HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81,...

8
J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZO NTA L MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and FRITZ MULLER (Geographisches In stitut, Eidgenossische Technische Hochschule Zurich, CH-8og2 Zurich, Switzerland and Mc Gill University, Montreal, Quebec , Cana da) ABSTRACT. T he und ers tanding of the hori zo ntal mo vement of fast ice is im portant for a ppli ed sea -i ce mechani cs . A case s tudy, carried o ut in conjun ct ion with a polynya known as North Water, is prese nted in this paper. T he di splacements of th e fast-ice arches w hi ch separate th e po lynya from the s urrounding ice-covered sea , were m eas ur ed a nd found to be small. It is, therefore, co nfirmed that these arc he preve nt the influx of large quantiti es of sea ice into the poly nya. Th e res ults are th en ex pl ained in te rms of the ext ernal forces ( wind and curr e nt ), the s tr ess- stra in s ituations an d so me ph ysica l characteristics ( tempe ra- ture and thickness) which were meas ur ed simultaneously. R ESUME. iv[ouvement horizontal de la glacefixie dallS la zone de North Water. La co mpr ehension du mouvement de la glace fixee es t imp o rt ante pour la me c anique appliquee de la glace de mer. Une etude de cas, menee dans un polynya co nnu so us le nom de Nort h vVater, es t prese ntee dans ce papier. Les deplace- m en ts cl es arches de glace fix ee, qui separe nt le polynya de la banquise environnant e, fure nt m es ures et tr ou ves fa ibles. Il es t don e co nfir me qu e ces arches empechent I 'a mux de grancles quantites de glace cle mer cl ans le pol ynya. On ex plique alors les res ultats en fonction d es forces e xter ie ur es (ve nt et cOUl 'a nt ), d es s itua tions des cont ra intes et de quelqu es caracteri stiqu es physiqu es (te mp e ratur e et epaisse ur ) qu e I'o n a mes ur e simultaneme nt . Z USAMMENFASSUNG. Die Horizollt albewegulIg des Fes teises im J Vorth Water. D as Verstandnis der Horizo nta l- bewegung von Festeis ist fur die angewa nclte Meereis-Mech a nik vo n grosser Bedeutung. Die vo rliegende Arbeit ist eine Falls tudi e clurchge fuhrt im North Water . Di e Verschi e bun ge n der Fes teis-Bbgen, di e cli e Polynya vom umli ege nden eisbedeckte n M eer trennen, w urd en gemesse n und stellten sich als ge ring he raus. Di es bes tatigt , dass diese Bbgen den Zustrom grosser M e ngen von Eis in di e Polynya ve rhind e rn . Die Ergebnisse werden e rklart im Zusammen hang mit den ausseren E in wirkun gen (Wincl uncl Strbmung ), den Bez iehungen z wischen cl en Spa nnunge n uncl cl er Eisve rformung, sowie eini gen ph ys ik a li schen Eigenscha ft en (Temp eratur und Di cke), cli e gleichzeitig gemesse n w urd en. INTROD UCTION The Nort h Water is a polynya lo ca ted between Ell es mere Island and Gree nland , bounded by fast-ice "a rch es" at its northe rn and western extremiti es, i.e. at Kane Basin, J ones Sound and Lancaster Sound (Fig. I). In a ssess ing the ca use of the polynya , the displacements of the arch es have a two-fold significance : r. A polynya can be inte rpreted as an area of small ice input and /or large ice output. One of the major modes of input and output is the transport of sea ice through the boundari es. Through the fast-ice boundary little sea ice app ears to move int o the polynya whilst large quantiti es of pack ice may be exported through the loose southern boundary. The position of the arches is ind ee d known to c hange very littl e with the seasonal advance. However, this fa ct does not n ecessarily m e an that the influx through the fa st i ce boundary is nil. This was co nfirmed only by the measureme nt of markers fixed on the arches. 2. The mechanism of arch formation and maintenance, w hi ch is interesti ng en ough in itself, b ec omes rather an imp ortan t factor in th e cause of th e polynya if the i ce influx through th e arch is really nil. The movement of ice in the area of the arch is as im- portant in the study of this m echanism as the external force and stress- strain situation. Fast-ice mechanics on the meso-scale, which has received littl e attent ion so far , becomes important as engineering activities in the Arctic increase ( Ito and Muller, in press). This paper, though a case st udy, attempts to elucidate some basic meso-scale c harac- teristics of fast ic e. 547

Transcript of HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81,...

