How "Climate-Smart" is Conservation Agriculture in Southern Africa?

36
How “Climate-smart” is Conservation Agriculture in Southern Africa? By: Christian Thierfelder

Transcript of How "Climate-Smart" is Conservation Agriculture in Southern Africa?

How “Climate-smart” is Conservation Agriculture in Southern Africa?

By: Christian Thierfelder

The Challenges:

Days after planting in each cropping season

0 20 40 60 80 100 120 140 160 180 200 220

Cum

mul

ativ

e ra

infa

l (m

m d

-1)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

2004/2005

2006/2007

2012/2013

2011/2012

2008/2009

2010/2011

2009/2010

2005/2006

2007/2008

Uncertenties increase!Rainfall variability in Zimuto Communal Area, Zimbabwe 2004-2013

Thierfelder et al., 2014

Yield gaps in southern Africa are between 50% to more than 100%!

Time (years)

Ave

rag

e m

aiz

e y

ield

kg

ha-1

0

500

1000

1500

2000

2500

3000

Average maize yield in Zimbabwe

Average Maize Grain Yields - Zimbabwe

Source: FAOSTAT, 2014

Projected change in agriculture productivity, 2080

Source: Hugo Ahlenius, UNEP/GRID-Arendal.

Sust

aina

ble

incr

ease

in

prod

uctiv

ityC

limate change

adaptation

Climate change mitigation

Climate-smart Agriculture (CSA)

CSA

How is Conservation Agriculture being defined?CA comprises the following

principles: • Minimal soil movement• Surface crop residue retention• Crop rotations and green manure

cover crops

Why Conservation Agriculture? To combat increasing land

degradation (physical, biological and chemical)

To respond to climate variability and change….

The need for more efficient use of resources (sustainable intensification)

Rising production costs To reduce the risk of crop failure

Known challenges of CA system... Biomass trade-offs in mixed crop livestock systems-

competition for residues

The Malawi “Sausage”

Known challenges of CA system... Weed control in the initial years CA needs changes in the way farmers do agriculture Availability of critical inputs (equipment, herbicides) Farm size – sometimes limits rotation Yield benefit delayed in some systems Moisture limits adoptability

• Basin planting

• Jab-planter • AT Direct seeder

• Dibble stick

• Hoe-planter

• Magoye ripper

New mechanization ideas....?

How does CA adress the three different pillars: adaptation, mitigation and productivity.....?

Climate Change Adaptation

Conventional ridge tillage Conservation agriculture

Earthworm counts in the first 30 cm, Monze, 2010/2011

d

a

abcd

abc

abcd

bcd

ab

a

bcd

cd

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

CP- Maize DS- Maize BA- Maize DS- Cotton/Maize

DS- Maize/Cotton

DS-Sunnhemp/

Maize/ Cotton

DS- Maize/Cotton/

Sunnhemp

DS- Cotton/Sunnhemp/

Maize

CP- Cotton/Maize

CP- Maize/Cotton

Treatments

Ear

thw

orm

co

un

ts (

cou

nts

/m²)

Conservation agriculture treatments

Time (min)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Infi

ltra

tio

n in

mm

h-1

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Conventional ploughing - MaizeCA- Dibble stick, MaizeCA- Dibble stick, Maize-Cowpea

Chitedze, Malawi

Time (min)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Infi

ltra

tio

n (

mm

h-1

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Conventional ploughing, maizeRip-line seeded, maize

Direct seeding, maizeRip-line seeded, maize-cowpea

Henderson, Zimbabwe

Time (min)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Infi

ltra

tio

n (

mm

h-1

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

CA- Direct seeding, maize

Conventional ploughing, maize

CA- Direct seeding, maize after sunflower

Sussundenga, Mozambique

Time (min)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Infi

ltra

tio

n r

ate

(in

mm

h-1

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Direct seeding, maize-cotton

Conventional ploughing, maize

Direct seeding, maize-cotton-sunnhemp

Direct seeding, maize

Monze, Zambia

Infiltration is crucial in CA systems!

Soil moisture, 0-60cm, MFTC, 2011/2012

Date

Ra

in

fa

ll (m

m d

-1 )

0

10

20

30

40

50

60

70

80

Ava

ila

ble

s

oil m

ois

tu

re

(m

m)

0

20

40

60

80

100

120

140

160

180

200

220

240

Conventional ploughing, maize (CP-M)

Direct seeding, maize (DS-M)Direct seeding, maize-cotton (DS-MC)

Rainfall 2011/2012

Yield gain DSM: 27% DSMC: 53%

CA performance under seasonal dry spells, Monze Farmer Training Centre

Date

Ra

infa

ll (

mm

d-1

)

0

10

20

30

40

50

60

70

80

Ava

ila

ble

so

il m

ois

ture

(m

m)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

field capacity

50% avail. moist.

Rainfall in 2005/2006, total 734 mmBasin planting (BA)

Conventional ploughing (CP)Direct seeding (DS)

Source: Thierfelder and Wall, 2010

CA performance in a wet and dry year, Malawi, 2007/08 and 2011/12

Ma

ize

gra

in y

ield

(kg

ha

-1 )

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4018

4948 4789

Conventional ridge tillageCA + sole maizeCA + maize/legume intercropping

Wet year 2007/2008

2485

40864223

Dry year 2011/12

+23% +19%

+64% +70%

Too much water…… Balaka 2015!

