How will biogeochemical processes in the ocean … · How will biogeochemical processes in the...

29
How will biogeochemical processes in the ocean respond to surface warming? Anja Engel Alfred Wegener Institute for Polar and Marine Research (AWI)

Transcript of How will biogeochemical processes in the ocean … · How will biogeochemical processes in the...

  • How will biogeochemical processesin the ocean respond to

    surface warming?

    Anja EngelAlfred Wegener Institute

    for Polar and Marine Research (AWI)

  • The Naked EarthThe Discovery of Global Warming

    Joseph Fourier

    1768-1830

    Svante Arrhenius

    1859-1927

    John Tyndall

    1820-1893

    Air traps the

    heat from

    the sun

    Its the water

    vapour and the

    CO2..

    CO2 and

    temperature.

    Thats

    the feedback!

    Pictures:wikipedia

  • Future projections of GHG Emissions andGlobal Mean temperature

    IPCC, synthesis report (2007)

  • Surface temperature-projected Changes until 2100-

    IPCC-A1F1 Scenario business as usual

    Largest temperature changes are expected for the northern hemisphereExceptional strong warming may occur in the Arctic Ocean

  • Biogeochemistry and surface warming outline:

    Surface Ocean Physics:

    Mixed layer depth

    Stratification strengthNutrients

    Light

    Ice coverage

    Direct Temperature Effects:Plankton MetabolismPrimary & Secondary Production

    POM-DOM Partitioning

    Organic Matter Remineralisation

    Biogenic Silica Dissolution

    Sea Surface Warming

    Marine Biogeochemistry

    feedba

    ck

    feedba

    ck

  • Increase in surface ocean stratification

    Present Future

    Low Low LatitudeLatitude and and

    TemperateTemperate OceanOcean

    PresentPresent FutureFuture

    High High LatitudeLatitude OceanOcean

    Sea ice

    Thermocline

    Pycnocline/Thermocline

    nutrientreservoir

    nutrientreservoir nutrient

    reservoirnutrientreservoir

    Temperature Nutrients

    Temperature Light

    Thermocline

  • stratification reduces primary production(in warm regions)

    Behrenfeld et al. (Nature, 2006)

    Net primary production (NPP)

    anomaly follows changes instratification patterns

  • Behrenfeld et al. (Nature, 2006)

    For 74% of the permanently

    stratified ocean, NPP and SST changes are inversely related

    Changes in annual averageSST between 1994 and 2004

    Changes in annual averageNPP between 1994 and 2004

  • What to expect for the polar Oceans?

    2006

    2007

    Arrigo et al. 2008

    25% more open water

  • What to expect for the polar Oceans?

    Arrigo et al. 2008

    20072006

    Difference in NPP Extended season

  • Bacterioplankton Phytoplankton Zooplankton

    Direct effects of Temperature on biology-metabolic processes-

    Temperature

    Enzym

    atic

    Rea

    ction

    Rate

    Arrhenius-typeincrease

    Proteindenaturation

    Q10

    Q10:1-2Q10:2-3 Q10:1.8-2.5

  • Kirchman et al. (Nature, 2009)

    temperature sensitivityof Bacterial Production in the ocean

    Kirchman et al. 2009

    Polar Seas Temperate & Low Latitude Seas

  • temperature sensitivityof Bacterial Production in the ocean

    Temperature

    Kirchman et al. 2009

    Polar Seas

    Temperate & Low Latitude Seas

  • Kirchman et al. 2009

    temperature sensitivityof Bacterial Production in the ocean ?