Page 1: HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and

J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977

HORIZO NTA L MOVEMENT OF FAST ICE IN THE NORTH WATER AREA

By HAJIME I TO and FRITZ MULLER

(G eographisches Institut, Eidgenossische Technische Hochschule Zurich, CH-8og2 Zurich, Switzerland and M cGill University, Montreal, Quebec, Canada)

ABSTRACT. T he understanding of the hori zonta l movement of fast ice is im portant for a pplied sea-ice mechanics. A case study, carri ed out in conjunction with a polynya known as North Water, is presented in this paper. T he displacements of the fas t-ice arches w hich separate the polynya from the surrounding ice-covered sea, were measured a nd found to be small. It is, therefore, confirmed that these arch e prevent the influx of large quantities of sea ice into the polynya. The results are then explained in terms of the external forces (wind and current), the stress- strain situations and some p h ysical characteristi cs (tempera­ture and thickness) which were measured simultaneously.

RESUME. iv[ouvement horizontal de la g lacefixie dallS la zone de North Water. L a comprehension du m ou vement h ~ri zonta l d e la glace fixee es t importante pour la mecanique appliquee d e la glace de mer. Une etude d e cas, menee d a ns un polynya connu sous le nom de North vVater, es t presentee d a ns ce papier. L es d eplace­ments cles a rch es de glace fixee, qui separent le polynya d e la banquise en vironnante, furent m esures et trouves fa ibles. Il es t done confirme que ces arches empechent I'amux d e g rancles quantites d e glace cle mer clans le polynya. On explique alors les resultats en fon ction des forces exterieures (vent et cOUl'ant), des situations des contra intes et de quelques caracteristiques physiques (tempe rature et epaisseur) que I'on a mesure simulta nem ent.

ZUSAMMENFASSUNG. Die HorizolltalbewegulIg des Festeises im JVorth Water. D as Verstandnis d er Horizontal­bewegung von F esteis ist fur die angewanclte Meereis-Mech a nik von grosser Bedeutung. Die vorli egende Arbeit ist eine F a llstudie clurchgefuhrt im North Water. Die Verschiebungen der Festeis-Bbge n, die clie Polynya vom umliegenden eisbedeckte n M eer trennen, w urden gemessen und stellten sich a ls gering heraus. Dies bestatigt, d ass diese Bbgen den Zustrom grosser M engen von Eis in die Polynya verhindern . Die Ergebnisse werden erklart im Zusammen hang mit d en ausseren E inwirkungen (Wincl uncl Strbmung), den Beziehungen zwischen clen Spa nnungen uncl cler Eisverformung, sowie einigen phys ikalischen Eige nschaften (Temperatur und Dicke), clie gleich zeitig gemessen wurden.

INTROD UCTION

The North Water is a polynya located between Ellesmere Island and Greenland, bounded by fast-ice "arches" at its northern and western extremities, i.e. at Kane Basin, J ones Sound and Lancaster Sound (Fig. I) . In assessing the cause of the polynya, the displacements of the arches have a two-fold significance :

r. A polynya can be interpreted as an area of small ice input and/or large ice output. One of the major modes of input and output is the transport of sea ice through the boundaries . Through the fast-ice boundary little sea ice appears to move into the polynya whilst large quantities of pack ice may be exported through the loose southern boundary. The position of the arches is indeed known to change very little with the seasonal advance. However, this fact does not necessarily m ean that the influx through the fast ice boundary is nil. This was confirmed only by the measurement of markers fixed on the arches.

