Hybrid Electrolytes for PHEV Applications · Hetro-cyclic Cation family containing a functional...

20
Hybrid Electrolytes for PHEV Applications Surya Moganty (PI), Luigi Abbate, Kevin Brown Vivian Zhu , John Sinicropi Rochester, NY DOE Technical Merit Review June 6-10, 2016 Project ID: ES290 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1

Transcript of Hybrid Electrolytes for PHEV Applications · Hetro-cyclic Cation family containing a functional...

Hybrid Electrolytes for PHEV Applications

Surya Moganty (PI), Luigi Abbate, Kevin BrownVivian Zhu , John Sinicropi

Rochester, NY

DOE Technical Merit ReviewJune 6-10, 2016

Project ID: ES290

This presentation does not contain any proprietary, confidential, or otherwise restricted information1

Overview

• Start date: 08/15/2015• End date: 02/14/2017• Percent complete: 44%

• Electrolyte High voltage stability: stable at 4.5 to 5V

• Electrolyte Cost : <$10/kg• Electrolyte Safety: Non-

flammable and safe• Wide temperature performance

of electrolyte: @ -30oC to 60oC

• Total project funding: $1,639,044– DOE share: $819,522– NOHMs: $819,522

• FY 2015: $278,481• FY 2016: $1,269,215 (Est)

Timeline

Budget

Barriers

• A123 - Cell Build and Testing• CoorsTek – Ionic liquid

Synthesis and Cost Analysis

Collaborators

2

Relevance and Project Objectives• Significant barriers to commercialization of new battery

technology include:– Use of high voltage electrodes with stable high voltage electrolytes– Demonstrate low-cost manufacturability of the electrolyte at large

volumes.• NOHMs Objective is to develop functional ionic liquid based

electrolytes that exhibit high conductivity, excellent electrodestability and wide temperature operations for applications in 5VLi-ion batteries– Functional ionic liquid design and synthesis– “5.0 V” Electrolyte formulation and optimization– Prototype cell assembly and testing (2Ah) (NMO, NMC532)– Design and cost study of electrolyte production– Building 10Ah pouch cells for USABC final deliverables (NMO,

NMC532)

3

Milestones

4

Approach/Strategy

Functional ionic liquid design/synthesis

Electrolyte formulation design

Transport & Electrochemical

property measurements

Coin & Small pouch cell testing

Pouch cell testing(2Ah and 10 Ah pouch

cells)

Electrolyte cost estimation and manufacturing

Statistical tools: DOE Literature NOHMs technical

knowledge

Viscosity, conductivity Floating current studies >5V Graphite SEI formation Low ICL

Half cells, full cells EIS studies FTIR, SEM, XPS studies

5

Technical Accomplishment:NOHMs Novel Ionic liquids

Hetro-cyclic Cation family containing a functional group

TFSI Anion

Decomposition Temp >300 oC

Elemental analysis (C, H, N) confirmed 99.99% purity with 0% halide concentration (ICP)

6

Technical Accomplishment:NOHMs Novel Ionic liquids

Differential scanning calorimetry traces indicate larger ring size results in liquid salts with no distinctive phase transitions.

Scan rate= 2 oC/min

7

n&

Fb& F'b&

N

n

FGn

.(*2>&H2]"2R&

B(75H&T"*>Q(*%H&)#("?A&+(&H(95#&.(*2>&H2]"2R&72A>(A2+$&BEV'A&FH5>+#(H$+5&T(#U"H%Q(*&A<(9&A2U2H%#&>(*R">Q72Q5A&>(U?%#5R&+(&4%A5&H2*5&5H5>+#(H$+5&

=#,8+%,*)'6,,/>7)%48>#+1?'E)#,1$/)<1#'1$*+47/$1'7$/7#$3#4'

89

1

2

3

4

56789

10

2

Con

duct

ivity

(mS

/cm

)

50403020100-10-20-30

Temperature (oC)

EC:EMC 3:7 1MLiPF6 NOHMs HVE36 NOHMs HVE133 NOHMs HVE137 NOHMs HVE138

High pressure and high temperature reactorwith controlled heating system is developed tocollect the vapor pressure vs temp data

Collected experimental data matches with theAntonie equation

Technical Accomplishment:Vapor pressure measurements

9

Propylene carbonate and Ionic liquid exhibited excellent thermal stability- Significantly less vapor pressure up to 300 oC

Electrolytes with PC and ionic liquid would provide considerably less volatile systems

Technical Accomplishment:Vapor pressure of mixtures

10

!

"

#!

#"

$!

$"

%!

%"

&!

&"

"!

