HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham...

29
HRMT24 BeGrid – Technical Review P. Hurh 1 , B. Hartsell 1 , B. Zwaska 1 , K. Ammigan 1 , C. Densham 2 , A. Atherton 2 , M. Fitton 2 , J. O’Dell 2 , T. Davenne 2 , P. Loveridge 2 , O. Caretta 2 , S. Roberts 3 , V. Kuksenko 3 , M. Calviani 4 , R. Losito 4 , D. Hovarth 4 1 Fermi National Accelerator Laboratory Batavia, IL 60510, USA 2 STFC Rutherford Appleton Laboratory Harwell Oxford, Didcot, OX11 0QX, UK 3 University of Oxford Oxford, OX1 3PH, UK 4 CERN CH-1211 Geneva 23, Switzerland

Transcript of HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham...

Page 1: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HRMT24 BeGrid – Technical Review

P. Hurh1, B. Hartsell1, B. Zwaska1, K. Ammigan1, C. Densham2, A. Atherton2, M. Fitton2, J. O’Dell2, T. Davenne2, P. Loveridge2,

O. Caretta2, S. Roberts3, V. Kuksenko3, M. Calviani4, R. Losito4, D. Hovarth4

1Fermi National Accelerator LaboratoryBatavia, IL 60510, USA

2STFC Rutherford Appleton LaboratoryHarwell Oxford, Didcot, OX11 0QX, UK

3University of OxfordOxford, OX1 3PH, UK

4CERNCH-1211 Geneva 23, Switzerland

Page 2: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 2

Overview

Introduction

Experiment design

Operational process

Risk analysis

Residual activation study

15/10/2014

Page 3: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 3

IntroductionMotivation

To help successfully design and reliably operate beryllium windows and targets for

future high intensity particle accelerator facilities, by identifying failure mechanisms of

beryllium under high intensity beam conditions

Objectives explore the onset of failure modes of various beryllium grades under controlled

conditions at very high localized strain rates and temperatures

identify potential thermal shock limits of different beryllium grades

compare experimental measurements to highly non-linear damage/failure numerical

simulations for validation of material models

15/10/2014

Page 4: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 4

Test Matrix1

1Ammigan, K. et al., “A beryllium material test experiment at CERN HiRadMat facility”, 9th International Workshop on Neutrino Beams and

Instrumentation, September 23-26, 2014

15mm 40mmThin discs “Slugs”

15/10/2014

Page 5: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 5

Experiment Design Concept

Thin Discs Slugs

HEPA Filter Pump

Beam

Airflow

Sample containment boxes

Outer chamber

Double containment:

i. Sealed sample containment

boxes

ii. Outer chamber with beam

entry/exit holes

Outer chamber entry/exit holes

15mm diameter (or smaller)

Active pumping of outer chamber

volume

Incoming air speed estimated ~3 m/s

Detachable HEPA filter

Method of sealing outer chamber

after experiment and in event of

emergency.15/10/2014

Page 6: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

Experiment Layout

Pump:18m3/hr48V – 7A200mbar

suction head

Experiment chamber

HEPA FilterDry Disconnects

Lift Table

Camera

MirrorInterface plate

Beam

6HiRadMat Technical Board Review 15/10/2014

Page 7: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 7

Experiment Chamber Exterior

Shutter system Optical windows

Wedge

Interface plate with alignment

screws

Air outlet with integrated pressure

switch

Electrical feedthroughs

Experiment chamber

dimensions:0.65m (L) x 0.35

(W) x 0.3 (H)

