Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1...

19
S1 Supporting Information Hybrids of a 9-anthracenyl moiety and fluorescein as chemodosimeters for detection of singlet oxygen in live cells Serghei Chercheja, Steffen Daum, Honggui Xu, Frank Beierlein, and Andriy Mokhir* Content Outline of synthesis of probes 8d and 8e p. S2 NMR spectra of intermediates and new singlet oxygen probes p. S3-S14 Calculation of energies of highest occupied orbitals (HOMOs) of simple models mimicking probes 4, 8a-e p. S15-S16 1 H NMR spectroscopic monitoring of the reaction of probe 4 with 1 O2. p. S17 Detection of 1 O2 in prostate cancer cells DU-145 monitored by using fluorescence microscopy in combination with probe 4. p. S18 References p. S19 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Transcript of Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1...

Page 1: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S1

Supporting Information

Hybrids of a 9-anthracenyl moiety and fluorescein as chemodosimeters for detection of singlet oxygen in live cells

Serghei Chercheja, Steffen Daum, Honggui Xu, Frank Beierlein, and Andriy Mokhir*

Content

Outline of synthesis of probes 8d and 8e p. S2

NMR spectra of intermediates and new singlet oxygen probes p. S3-S14

Calculation of energies of highest occupied orbitals (HOMOs) of

simple models mimicking probes 4, 8a-e

p. S15-S16

1H NMR spectroscopic monitoring of the reaction of probe 4 with

1O2.

p. S17

Detection of 1O2 in prostate cancer cells DU-145 monitored by

using fluorescence microscopy in combination with probe 4.

p. S18

References p. S19

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2019

Page 2: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S2

Outline of synthesis of probes 8d and 8e

Scheme S1.Synthesis of probe 8d: a) chloromethyl methyl sulfide, NaH, DMSO, rt, 24

h, 7%; (b) SO2Cl2, CH2Cl2, 22 °C, 1 h; (c) compound 6, t-BuOK, DMF, rt, 24 h; d) LiOH,

H2O/THF, 22 °C, 24 h, (2% over 2 steps).

Scheme S2. Synthesis of probe 8e: (a) according to (1). Whitton, A. J.; Kumberger,

O.; Müller, G.; Schmidbaur, H. Chem. Ber. 1990, 123, 1931-1939 and (2) Whitton, A.

J.; Kumberger, O.; Müller, G.; Schmidbaur, H. Chem. Ber. 1990, 123, 1931-1939: t-

BuCl, AlCl3, CHCl3, reflux, 24 h, 34%; (b) according to U. Müller, V. Enkelmann, M.

Adam and K. Müllen, Chemische Berichte 1993, 126, 1217-1225: (NH4)2Ce(NO3)6,

THF/H2O, rt, 2 h, 64%; (c) according to Müller, U.; Enkelmann, V. ; Adam, M.; Müllen,

K. Chem. Ber. 1993, 126, 1217-1225 and Müller, U.; Enkelmann, V. ; Adam, M.;

Müllen, K. Chem. Ber. 1993, 126, 1217-1225: Sn, AcOH, HCl, 81%; (d) Chloromethyl

methyl sulfide, NaH, DMSO, rt, 18 h, 5%; (e) SO2Cl2, CH2Cl2, rt, 1 h; (f) compound 6,

t-BuOK, DMF, rt, 24 h, 11%; (g) LiOH, H2O/THF, rt, 24 h, 15%.

Page 3: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S3

NMR spectra of intermediates and new singlet oxygen probes 4, 8b-8e

9 8 7 6 5 4 3 2 1 0

6.0

0

2.9

7

1.0

0

1.8

8

1.9

8

1.0

1

1.0

2

2.0

5

1.0

3

8.0

38.0

07.6

87.6

7

7.6

57.6

17.5

97.2

77.1

7 6.7

6 6.6

76.6

66.6

66.5

76.5

36.5

36.5

06.5

0

3.7

9

1.6

4

Figure S1. 1H NMR spectrum of compound 6.

200 180 160 140 120 100 80 60 40 20 0

174.6

170.1

158.7 1

57.3

152.6

152.2

135.1

129.8

129.2

128.9

126.7

125.1

124.2

115.0

112.7

112.4

110.6 105.7

103.1

79.5

77.4 77.0

76.6

52.8

25.4

25.2

Figure S2. 13C NMR spectrum of compound 6.