2. The mechanism of arch formation and maintenance, which is interesting enough in itself, becomes rather an important factor in the cause of the polynya if the ice influx through the arch is really nil. The movement of ice in the area of the arch is as im­portant in the study of this m echanism as the external force and stress- strain situation. Fast-ice mechanics on the meso-scale, which has received little attention so far , becomes important as engineering activities in the Arctic increase (Ito and Muller, in press). This paper, though a case study, attempts to elucidate some basic meso-scale charac­teristics of fast ice.

547

Page 2: HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and

JOURNAL OF GLACI0LOGY

Fig. I. North Water area with fast-ice boundary as per April I971 (Muller and others, I975) :

J. Working area in I974 and I975 (enlarged ill Fig. 2A and B ). 2. Working area in I976 (enlarged in Fig. 2C).

Measurements from satellite or aircraft are not adequate for this purpose as the displace­ment of the fast ice is small. Classical surveying on the surface is the only method giving sufficient accuracy. However, this is difficult to carry out unless a helicopter and much manpower are available; lacking both, only a few measurements could be made so far.

FIELD WORK

Since 1972 the North Water Project of McGill University (Montreal) and of the Eidg. Technische Hochschule (Zurich) has carried out extensive glaciological and climatological field investigations of North Water (Muller and others, 1973). The displacement of the fast ice was measured in 1974, 1975 and 1976 together with other factors such as external forces (wind and current), stress- strain, and physical characteristics (temperature, salinity and thickness) .

In 1974 markers were set on the fast ice in Kane Basin and their positions measured repeatedly from 1 April to 4 June at intervals of approximately 25 d. In the beginning, while travelling on the sea ice was possible, the positions were fixed by traverse surveying using a Wild T2 theodolite and a Wild Distomat DI50 electronic distance measurer. The tranverse

Page 3: HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and

FAST-ICE MOV EMENT IN NORTH WATE R 549

line, starting from a land station, extended 20 km along the fast-ice boundary. Poles with a diameter of 25 mm and a height of 2 m with 30 cm X 40 cm flags were used as beacons. Later, when light conditions improved and travelling on the sea ice became impossible, intersections were made from three land stations, w hose relative p ositions were surveyed separately. The p oles were marked by 4 m high beacons for visibility over longer distances. The respective estimated errors for the angle and distance measurements was 1 0 cm and 5 cm for 2 km, and 50 cm and 13 cm for 10 km. The final error in the position dep ends on the distance of the p oint from the land stations. The largest error was estimated to be 70 cm.

In 1975 similar but somewhat reduced field work was carried ou t in Kane Basin. R e­section had to be employed instead of traversing due to adverse travelling conditions on the sea ice. Distances were not measured, but those between the land stations were known from the previous summer's survey. All five points were marked with 4 m high beacons. The measurement p eriod was shorter than in 1974, lasting only from I May to 17 June. The intervals between the five sets of m easurements were irregular, varying from 5 to 25 d. The estimated final error was as large as I m, due to the short temporary base line used for the resection ; individua l angle measurements, however, had smaller errors than in the previous summer.

w 78 · 5S "N

19 7 4 g ~

~ ;!

· - M' .. .. e.

6-land 5 100 10 0"

Ma r k er

/ . Lllnd S I .oI .o",

19 15

ThI Ck F Ir .. 1 Yea. " ,

0" ('l Id 10: '" . .

Ap "l

Flr:>1 Yea' '"

~o,," clary ftf. ' t'I!

A B

. 0 'm

" >5 N

8 1976

e - M a rket

~ ___ '.- l and Sta no"

0'. k,

,,-.... e··

,.9" \

c ~ - 10 k m

Fig. 2. Position of the markers in relation to the sea-ice situation in the Kalle Basin/Smith Sound area in spring 1974 and in spring 1975 (A and B ) and in ]olles Sound ill 1976 (C).