15/10/2014

Page 8: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 8

Interior layout

Pressure Relief Valves

Vertical Base Plate

Thin disc containment box

Slug containment box

GAFCHROMIC foil

Horizontal Base Plate

15/10/2014

Page 9: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 9

Support blocks

Electrical feedthroughs

Ports on VBP for electrical connections to slug containment

boxes

Interior layout

15/10/2014

Page 10: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 10

Slug Containment Box

Sample attachment plateElectrical feedthrough

Glassy Carbon + Graphite windows

Pressure relief

Optical window

Slug tray

Glassy Carbon/Graphite

Baffle plate

Containment box cover

15/10/2014

Page 11: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 11

Thin Disc Containment Box

Thin discsEBSD samples

Glassy Carbon + Graphite

window

Pressure relief Optical window

Al rods

End plate

SpacerDisc holder

Be disc

15/10/2014

Page 12: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 12

Instrumentation ListInstrumentation Purpose Quantity

Resistive strain gages Dynamic strain response of slugs 30

RTD sensors (PT100) Temporal temperature of slugs 5

LDV* Radial velocity/displacement of slugs 1

High resolution still camera* Monitor slug condition before and after pulses. 1

Gafchromic foil and camera Beam alignment and positioning 1

Lighting Provide illumination for acquiring camera images 1

Pump Draw air out of outer chamber via HEPA filter 1

*LDV and high resolution camera will be placed in low radiation bunker, upstream of experimental area (~ 40 m). Accurately aligned mirrors will be used to send and reflect the laser beam back to vibrometer.

15/10/2014

Page 13: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 13

Beryllium Mass Estimate

Be grade Thickness (mm) Quantity Mass

(g)Total mass

(g)

S-65F (VHP) 0.25 5 0.0817 0.40860.75 7 0.2451 1.7163

2 5 0.653 3.269230 5 9.8076 49.0382

S-200F (VHP) 0.25 5 0.0817 0.40860.75 7 0.2451 1.7163

2 5 0.653 3.269230 5 9.8076 49.0382

S-200FH (HIP) 0.25 5 0.0817 0.40860.75 7 0.2451 1.7163

2 5 0.653 3.2692130 5 9.8076 49.0382

PF-60 0.25 5 0.0817 0.408650.75 7 0.2451 1.7163

2 5 0.653 3.2692TOTAL 83 168.6917

15/10/2014

Page 14: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 14

Materials and Mass EstimateMaterial Component Mass [kg] Quantity Total Mass [kg]

Aluminium Al 6082

Interface Plate 7.5 1 7.49Outer chamber 18.1 1 18.10

HBP 1.1 1 1.15VBP 5.8 1 5.79

Support Blocks 1.0 2 2.09Slug Containment Boxes 1.1 5 5.39

Slug Trays 0.1 5 0.72Disc Containment Boxes 1.3 5 6.46

Disc Sample Holders 0.006 68 0.40Rod discs 0.005 15 0.08Rod EBSD 0.003 6 0.02End Plates 0.043 14 0.61Foil Holder 0.7 1 0.69

Total Mass [kg] 48.97

Toughened Glass

Outer Window 1 0.7 1 0.66Outer Window 2 0.7 1 0.66Thin Disc window 0.1 10 0.61

Slug window 0.1 5 0.45Total Mass [kg] 2.38

Glassy CarbonBeam windows 7.21E-04 20 0.01

Baffle plates 8.06E-03 10 0.08Total Mass [kg] 0.10

Graphite R7650 Beam windows 9.98E-04 20 0.02

Overall Mass [kg] 51.4

15/10/2014

Page 15: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 15

Manufacture and assembly of experiment apparatus (RAL)

CMM surveying of samples relative to vertical base plate (RAL)

Characterisation of thin disc samples for EBSD PIE (Oxford)

Testing of camera and remote systems.

Strain gauge and PT100 installation and testing with DAQ system

(TBD)

Transport of pre-assembled apparatus to CERN.

Installation on experiment table at CERN.

Surveying on experiment table.

Installation on test stand in experiment tunnel.

Operational Process: Experiment Preparation

15/10/2014

Page 16: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review

Experiment Operational Procedure

16

Inspect pump diagnostic

Execute pilot beam shot

Activate camera directed at slug and inspect slug condition

Activate camera directed at foil and inspect beam alignment

Deactivate pump

Continue?

Continue?

End experiment

Move to next array

Start experiment

Troubleshoot pump

Execute beam shot

Close shutters

Continue?

15/10/2014

Page 17: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 17

Beam pulse list: Total protons = 2.00e14Note list does not include low intensity pilot pulses

Experiment Operational Procedure

15/10/2014

Page 18: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 18

Seal box by activating shutter system to close any open beam holes in the outer

chamber.

Transport to cool down zone.