Page 4: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S4

9 8 7 6 5 4 3 2 1 0

6.0

9

2.9

4

2.9

8

1.0

6

2.0

4

1.0

3

4.0

3

2.0

6

4.9

8

1.0

08.4

3

8.0

98.0

78.0

48.0

37.7

17.7

1 7.6

67.5

17.5

17.4

87.4

87.4

57.4

37.2

77.2

1 6.7

3 6.7

26.7

16.6

16.5

16.5

06.4

96.4

86.4

7

3.7

3

1.5

9

Figure S3. 1H NMR spectrum of compound 7a.

200 180 160 140 120 100 80 60 40 20 0

174.2

169.2

161.6

157.2

152.7

152.6

151.9

144.7

135.0 132.3

128.8

128.4

126.2

125.8

124.3

122.0

115.0

112.5

112.2

105.5

103.0

82.9 7

9.4

77.4

77.0

76.6

52.7

25.4

25.1

Figure S4. 13C NMR spectrum of compound 7a.

Page 5: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S5

9 8 7 6 5 4 3 2 1 0

6.2

0

0.8

7

5.0

5

1.0

9

4.0

1

2.1

3

0.9

8

1.8

9

1.9

1

0.9

18.6

18.2

18.2

08.1

88.0

87.7

47.5

87.5

77.5

6 7.5

57.5

47.5

37.5

27.3

4 6.8

2 6.6

76.6

66.6

46.5

56.5

5

1.5

9

Figure S5. 1H NMR spectrum of probe 4.

220 200 180 160 140 120 100 80 60 40 20 0

206.7

206.5

206.3

175.1

169.5

162.7

158.8

153.7

153.5

152.8

145.6

136.5 133.5

129.7

127.7

127.0

125.7

122.7

116.3

113.3

106.3 103.7

82.9

80.2

30.5

30.3

30.1

29.9

29.7

29.5

29.3

25.6

25.6

Figure S6. 13C NMR spectrum of probe 4.

Page 6: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S6

9 8 7 6 5 4 3 2 1 0

4.0

6

2.0

4

2.0

08.6

4

8.6

38.6

3 8.5

98.5

8

7.9

27.9

2

7.9

17.9

1

7.8

77.8

67.7

17.7

07.6

67.6

5

7.2

7

Figure S7. 1H NMR spectrum of 9-bromo-10-nitroanthracene.

200 180 160 140 120 100 80 60 40 20

129.9

129.0

128.2

128.0

126.4

122.7

121.7

77.4 7

7.0

76.6

Figure S8. 13C NMR spectrum of 9-bromo-10-nitroanthracene.

Page 7: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S7

9 8 7 6 5 4 3 2 1 0

6.3

7

2.9

6

2.9

3

1.0

0

1.9

9

0.9

6

1.9

74

.04

2.9

1

2.0

08.1

38.1

0 8.0

27.9

97.7

27.7

2

7.6

87.6

8 7.6

7 7.6

57.6

5

7.5

57.5

37.5

37.2

16.7

76.7

46.6

36.5

36.4

96.4

9

3.7

4

1.5

9

Figure S9. 1H NMR spectrum of compound 7b.

200 180 160 140 120 100 80 60 40 20 0

174.1

169.1

160.9

157.2

152.6

152.5

151.8

147.3

142.0

135.0

129.8

129.2

127.0

123.9

122.4

121.7

115.1

113.3

112.1

112.0

105.4 103.1

82.6

79.4

77.4

77.0

76.6

52.6

25.3

25.1

Figure S10. 13C NMR spectrum of compound 7b.

Page 8: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S8

9 8 7 6 5 4 3 2 1 0

5.9

8

1.0

0

1.0

4

2.1

6

1.7

6

1.0

0

2.0

6

4.0

6

3.0

4

2.0

38.1

38.1

08.0

0 7.9

77.6

77.6

77.6

67.5

4 7.2

77.2

07.1

8

6.7

66.7

3

6.6

5 6.6

46.6

06.5

46.5

3

1.6

0

Figure S11. 1H NMR spectrum of compound 8b.

200 180 160 140 120 100 80 60 40 20 0

178.1

169.2 161.0

156.7

152.6

151.8

147.3

142.0 135.1

129.9

129.3

127.0

123.9

122.4

121.8

116.0

113.3

112.8

112.0

106.7

103.1

82.6

79.4

77.4 77.0

76.6

25.3 25.0

Figure S12. 13C NMR spectrum of compound 8b.

