Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina...

28
-1- Materials & Engineering Sciences Center Atoms to Continuum 2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review, Philadelphia, PA Hydride Development Hydride Development for Hydrogen Storage for Hydrogen Storage Jim Wang Jim Wang Sandia National Laboratories Livermore, California May 24-27, 2004 Sandia Team Sandia Team . Mark Allendorf Ray Baldonado Bob Bastasz Tim Boyle Daniel Dedrick Karl Gross (consultant) Steve Karim Jay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant) Scott Spangler Ken Stewart Roland Stumpf Konrad Thuermer Jim Voigt Jim Wang Ken Wilson Nancy Yang This presentation does not contain any proprietary information.

Transcript of Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina...

Page 1: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-1-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Hydride DevelopmentHydride Development

for Hydrogen Storagefor Hydrogen Storage

Jim WangJim Wang

Sandia National LaboratoriesLivermore, California

May 24-27, 2004 Sandia Team Sandia Team .

Mark Allendorf

Ray Baldonado

Bob Bastasz

Tim Boyle

Daniel Dedrick

Karl Gross (consultant)

Steve Karim

Jay Keller

Weifang Luo

Eric Majzoub

Tony McDaniel

Tina Nenoff

Vidvuds Ozolins (consultant)

Mark Phillips

Bill Replogle

Gary Sandrock (consultant)

Brian Somerday

Scott Spangler

Ken Stewart

Roland Stumpf

Konrad Thuermer

Jim Voigt

Jim Wang

Ken Wilson

Nancy Yang

This presentation does not contain any proprietary information.

Page 2: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-2-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Delivery of

Storage

System

High Capacity

Materials

Research &

Development

StructureProperties

MaterialCompatibility,Synthesis &

ContaminationStudies

StorageSystem Design

FundamentalModeling

Approach: Science-based Materials DevelopmentApproach: Science-based Materials Development

Objective: Meet/Exceed DOE 2010 FreedomCAR

on-board hydrogen storage targets

Page 3: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-3-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

BudgetBudget

• FY04 Materials R&D Funding $1,700K

49%

14%

22%

15%

High Capacity

Materials

DevelopmentFundamental

Mechanisms &

ModelingCompatibility,

Synthesis &

ContaminationsEngineering

Science

High Capacity

Materials R&D

Fundamental

Mechanisms &

Modeling

Compatibility,

Synthesis &

Contaminations

Engineering

Science

= 63%R&D

on NewMaterials

Page 4: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-4-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Technical Barriers and TargetsTechnical Barriers and Targets

• DOE Technical Barriers for Reversible Solid-State Material

Hydrogen Storage Systems

• Inadequate hydrogen capacity and reversibility

• Un-demonstrated materials cycle-life

• Lack of understanding of hydrogen physisorption and chemisorption

• Lack of standard test protocols and evaluation facilities

• Un-defined dispensing technology

• DOE Technical Target for Reversible Solid-State Hydrogen

Storage System in 2010

• 6 wt.% minimum reversible hydrogen stored per system

• Refueling rate at 1.5 Kg H2 per minutes

Page 5: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-5-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Equipment and experimental work:

• Experiments follow Standard Operating Procedures (SOPs)

• All equipment calibrated and can be traced to NIST standards

• Laboratory safety issues are reviewed in full group biweekly meetings

Lessons learned:

• Sodium-alanates are air and water sensitive

• Procedures established for proper preparation and handling, storage and disposalof sodium-alanate materials

Insights and Management of Safety issues:

• Actively participates in DOE H2 Safety, Codes and Standards program

• Studied interaction of alanates with container vessel materials

• Sponsored alanate safety testing by Thiokol Corp

• Exchange safety information with other researchers in the hydrogen community

Project SafetyProject Safety

Page 6: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-6-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Project TimelineProject Timeline

2004 2005Q3 Q4 Q2Q1

PCT &PerformanceAnalysis of

Amides

CompleteInitial

ThermalPropertiesof Amides

High Temp& PressureSynthesis

of NewComplexHydrides

Large BatchProductionof Alanates

CompleteInitial

ReversibleBorohydride

Studies

CompleteInitial

ContaminationStudies

CompleteInitial

Substituted Li-Amide Studies

CompleteInitial

AlanatesModeling

OptimizedNon-reactive

doping

Long-termCycle-Life

Measurements

InitialModeling ofSubstitutionMechanism in

Amides

Continue NewHydrogenStorage

MaterialsExploration

Page 7: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-7-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

1.High Capacity Storage Materials Research

• Developed Mg modified Li-amide providingreversible 5 wt% hydrogen storage at 700 psibelow 200C with potential for up to 10.4 wt% ifthe second reaction step is included.