Cool down period

Detach filter for analysis

Visually inspect samples

Remove outer chamber and extract thin disc sample boxes.

Package containment boxes in shielding flask for transport to Oxford, UK.

Operational Timeline: Post-irradiation

15/10/2014

Page 19: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 19

Containment Box Pressure Increase: CFX Study2

Thin disc containment box geometry Section through thin disc containment box showing convection

Section through slug containment box showing convectionPressure increase

~125Pa

2Davenne, T., , 13th October 2014

Volume average pressure in slug array

Pressure increase ~180Pa

15/10/2014

Full intensity pulse

energy deposition

Temp jump of ~10K

Pressure increase of

~180Pa in slug box

Page 20: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 20

# Item Description Hazard Precautions

Like

lihoo

d

Seve

rity

Risk

Rati

ng

1 Beryllium handling Beryllium particles may be produced during the experiment and become airborne. Beryllium may come into contact with skin and eyes during handling.

Ingestion and skin or eye contact.

Appropriate PPE worn at all times when handling beryllium samples or during dismantling process post experiment: safety glasses, gloves, dust mask or respirator. Beryllium samples remain contained during entire presence at CERN. Double containment method to prevent release of particles.

1 4 8

Modular design of experiment components.

Handles on external cover.Experiment assembly transported on trolley.

Use of crane to lift test stand in BA-7 and TNC tunnel.

Pressure inside containment may rise due to energy deposition of beam.

Pressure relief valves.

Pressure differential due to pumping of air out of secondary containment volume.

Pressure test containment box for high and low pressure.

Offl ine surveying.

Online beam alignment monitoring using radiation developing foil.Insulated wiring.

Minimise operation time of lights. Construction from non-flammable materials.

No human access to tunnel during operation.

i. Display warning signs to any areas fingers could become trapped. Enclosed pump motor. Enclosed pump motor. Slow shutter speed.Low voltage connections between the control room and the test standTesting and commissioning prior to arrival at CERN

3 37 Electric Remotely operated electrical equipment: shutter system, pump, high resolution and/or rad hard cameras,

Electric shock

1

1

6

2 3 6

6 Moving Parts Pump, shutters, lift table. Injury due to impact or hands or fingers caught in moving parts.

4 4

1 4 45 Fire Fire caused by electrical wiring or lighting.

Toxic fumes, loss of containment, risk to surrounding structures.

Injury due to lifting heavy objects.

1 4 4

4 Misaligned beam/target

Beam impinges surrounding structures or containment structure.

Apparatus damage, potential loss of containment.

Beam window, optical window or containment vessel rupture leading to loss of containment.

Pressure3

2 Manual Handling Required during assembly and on integration of the experiment components on to the test stand.

2 3

Risk Assessment

Beryllium Handling:Hazard:

Ingestion, skin and eye irritation.

Precautions:

Beryllium samples remain contained in sealed

containment boxes throughout presence at CERN.

Release to external environment prevented by:

Double containment

Active pumping of outer chamber.

Online diagnostics (pressure switch,

camera systems)

Disassembly procedure and diagnostics.

Extraction of samples from containment box at

Oxford or CCFE, UK.

15/10/2014

Page 21: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 21

Radiation Protection Risk Assessment# Item Description Hazard Precautions

Like

lihoo

d

Seve

rity

Risk

Rati

ng

Optical window rupture Double containment measures.Beam window failure Pressure relief valves

Seal failure Negative pressure differential between secondary containment volume and external atmosphere.

Minimise activation of samples. Minimise sample number.Sealed outer containment box between pulses.

Electrical wiring fire Apparatus constructed from non-flammable materials. Lighting fire Heat sinks attached to lighting elements.Radiation hardened where possible.LDV and hi res cameras remotely operated and shielded upstream of experiment stand.

Filter removal. Beryllium powder release and ingestion.

Allow cool down period.

Opening secondary containment cover.

Residual activity of apparatus and extractable parts.

Minimise mass of apparatus.

Transport of primary containment boxes.

Detachable filter provides indication of contamination of secondary containment volume.

Opening primary containment boxes.

Dry disconnects prevent contamination during filter removal.

Handling beryllium samples.

Optical windows provide visual inspection of experiment interior prior to breaking containment.