Page 9: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S9

9 8 7 6 5 4 3 2 1 0

5.9

7

2.7

2

0.8

7

3.0

1

1.9

5

1.0

0

3.7

2

2.2

1

1.0

0

1.9

1

1.9

7

0.8

69.5

6 8.2

78.2

48.0

78.0

48.0

4

7.9

77.7

97.6

97.5

57.5

27.5

17.5

17.4

87.4

87.2

76.8

36.8

3 6.6

86.6

56.6

36.4

86.4

7

2.4

2

2.0

62.0

52.0

4

1.5

5

Figure S13. 1H NMR spectrum of compound 8c.

200 180 160 140 120 100 80 60 40 20 0

206.3

175.1

170.8

170.7

169.3

162.5

158.7

153.5

153.3

152.6

144.8

136.3

131.0

130.9 130.3

127.7

127.4

127.2

125.5

125.3

122.8

114.3 1

13.2

106.1

103.6

82.9

80.2

30.7

30.4

30.2

29.9

29.7

29.4

29.1

25.7

25.6

23.3

Figure S14. 13C NMR spectrum of compound 8c.

Page 10: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S10

Figure S15. 1H NMR spectrum of 9-(methylthiomethoxy)anthracene.

Figure S16. 13C NMR spectrum of 9-(methylthiomethoxy)anthracene.

Page 11: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S11

Figure S17. 1H NMR spectrum of compound 8d.

Figure S18. 13C NMR spectrum of compound 8d.

Page 12: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S12

Figure S19. 1H NMR spectrum of 2,6-di-tert-butyl-9-(methylthiomethoxy)anthracene.

Figure S20. 13C NMR spectrum of 2,6-di-tert-butyl-9-(methylthiomethoxy)anthracene.

Page 13: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S13

9 8 7 6 5 4 3 2 1 0

9.0

7

8.9

2

5.9

4

3.1

4

1.8

8

1.1

3

2.0

7

1.0

5

1.0

3

1.0

9

0.9

7

4.1

1

2.0

4

1.0

0

1.8

48.4

38.4

08.1

2 8.0

78.0

77.6

8 7.6

57.6

4

7.3

07.2

76.8

96.8

9 6.8

2

6.7

36.7

26.7

06.5

86.5

7

5.9

5

3.8

1

1.6

6

1.4

9

1.2

4

Figure S21. 1H NMR spectrum of compound 7e.

180 160 140 120 100 80 60 40 20 0

174.3

169.3

159.1

157.3

152.9

152.6

152.1

149.2

148.6

135.0

129.8

129.5

128.9

126.8

126.5

125.6

125.1

124.5

124.0

122.1

119.4

117.0

115.0

112.8

105.8

103.5

96.4

82.8 79.5

77.3

77.0

76.7

52.7

35.3

35.0

30.9

30.6

25.4

25.3

Figure S22. 13C NMR spectrum of compound 7e.

Page 14: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S14

9 8 7 6 5 4 3 2 1 0

9.3

9

8.9

7

6.4

4

1.9

3

1.1

3

2.1

2

1.0

8

1.0

8

2.1

0

3.0

8

1.1

8

1.1

0

1.0

0

1.0

4

1.9

08.4

18.4

08.3

88.2

88.1

58.1

57.8

17.7

97.7

87.7

87.7

67.3

37.3

26.9

16.8

86.8

46.8

36.7

86.7

3

6.1

66.1

56.1

3

2.0

62.0

62.0

52.0

42.0

4

1.6

5

1.4

8

1.2

2

Figure S23. 1H NMR spectrum of probe 8e.

200 180 160 140 120 100 80 60 40 20 0

206.2

169.5 160.1

158.8

153.9

153.6

150.8

150.0

149.3

136.3

131.1

130.7

129.9

128.0

126.7

125.7

125.1

125.1

123.6

119.8

118.4

114.6

113.9

104.3

97.4 83.0

80.4

36.1

35.7

31.2

31.1

30.7

30.4

30.2

29.9

29.7

29.4

29.1

25.8

25.7

Figure S24. 13C NMR spectrum of probe 8e.