• A new high temperature/ high pressure hydrogentest facility had been assembled and tested fornew alanates development.

• Facility at BNL has been established to study thefeasibility of decreasing the stability of NaBH4for reversible reactions.

Technical AccomplishmentsTechnical Accomplishments

Page 8: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-8-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

New Complex Hydrides (Progress @ Sandia)New Complex Hydrides (Progress @ Sandia)

NaAlH4

Modified Li Amides with Mg ~ 5wt%

Page 9: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-9-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

New Complex Hydrides (P-C-T Diagram)New Complex Hydrides (P-C-T Diagram)

Improved lithium amide operating conditions at lower

temperature and higher pressure

0

20

40

60

80

100

0 1 2 3 4 5 6 7

H wt%

Press

ure, b

ar

220oC

285oC

Li2NH + H

2 LiNH

2 + LiH ( 6.5wt% )

Total of 11.5wt% if 2nd reaction is included*.

* P. Chen et al, Nature,

420, 21 (2002) 302

Sandia Mg Modified Li-Amide Reaction

5 wt% reversible H2

Page 10: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-10-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

New Complex Hydrides (New Complex Hydrides (VanVan’’tt Hoff Plot) Hoff Plot)

10 atm

3 atm

1 atm

30 atm

*

-1

-0.5

0

0.5

1

1.5

2

1 1.5 2 2.5 3 3.5 4

1000/T, oK

Log P

, at

m

LaNi5 HMgH2

NaAlH4

CaNi5 H6

Na3AlH6

200o C 100 o C 25

oC

LaNi4H 5

Mg2 NiH4

6

Modified

Li-Amide

Li-Amide

Mg modified Li-amides by SNL have potential

to meet DOE targets

Page 11: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-11-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Search for New Search for New AlanatesAlanates (Material Synthesis Equipment) (Material Synthesis Equipment)

•Higher pressure and higher temperature Capabilities

Test Cell capabilities:

Hydrogen pressure up to 30,000 psig

Temperature control up to 700 C

Cell door can be locked for safety

High-Temperature High-Pressure Hydride lab has been

developed and assembled for new alanates development

Page 12: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-12-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

2. Structure Properties and Modeling

• Demonstrated that Ti did not incorporate into

the lattice of Ti exposed NaAlH4 single

crystal materials.

• Gained insight from modeling of the role of Ti

in hydrogen sorption process on Al surfaces.

• Experimentally verified mass transport of

AlHx in Na alanate reversible reactions.

Technical Accomplishments Technical Accomplishments (cont(cont’’d)d)

Page 13: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-13-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Ti-doped Sodium Alanates (Structure Properties)Ti-doped Sodium Alanates (Structure Properties)

XRD Rietveld refinement of pure and 'Ti exposed' NaAlH4

using NIST Si standard reference.

Crystals of NaAlH4 exposed to Ti duringgrowth from THF

X-ray diffraction shows no evidence of Ti incorporation in the

lattice when doped by this method

Crystals of pure NaAlH4 from THF

Page 14: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-14-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Ti-doped Sodium Alanates (Fundamental Mechanisms)Ti-doped Sodium Alanates (Fundamental Mechanisms)

First principles calculations (VASP):

• H adsorption stabilizes Ti at Al andAl3Ti surfaces

• Ti reduces H2 sorption barriers atAl surfaces

Al with Ti dopantNaH

H2-gasdissociation/recombination

Ti

segregation

AlHx

Al transport

NaAlH4

AlHx

barrier

HTi

Al

H2 chemi-sorption well

H2 gas

Alreactionpath

TiAl

AlH

H chemisorbed

without Ti

with Ti

Ti activates H sorptionTi activates H sorption

at Al surfaceat Al surface

Page 15: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-15-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Ti-doped Sodium Alanates (Fundamental Mechanisms)Ti-doped Sodium Alanates (Fundamental Mechanisms)

Al mass transport likely by AlHx

AlNaH

H2-gas

AlHx

Al transport

NaAlH4

AlHx

STM picture of Alsurface pitted inhydrogen environment

Strong signal from AlHx species => Al-hydrideis volatile at 150C and likely mobile at lower T

Thermal Desorption Spectroscopyof Na-alanate

AlHx

Page 16: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-16-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

3. Compatibility, Synthesis, ContaminationStudies & New Capabilities

• A wet chemistry nano-materials synthesisfacility has been established and is ready fornano-sodium alanate and lithium amidematerials production.