    Polar Seas Temperate & Low Latitude Seas

    Hypothesis: The balance between Primary and Secondary(Bacterial) Production is primarily determined

    by the availability of nutritious DOM

  • Project: Temperature effects on DOM-POM-partitioning

    Riebesell & Engel

    Source of DOM: - Phytoplankton

    Sink of DOM: - Bacterial Production

    - DOM aggregation

    DOM sinks and sources display

    different temperature-sensitivities

    DIC/DIN/DIP

    Phytoplankton

    DOM Bacteria

    Zooplankton

    TEP Aggregation

    Sinking

    Hypothesis:

    DOM-POM partitioning istemperature-sensitive

    (2005-2010)

  • temperature increase above

    baseline (mean 92-02)

    actual temperatures

    1400 l mesocosms

    Aquashift:

    experimental design of mesocosm studies

    Sommer et al (2007)

  • Aquashift: Temperature effect on phytoplankton blooms

    Wohlers et al. (2009)

    8C

    4C

    6C

    2C

    Chlorophyll a

    Bloom peak: -1.3 d/ 1C

  • Aquashift: Temperature effect on phytoplankton blooms

    Temperature accelerates nutrient draw-down

    Wohlers et al. (2009)

    22M NO30.9M PO4

    +6C

    +2C

    +4C

    +0C

    Phosphate: -0.7d/CNitrate: -1d/C

  • Aquashift: Temperature effect on phytoplankton blooms

    Wohlers et al. (2009)

    22M NO3

    0.9M PO4

    No temperature effect on total yield of PN and POP

    PN: -1d/C POP: -0.7d/C

  • DIC

    TOC

    POC

    DICmax

    loss

    Settling

    loss

    2C

    8C

  • Wohlers et al. (2009)

    Temperature control Of heterotrophy

    Bacterial Secondary Production increases with temperature

    Community Respiration >3mincreases with temperature

  • 20 m

    organic matter degradation in aggregates

    Piontek et al (AME, 2009)

  • Remineralisation of Biogenic silica

    Bidle & Azam (Nature 1999)

    with bacteria

    without bacteria

    Faster dissolution of silica from diatom frustules

    after bacterial degradation of organic surface coating

  • Remineralisation of Biogenic silica

    Bidle & Azam (Nature 1999)

    with bacteria

    without bacteria

    Faster dissolution of silica from diatom frustules

    after bacterial degradation of organic surface coating

    Dissolution of diatom frustules

    8C

    2C

    Piontek et al (AME, 2009)

  • What we learned from Aquashift:

    Higher partitioning of carbon into DOM that satisfies increased bacterial carbon demand and supports microbial metabolic activity (growth & remineralisation).

    Earlier onset and higher activity of microbial heterotrophic community that enhances organic matter remineralisation and reduces net DIC draw down.

    Stimulation of microbial loop that results in reduced carbon export (particularly for cold system).

    Warming leads to:

  • Summary:warming effects on biogeochemical cycling

    CO2CO2 CO2CO2

    Phytoplankton BacteriaDOM

    Deeper, coldermixed layer

    nu

    trie

    nts

    Export

    Phytoplankton BacteriaDOM

    Shallower, warmer mixed

    layer

    nu

    trie

    nts

    H+

    Present day Future scenario

    remineralisation remineralisation

    ZoomicroZoomicro

    Zoomeso/AggregatesExport

    Zoomeso/Aggregates

  • Temperature effects on a Global scale

    Laws et al. 2000

    Exp

    ort

    Pro

    duction :

    Tota

    l P

    roduction

    Temperature

    Inreased

    Organic Matter Recycling

    Reduced

    Organic Matter Export

  • What do we need to know better?

    Will warming alter the balance between primary and bacterial production in the polar ocean?

    How will the increased amount of respiratory CO2 affect ocean acidification projections?

    Will the ocean ecosystems change from a CO2 sink to a CO2 source?

    How large is the feedback to atmospheric CO2 concentration?

  • How will biogeochemical processesin the ocean respond to

    surface warming?

    Acknowledgements:

    Ulf Riebesell, Julia Wohlers, Judith Piontek, Nicole Hndel, Ullrich Sommer,

    Peter Fritsche, Petra Breithaupt, Mascha Wurst