Remove secondary containment in vented fume hood/hot cell. Open primary containment boxes in vented glove box. Wipe test of internal surfaces.Transport containment boxes in sealed transport flask.Allow cool down period

Minimise contact time.

8

3 Diagnostics Strain gauges, PT100s, high res cameras, LDV.

Radiation dose 1 3 3

Sample extraction process.

4 2

Fire/explosion2

Filter rupture/leak.

Loss of containment.

1 Radioactive Beryllium released in to external environment.

Apparatus damage and loss of containment.

During experiment

Disassembly and Post Irradiation Examination

2 2 45 Post Irradiation examination of samples

All handling and examination techniques.

Radiation dose.

4 8

4 4

4

2

1

Main points:Minimise activation

Aluminium construction

Minimise sample size and number

Containment:

Double containment

Minimise sample number and size

Experiment chamber sealable after experiment in event of emergency

Online diagnostics: monitor beam alignment, slug condition and pump

activity.

Beryllium remains contained in sealed containment boxes throughout

presence at CERN.

Post experiment:

Detachable filter and visual inspection

Minimise contact time: quick release pins

Extraction of samples from containment box at Oxford or CCFE, UK.

15/10/2014

Page 22: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 22

Activation study performed on

thin disc and slug containment

boxes

Simplified FLUKA geometry:

Screw holes, grooves and

DSUB connector omitted

Hex screws simplified to a

cylinder

Activation Study3

3Horvarth, D., Calviani, M. “BeGrid HiRadMat Test: Residual activation”, 6th October 201415/10/2014

Page 23: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 23

Used materials:Al6082 (composition w%):

Si –1.3%Fe –0.5%Cu –0.1%Mn–1.0 %Cr –0.25%Mg –1.2%Zn –0.2%Ti–0.1%Al –95.35%ρ= 2.7 g/cm3

Glassy Carbon:Pure carbonρ= 1.5 g/cm3

Beryllium

Irradiation profile: Beam parameters:

440 GeV/c proton beam,

Gaussian shape, σ= 0.3mm

Total 4.9e13 proton, in 20 pulse, over a

half day

2.45e12 proton/pulse, pulse length = 1

second,

30 minutes between pulses

Cooling times:

1day, 1 week, 1 month, 3 months,

6 months, 1 year, 2 years

Activation Study3

15/10/2014

Page 24: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 24

Residual dose rateAfter 3 months cooldown, averaged in a 1 mm thick plane around the beam line

Activation Study3

15/10/2014

Page 25: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 25

Residual dose rateAfter 3 months cool down:

Maximum value in the X-Y

plane for each Z coordinate

Maximum value: 9.90

μSv/h in the glassy carbon

wall after the Be slugs.

Highest value in Be slug:

7.71 μSv/h

Highest value in Al: 3.10

μSv/h around the exit

window

Activation Study3

15/10/2014

Page 26: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 26

Residual dose rateAfter 1 day the dose

from the activation of

the containment is the

prominent one.

Between 1 week and

6 months the radiation

from the Be dominates.

After 1 year the

containment again is

the bigger contributor.

Activation Study3

15/10/2014

Page 27: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 27

Activation Study3

15/10/2014

Page 28: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 28

Activation Study2

15/10/2014

Page 29: HRMT24 BeGrid – Technical Review P. Hurh 1, B. Hartsell 1, B. Zwaska 1, K. Ammigan 1, C. Densham 2, A. Atherton 2, M. Fitton 2, J. O’Dell 2, T. Davenne.

HiRadMat Technical Board Review 29

HRMT24 will investigate failure modes of Beryllium discs induced by high intensity

beam conditions to aid the development of beryllium windows and targets

A design of the experimental apparatus is in process which will include:

Samples held in containment boxes sealed by dual graphite/glassy carbon

beam windows.

Outer chamber with internal volume actively pumped during operation with

outlet to HEPA filter.

Instrumentation including LDV, strain gauges, PT100s, two camera systems.

A shutter system to seal outer chamber following experiment or in case of

emergency.

Initial analyses indicates 3 months provides ample time for residual activity levels

to fall to a safe level for containment box extraction.

Summary

15/10/2014