• Methods using IR spectroscopy are beingdeveloped to monitor the effects ofcontaminants

• New kinetic, P-C-T and cycle-life instrumentsadded to the existing capabilities.

Technical Accomplishments Technical Accomplishments (continued)(continued)

Page 17: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-17-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

In situ XRD: Full Scans < 1 minute

leverages DP funding

• In situ XRD system

Extensive Experimental Capabilities AddedExtensive Experimental Capabilities Added

Hydride labs are being expanded

• 2 cycle life instruments

• 2 air-less sample preparation stations

High-pressure kinetics stations

• 5 manual kinetics systems (including 3 new ones)

Fully automated PCT instrument

• 1 automated PCT instrument

Page 18: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-18-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

4. Materials Engineering Properties

• Measurements of thermal conductivity,packing density, and expansion of sodiumalanates has been completed.

• An empirical predictive model to optimizepressure and temperature for charging &discharging of hydrogen from alanates hasbeen developed to aid in scaled upoperating conditions.

Technical Accomplishments Technical Accomplishments (continued)(continued)

Page 19: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-19-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Engineering Properties (Thermal Conductivity)Engineering Properties (Thermal Conductivity)

Properties relevant for3 wt% alanate

Low thermal conductivity of sodium alanate will be a

design challenge for H2 storage systems.

Page 20: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-20-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Engineering Properties (Container Wall Pressure)Engineering Properties (Container Wall Pressure)

Higher pressure will be expected for alanate storage

systems at high H2 wt% and high packing densities.

10002.31.2

1002.40.9

Pressure (psia)*Wt%*Density(g/cc)

Initial data:

*Maximum wt% and pressure

attained during experimental set

Page 21: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-21-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Engineering Properties (Empirical Modeling)Engineering Properties (Empirical Modeling)

Rate = k * F(C) * F(P)

n = 1 or 2;

b = 1 or –1;

C: H-wt %;

k = ko exp(-Qa/RT)

k: rate constant;

ko: pre-exponential factor;

Qa: activation energy

Peq: From K. Gross, Appl. Physics,

2001. (Van’t Hoff plot).

No hysteresis was considered.

Alanate DesorptionSimulation

Rate = k *Cn * b * ln (P/Peq)

NaH + 1/3 Al + _ H2 1/3 Na3AlH6

1/3 Na3AlH6 + 2/3 Al + H2 NaAlH4

0

0.5

1

1.5

2

2.5

0 0.4 0.8 1.2 1.6

Time, hours

H w

t%

experiment

calculated

125oC

An empirical charging/discharging kinetic model has been developed

Page 22: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-22-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Engineering Science (Empirical Modeling continued)Engineering Science (Empirical Modeling continued)

0.001

0.01

0.1

1

10

100

0 5 10 15 20

Papp, bar

Rat

e, H

wt%

/ h

ou

r

NaAlH4

80C

100C

120C

140C

Na3AlH6

120C

140C

160C

180C

Calculated Desorption Rates at

Hwt% = 3.2 for NaAlH4

Hwt% = 1 for Na3AlH6

Various Temperatures and Pressures

NaAlH4 Formation Rate At Variou

Temperature and Pressure

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

Papp, Bar

Rate

H w

t %

/ h

ou

r

140C

160C

120C

100C

80C

60C

[H] = 2.9 wt%

Charge optimizationCharge optimizationDischarge estimationDischarge estimation

This model can be used to optimize storage system design

Page 23: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-23-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Interactions and CollaborationsInteractions and Collaborations

University of Hawaii: Mechanisms of Ti-doping enhanced kinetics

University of Geneva (IEA): New Complex Hydrides

Tohoku University (IEA): Li-Amides Characterization

University of Singapore: Li-Amides Synthesis and Performance

Brookhaven National Laboratory – Reversible Borohydrides

Denver University: Electron Spin Resonance measurements

Lawrence Livermore: Solid-State Nuclear Magnetic Resonance

NIST: Neutron Diffraction and Scattering Spectroscopy

UCLA: Ab Initio Calculations

UTRC: Materials Purity Issues and Safety Testing

Page 24: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-24-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Response to previous YearResponse to previous Year’’ Reviewers Reviewers’’ Comments Comments