Ma

ize

gra

in y

ield

(kg h

a-1 )

0

1000

2000

3000

4000

5000

6000

ihi

bcde

cdef

bcdabc ab

a

def

Conventional tillage CA-Basin planting CA-Direct seeding

cdefcdefcdef

ghi

efg efgdefg

fghefg defg

def def

Traditional variety, Matuba DT variety, ZM309

DT variety, ZM401

DT variety, ZM523

DT variety, ZM625

DT variety, Pan53

DT variety, Pristine601

Adaptation to Climate Change – Integration of Climate-smart Technologies

Climate Change Mitigation!

What do we know about the mitigation potential of CA? Improved mitigation potential through more

efficient water and nutrient use (precision agriculture, microdosing)

Reduced fossil fuel needs for land preparation Small reductions (CO2) but also increased (NOx) in

GHG emissions Overstatement of the global potential for soil C

sequestration under no-till agriculture (Powlson et al. 2014)

Mitigation potential ● Data on soil carbon

sequestration inconclusive – some studies report benefits, some not…..! (Govaerts et al. 2009, Ngwira et al. 2012; Thierfelder and Wall 2012)

● Carbon accumulation depends on organic inputs and is often observed in the first 0-30 cm but not in deeper layers

Soil carbon dynamics, Monze FTC, 2005-2010

0-30 cm

Year

2004 2005 2006 2007 2008 2009 2010 20110

5

10

15

20

25

30

35

Conventional agriculture, maizeCA, maizeCA, maize-cotton rotationCA, maize-cotton-sunnhemp rotation

Sustainable Increase in Maize Productivity

Longer term maize grain yields on farmers fields in Zambia – Monze, 2006-2014Longer term maize grain yields on farmers fields in Zambia – Monze, 2006-2014

Harvest year

2006 2007 2008 2009 2010 2011 2012 2013 2014

Ma

ize

gra

in y

ield

(kg

ha-1

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Conventional ploughing, maize (CPM)Ripline seeding, maize (RIM)

Direct seeding, maize (DSM)

a

NS

b

b

NS

NS

aa

aa

ab

b

b

a

a

a

b

a

a

b

a

Thierfelder et al. 2013

Regional perspective – Southern Africa, 80% positive maize yield responses to CARegional perspective – Southern Africa, 80% positive maize yield responses to CA

Conventional tillage yield (kg ha-1)

0 2000 4000 6000 8000 10000

Co

ns

erva

tio

n a

gri

cult

ure

tre

atm

ent

yie

ld (

kg h

a-1

)

0

2000

4000

6000

8000

10000

1 :2

line

1:1

line

Planting basins, Mozambique

Ripline seeding, Zambia

Manual direct seeding, Mozambique

Direct seeding, Zambia

Manual direct seeding, Malawi

Manual direct seeding, intercrop., Malawi

Ripline seeding, ZimbabweDirect seeding Zimbabwe

Thierfelder et al. 2015

Overall performance of CA systems in Malawi (a) and Zambia/Zimbabwe (b)

Maiz

e g

rain

yie

ld (k

g h

a-1

)

0

2000

4000

6000

8000

10000

12000

Conventional ridge and furrow system,

sole maize

Conservation agriculture, sole maize

Conservation agriculture, maize/legume intercropping

3555 b 4707 a 4727 aa)

0

2000

4000

6000

8000

10000

12000

Conventional control Ripline seeding AT direct seeding

2760 b 3218 a 3521ab)

Mai

ze g

rain

yie

ld (

kg h

a-1

)

Thierfelder et al. 2015

Years under CA

0 1 2 3 4 5 6 7 8 9 10

-2000

-1000

0

1000

2000

3000

4000

Conventional tillage against rippingF(x)=180.7x - 247.8;

Conventional tillage against direct seedingF(x) = 31.5x + 185.0

b)

Mai

ze y

ield

ben

efit

CP

aga

inst

CA

(kg

ha

-1)

Years under CA

0 1 2 3 4 5 6 7 8 9

Mai

ze y

ield

ben

efit

C

P a

gain

st C

A (

kg h

a-1)

-2000

-1000

0

1000

2000

3000

4000

Conventional against CA, sole maizeF(x)= 54.3x + 1019.7

Conventional agains CA, maize/legumeF(x)= 100.6x + 855.9

a)

Thierfelder et al. 2015

CA performance depending on years of experience in Malawi (a) and

Zambia/Zimbabwe (b)

Economic viability of CA systems in Malawi● CA systems in Malawi are more profitable● Less labour needed for land preparation and weeding● Increased cost for herbicides are easily compensated● Advantages in groundnut systems

Gross margins (USD) maize, Central Malawi

Harvest year

2012 2013 2014

Gro

ss

ma

rgin

s (

US

D)

ma

ize

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Conventional ridge tillage, maize

Conservation agriculture, maize

Conservation agriculture maize/cowpea intercropping

Gross margin (USD), groundnuts, Central Malawi

Harvest year

2012 2013 2014

Gro

ss

ma

rgin

s (

US

D)

gro

un

dn

uts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Conservation agriculture, groundnuts 1

Conservation agriculture, groundnuts 2

Conventional practice, groundnuts

With CA - 25 labour days saved!

Adaptation potential of CA is high CA improves infiltration and soil moisture CA conserves moisture if residues are applied Mitigation potential inconclusive! Soil carbon increase depend more on organic input than tillage Productivity increase documented after 3-5 cropping seasons CA is more profitable in some areas depending on cropping

systems and inputs used

Thank you very much!

Thank you very much!