!""#$#"%&'(#)*+%%),-. !"#$%&'$()$*&+!,-&./")#0&1&23405

678697&:8;&29,$<=3&

=#,8+%,*)'6,,/>7)%48>#+1?':1*2%)%1<'*;*%+41'I$*78%1#'*+/-#'

.(*2>&H2]"2RA&%#5&*(+&A+%4H5&%)%2*A+&h#%?<2+5&%*(R5&%+&H(9&7(H+%)5A&

G(&"*R5#A+%*R&+<5&%k5>+&(T&.1&>%Q(*&+$?5&%*R&T"*>Q(*%H&)#("?0&2##575#A24H5&>%?%>2+$&H(AA&(T&12Jh#%?<2+5&<%HT&>5HH&%+&bdKL&#%+5&2A&"A5R&%&A>#55*2*)&U5+<(R(H()$&&

BEV'A&T"*>Q(*%H&2(*2>&H2]"2RA&A<(95R&5^>5HH5*+&#5R">Q(*&A+%42H2+$&%)%2*A+&)#%?<2+5&%*(R5&575*&%+&75#$&<2)<&>(*>5*+#%Q(*A&,KI&j&4$&U%AA&2*&+<5&5H5>+#(H$+5/&&

KK&

100

101

102

103

104

Leak

cur

rent

(µA

/cm

2 )

20151050Time(hr)

Base line HVE136 HVE137 HVE138

WXm:& YXL:&

1

2

3

456

10

2

3

456

100

2

3

456

1000

Leak

cur

rent

(µA

/cm

2 )

151050Time(hr)

Base line HVE136 HVE137 HVE138

WXm:& YXL:&

MY&(b& WY&(b&

=#,8+%,*)'6,,/>7)%48>#+1?':1*2%)%1<'*;*%+41'@5JKLM'

!! BEV'A&?#(?#25+%#$&.1&5H5>+#(H$+5A&A<(95R&75#$&H(9&H5%f&>"##5*+&%)%2*A+&B'bYcM&>%+<(R5&575*&%+&5H57%+5R&+5U?5#%+"#5A&

KM&

4.95V 5.2V 4.95V 5.2V

25 oC 45 oC

NOHMs proprietary IL electrolytes showed very low leak current against NMO cathode even at elevated temperatures

Technical Accomplishment:Stability against NMO

13

KW&

SO

O O

!! 8%A5&H2*5&5H5>+#(H$+5A&FbOF'b&cOm&%*R&FbOF'bO.1&cOIOK&A<(95R&A2U2H%#&>$>H5&>%?%>2+$&#5+5*Q(*&

!! _"#+<5#&%RR2Q(*&(T&2(*2>&H2]"2R&H(95#5R&+<5&>%?%>2+$&#5+5*Q(*&

!! 3RR2Q75&2*&>(*N"*>Q(*&92+<&BEV'A&T"*>Q(*%H&2(*2>&H2]"2R&5^<242+5R&2U?#(75R&?5#T(#U%*>5&

=#,8+%,*)'6,,/>7)%48>#+1?'@5!NI$*78%1#N'J<,)%+;'

WXPY&+(&cXY&:&bdc&@%+5&

=#,8+%,*)'6,,/>7)%48>#+1?'@5JKLMNI$*78%1#N'F/)1*;#'4#+4%3"%1<'

BEV'A&R5A2)*5R&5H5>+#(H$+5A&A<(95R&?#(U2A5&2*&B'bYcMJh#%?<2+5&?("><&>5HHA&%+&Mb&R2A><%#)5&#%+5&&

KY&

Response to Previous Reviewers

• This is a new project and was not reviewed last year

16

J/))*2/$*3/+4'

•! FH5>+#(R5&>(*A+#">Q(*&,B'b&%*R&B'E/&%*R&U%HH&T(#U%+&>5HHA&T(#&?#((T&(T&>(*>5?+&

•! D5H275#&M&3<&%*R&KL3<&?#2AU%Q>&?("><&>5HHA&,B'b&e&B'E/&92+<&BEV'A&5H5>+#(H$+5&

•! -#(R">5&AU%HH&]"%*QQ5A&(T&2(*2>&H2]"2RA&

•! b(A+&3*%H$A2A&(T&<2)<&7(H"U5&5H5>+#(H$+5&?#(R">Q(*&

•! B59&-%#+*5#&G8D&

Km&

Challenges and Barriers

• NMO cathode presents challenges to create high loadingfor 2Ah and 10 Ah cell builds

• Ionic liquid stable against cathode are not stable againstgraphite anode

• Additive that form a stable SEI on graphite react withNMO/NMC532 cathodes at high voltages

• Optimization of additive and functional ionic liquidcombination is important to achieve high voltagestability and full cell operation

18

Proposed Future Work

• 2016 (Q3 & Q4)– Down select to the best electrolyte for NMC and NMO and

make 2Ah pouch cells for USABC delivery.– Based on USABC test results improve on electrolyte

formulation, continue Electrochemical testing and abuse tolerance testing

– ByDec 2016 – produce liter quantities of final electrolyte for NMC and NMO

– 2016 Q4 – Develop cost model for final electrolytes• 2017 Q1

– Build and Deliver sixty 10Ah pouch cells with NOHMs electrolyte (30 NMO; 30 NMC)

19

Summary Slide

• Narrowed down IL based electrolytes from 130 to 10

• Promising performance Results

• Established multiple screening methods to down select electrolyte formulations

Gap Chart

20