1. Many positive comments - Our approach validated

2. Need to expand materials search

• More than 60% budget on new materials R&D in FY04

• Exciting results from modified lithium amides

3. More basic science needs to be done

• Added more expertise in modeling, surface science andreaction chemistry in FY04

4. More thermodynamics to investigate Ti-doping

• Measurements are currently underway

5. Extend collaborations and team work

• Focus and strength of our DOE Metal Hydride virtualCenter of Excellence.

6. Continue engineering materials investigation

• Much progress made and ongoing

Page 25: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-25-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Future PlansFuture Plans• Remainder of FY2004:

• Lithium amide materials research and development

• Optimize capacity and kinetics via experiments and modeling

• Measure mechanical and heat transfer properties

• Evaluate safety and contamination effects

• Develop new synthesis route for nano-materials productions

• Other new complex hydrides

• Synthesize new hydride materials using high T & P facilities

• Evaluate properties and performance of new materials

• Understand mechanisms of Ti doped alanates via modeling andcharacterizations, especially of surface reactivity aspects

• Study safety and contamination effects on alanates

• FY2005 and beyond:

• Lead the DOE Center of Excellence on Metal Hydrides focusing onoptimizing present materials and developing new hydrogen storagematerials to meet/exceed DOE FreedomCAR 2010 targets

Page 26: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-26-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

Proposed DOE Metal Hydride virtual Center of Excellence (MHvCE)

MHvCE

Management Team

(Jim Wang, Jay Keller, Karl Gross)

Scientific

Advisory

Committee

DOEOffice of Hydrogen, Fuel Cells &

Infrastructure Technologies

8 Universities(Hawaii, Pittsburgh, Carnegie

Mellon, Illinois, Caltech,

Stanford, Utah, UN-Reno)

3 Industrial Companies(GE, HRL, Intematix)

4 Other National Labs(BNL, ORNL, JPL, NIST)

Sandia as MHvCE

Lead Lab12 Tasks including new

hydrides synthesis,

characterization,

performance testing,

fundamental modeling,

engineering properties, and

Center management

Management

Advisory

Committee

Page 27: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-27-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

DOE

MHvCE

Management

Team

Scientific Advisory

Committee

Mechanism

- Hawaii

- SNL

- UIUC

- NIST

- JPL

- UNR

- Stanford

Advanced

Complex

Hydrides

- SNL

- BNL

- Hawaii

- U. Utah

Rapid

Screening

Intermettalic

Hydrides

- GE

Complex

Hydrides

- Intematix

Destabilized

Binary

Hydrides

- HRL

- Caltech

- JPL

- Stanford

- Hawaii

New Materials

Modeling

- U. Pitts

- CMU

- UIUC

- SNL

- NIST

- U. Utah

Synthesis

- SNL

- ORNL

- U. Utah

- Caltech

- HRL

- Hawaii

Hydrogen

Storage

Properties

- SNL

- BNL

- JPL

- GE

- Caltech

- UNR

- Hawaii

Engineering Science

Phase II

SNL , JPL , GE….

Topic Groups

Management Advisory

Committee

Page 28: Hydride Development for Hydrogen StorageJay Keller Weifang Luo Eric Majzoub Tony McDaniel Tina Nenoff Vidvuds Ozolins (consultant) Mark Phillips Bill Replogle Gary Sandrock (consultant)

-28-

Materials & EngineeringSciences CenterAtoms to Continuum

2004 DOE Hydrogen, Fuel Cells &Infrastructure Technologies

Program Review, Philadelphia, PA

AcknowledgementAcknowledgementMark Mark AllendorfAllendorf

Tim BoyleTim Boyle

Daniel DedrickDaniel Dedrick

Karl GrossKarl Gross

Jay KellerJay Keller

WeifangWeifang LuoLuo

Eric Eric MajzoubMajzoub

Tony McDanielTony McDaniel

Tina NenoffTina Nenoff

Gary Gary SandrockSandrock

Roland Roland StumpfStumpf

KonradKonrad ThuermerThuermer

Jim VoigtJim Voigt

Ken WilsonKen Wilson