseeffect.92And,withregardtofloodcontrol,theYangtzeRiverisknowntohavedevastatingfloods;forexample,afloodin1998affected300millionpeople.93Previousestimatespredictedthatuponcompletion,thefloodcontrolstandardwouldbeupgradedfrompreventingfloodscategorizedaslessthan10yearfloodstopreventing100yearfloods.94Estimatesshowthatthisupgradewillrelieveapproximately15millionpeopleand1.5millionhectaresoffarmlandfromflooding.95Inadditiontothesemaingoals,theChinesegovernmentintendedthedamtoincreasenavigability,whichwouldextendthetravelrouteintoChinasmainland.96Theultimatehopeforthisnavigability

    88.ChinaThreeGorgesProject,All26GeneratingUnitsinSmoothOperationforFirst100Days,http://www.ctgpc.com/news/news1.php?NewsId=32399(lastvisitedJune1,2009).89.NASASatellitesWatchasChinaConstructsGiantDam,supranote10.90.SeegenerallyJimYardley,ChineseDamProjectsCriticizedforTheirHumanCosts,N.Y.TIMES,Nov.19,2007,availableathttp://www.nytimes.com/2007/11/19/world/asia/19dam.html.91.SamuelRobertFishleighAllin,AnExaminationofChinasThreeGorgesDamProjectBasedontheFrameworkPresentedintheReportoftheWorldCommissiononDams1617(Nov.30,2004)(unpublishedMastersthesis,VirginiaPolytechnicInstituteandStateUniversity),availableathttp://scholar.lib.vt.edu/theses/available/etd12142004125131/unrestricted/SAllin_010304.pdf.ChineseGovernmentdocuments,especiallythosereleasedbytheMinistryofWaterResources,commonlynote

  • thatoverallecosystemenhancementwilloccurbecauseofthe[ThreeGorgesDam].Thiswillincludetheestablishmentofnewecosystemssupportedbythe[ThreeGorgesDam]reservoirandbetter,morecontrolledconditionsintheareasdownstreamofthedam.BasedontheliteratureandfindingsoftheWCD,thisstatementshouldbequestioned.Thereareafewrecognizedecosystembenefitsthatoccurfromtheconstructionoflargedams,howeverthenetenvironmentaleffectisalmostalwaysnegative.Id.at2223.92.ChinaThreeGorgesProject,Environment,http://www.ctgpc.com/environmental/environmental_a.php(lastvisitedJune1,2009).93.Allin,supranote91,at16(citationsomitted).94.ChinaThreeGorgesProject,BiggestFloodControlBenefitintheWorld,http://www.ctgpc.com/benefifs/benefifs_a.php(lastvisitedJune1,2009).95.Id.96.Allin,supranote91,at17.500FLORIDASTATEUNIVERSITYLAWREVIEW[Vol.36:487

    increasewastocausetheemergenceofnewmarkets,jobcreation,andeconomicvitality.97Earlierestimatesprovidedthatwhencomplete,asitnowis,theannualonewaynavigationcapacityoftheYangtzeRiveratthedamwouldincreasefromtenmilliontofiftymilliontons.98YetanothergoaloftheChineseGovernmentwasaccessibilitytofreshwater.99Thedamwasprojectedtoincreasefreshwateraccessforbothagricultureandconsumptionpurposes.100Whilemanyeconomicbenefitsare(oratleastareexpectedtobe)derivedfromconstructionandoperationoftheThreeGorgesDam,theenvironmentalconcernsmayarguablyunderminethesebenefits.101Currently,obviousproblemscausedbythedamincludedrasticchangestotheriverswatertemperature,siltlevels,andseasonalfluctuationsintheriversflow.102Additionally,significantamountsofreservoirgreenhousegasemissionswillresultfromvegetationbreakdown,silt,andotherorganics,whichdecomposeatthebottomofthereservoir.103Thus,theallegedcleanenergytheoryfortheThreeGorgesDamisunderminedbecauseofthesereservoirgreenhousegasemissions.104Furthermore,siltingmayeventuallycauseanincreaseinfloodingbecauseofsiltbuildupinthedamsreservoir.105Evenmoreextremeisthatthissiltbuildupmayreducetheeffectivenessofpowergenerationschemes,whileupstreamsiltationmayimpactnavigability.106Thedownstreamportionoftheriverisalsoaffectedbythissiltbuildupinthereservoir.Thisbuildupresultsinlesssiltflowingdownstream,thuscompromisingtheriversabilitytonaturallyreplenishitself.107Lossofnutrientsthenreducesfertilityoftheagriculturallandsdownstream,108andthe[d]isruptionofthenaturaldistributionandtimingofstreamflowdisrupt[s]aquaticecosystems.109AftersupportingtheThreeGorgesDamprojectforoveradecade,onSeptember26,2007,ChinasCommunistPartygaveafirmwarningthatunlesspreventativemeasureswerequicklytaken,anenvironmentaldisasterwasapproachingfortheareassurroundingthe

    97.Id.98.ChinaThreeGorgesProject,RemarkableNavigationBenefit,http://www.ctgpc.com/benefifs/benefifs_a_3.php(lastvisitedJune1,2009).99.Allin,supranote91,at17.100.Id.101.NERSESIAN,supranote3,at301.102.Allin,supranote91,at20.103.Id.at19.104.Id.105.Id.at20.106.Id.107.Id.at2021.108.Id.at20.109.Id.2009]HYDROELECTRICDAMS501

    damandthatthesameareaswerepayingaseriousandpossiblycatastrophicenvironmentalcost.110Further,WangXiaofeng,thedirectoroftheadministrativeofficethatbuiltthedam,notedthatitwastimetofaceuptotheenvironmentalconsequencesofaprojecthailedasanachievementtorivaltheGreatWall.111Specificall