Page 15: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S15

Calculation of energies of highest occupied orbitals (HOMOs) of simple models

mimicking probes 4, 8a-e

Geometry optimizations were performed using the B3LYP1 hybrid density functional

and the 6-31G**2-11 basis set with Gaussian16.12 Frequency calculations of the

optimized structures were used to confirm stationary points (minima). Checkpoint files

were converted to formatted checkpoint files using the formchk command and cube

files containing MO data were obtained with the cubegen command from the Gaussian

suite. Visualization of the HOMO isosurfaces was performed with vmd 1.9.3,13, 14 using

orbital isovalues of -0.02 (yellow) and 0.02 (blue).

Table S1.

Gaussian 16 (B3LYP/6-31G**)

Probe Model structure HOMO energy

[eV] HOMO

Relative HOMO-

energies [eV]

Reference

-4.77

reference, E=0

8e

-5.20

-0.43

8d

-5.20

-0.43

Page 16: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S16

4

-5.27

-0.50

8c

-5.28

-0.51

8b

-5.78

-1.01

Intensity of green color in the last column of this table indicates the reactivity of the

corresponding anthracene derivative with 1O2 as predicted based on energies of the

HOMOs.

Page 17: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S17

Figure S25. 1H NMR spectroscopic monitoring conversion of probe 4 (5 mM) to

anthraquinone AQ in the presence of photochemically generated 1O2. 1O2 was

generated upon irradiation of photosensitizer pyropheophorbide a (Ppa, 0.1 eq, 0.5

mM) with red light (650 nm) for 1 h and 14 h. Spectrum of reference compound AQ is

shown as a red trace. Peaks of AQ appearing upon the transformation of probe 4 are

indicated with dotted, black lines.

2

1H-NMR monitoring

Figure XX. 1H NMR spectroscopic monitoring conversion of probe 4 (5 mM) to anthraquinone AQ in the

presence of photochemically generated 1O2.1O2 was generated upon irradiation of photosensitizer Ppa (0.1

eq, 0.5 mM) with red light (650 nm) for 1 h and 14 h. Spectrum of reference compound AQ is shown as a

red trace. Peaks of AQ appearing upon the transformation of probe 4 are indicated with dotted, black lines.

AQ: reference

Probe 4 + Ppa/irradiated (1 h)

Probe 4 + Ppa/irradiated (14 h)

Probe 4 + Ppa/in dark (1 h)

Probe 4 + Ppa/in dark (14 h)

Chemical Shift

Page 18: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S18

Figure S26. Fluorescence microscopy images combined with optical image of DU-

145 cells before (left column) and after (right column) irradiation under red channel.

A: Cells treated with a carrier DMF; B: Cells treated with probe 4 (1 µM); C: Cells

treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1

µM).

3

Fluorescence microscopy

Figure XX. Fluorescence microscopy images combined with optical image of DU-145 cells before (left

column) and after (right column) irradiation under red channel. A: Cells treated with a carrier DMF; B: Cells

treated with probe 4 (1 µM); C: Cells treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and

InPpa (0.1 µM).

Page 19: Hybrids of a 9-anthracenyl moiety and fluorescein as … · 2019-11-01 · treated with InPpa (0.1 µM); C: Cells treated with probe 4 (1 µM ) and InPpa (0.1 µM). 3 Fluorescence

S19

References

1. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652. 2. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728. 3. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-

2261. 4. P. C. Hariharan and J. A. Pople, Theor. Chem. Acc., 1973, 28, 213-222. 5. P. C. Hariharan and J. A. Pople, Mol. Phys., 1974, 27, 209-214. 6. M. S. Gordon, Chem. Phys. Lett., 1980, 76, 163-168. 7. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A.

Pople and M. S. Gordon, J. Chem. Phys., 1982, 77, 3654-3665. 8. R. C. Binning Jr. and L. A. Curtiss, J. Comput. Chem., 1990, 11, 1206-1216. 9. J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss and L. Radom, J. Chem. Phys.,

1997, 107, 5016-5021. 10. V. A. Rassolov, J. A. Pople, M. A. Ratner and T. L. Windus, J. Chem. Phys.,

1998, 109, 1223-1229. 11. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, J.

Comput. Chem., 2001, 22, 976-984. 12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. B.01, Wallingford, CT, 2016.

13. VMD web page, http://www.ks.uiuc.edu/Research/vmd/. 14. W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics, 1996, 14, 33-38.