Page 4: HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and

550 JOURNAL OF GLAC10LOGY

In 1976 Jones Sound was chosen for the field work. The positions of eleven markers set on the ice along the fast-ice boundary were related to a land station by triangulation. Distances were measured by steel tape and angles by theodolite. Three sets of measurements were made during the period 13 May to 2 June at intervals of approximately 10 d. The final errors of position were estimated to be up to 50 cm.

Figure 2 shows the position of the markers in relation to the ice conditions of the surround­ing area at the time of the first measurement.

The field work was usually carried out by two people travelling by skidoo.

RESULTS AND DISCUSSION

The displacement of the markers is shown in Figure 3. The amount of displacement is similar for the three years and generally small, i.e. of the order of tens of centimetres per day. A numerical model of the Kane Basin- Smith Sound ice system using the finite-element method assuming a Newtonian law (as yet unpublished) showed a similar magnitude. The rate of displacement was found to increase with the seasonal advance (April to June), as had

:' ~~ ::: :; > :>~ "4._ I .'O M . , > .4 du.

• ~ .u" . > : ~ "."

, .'

l \.

----'--- I

I;~ft::' ~~

--------~ ------ ..-- ' ---~

---==---=~~

' 0 '0 m ---

'0 '0

·0

_ _ C_ 1

8

Fig. 3. Displacement of fast ice in the Kane Basin/Smith Sound area in I974 and I975 (A and B) alld in Janes Sound in I976 (C).

Page 5: HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and

FAST-ICE MOVEMENT IN NORTH WATER

already been observed on the fast ice in Pond Inlet by Zick and Thiele (1972). To explain this phenomenon, air temperature and ice thickness for the 1975 measurement p eriod are shown (Fig. 4). Ideally, ice temperatures should have been included , however air temperature is closely related to the ice temperature. Increasing temperature makes the ice softer while, at the same time, increasing thickness tends to strengthen, i.e. to harden, the sea-ice cover. The former effect predominated .

5 ;r-----------------------------------------------, 1975

1 5 0 u

v , ----- - 140 . . ~

5 v c

v \ " c- u

E \ .cc v >->- \ ---------- 130 v . 10 ~ <[ \

\

. 1 5~------------------------------------------------r

M a y J u n e

Fig. 4. Seasonal change oJ air temperature at Cape H erschel (solid line ) and ice thickness at point ES in Kane Basin in I975 (dashed line). The position oJ ES is shown in Fig. 2B.

The influx of ice through the northern arch into the polynya is calculated to be of the order of 101 cm d- ' X 107 cm (length of the arch), i. e. 108 cm2 d- I. This area can be regarded as negligible compared with that of the whole polynya which is estimated at 10 '5 cm2. Further­more, observations show that a fast-ice strip of 2 to 3 km width is broken off in Kane Basin during storms with southerly winds and by easterly winds in Jones Sound. Assuming IQ- I

storm d - I , the influx from this source is estimated to be 1011 cm2 d- I , i.e . this form of ice inpu t is also negligibly small.

The ice movement is initially directed into the polynya and is later reversed. This sudden change in direction can be explained by either one or both of two reasons. The situation is described for Kane Basin ; for Jones Sound the directions north and south are to be read as west and east respectively.

(a) The major forces which cause the displacement of the fast ice are exerted by sea current and wind . The current runs steadily into the polynya with a speed of the order of 10' cm S- I estimating from field measurements made in J ones Sound on a time scale chosen large enough to average out the tidal effects. The dominant wind b lows into the polynya, except during storms with southerly winds. Southward current and northerly wind together drive the ice into the polynya. Driving forces directed towards the north only occur when strong southerly winds prevail. Figure 5 shows the wind run measured at Cape H erschel as well as the resultant wind for the three displacem ent periods in 1974. In the earlier part of the observation period, northerl y winds were predominant, hence the movement was southward. However, southerly winds dominated in the later period, hence northward movement occurred.

Page 6: HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and

552

Period 1

1 --- 26 April

25 days

N

JOURNAL OF GLACIOLOGY

Period 2

26April - - 20 May

24 days

N

Period 3

20May · _· 14 June 25 days

N

w---F."'r---E W---~C-+----E w----}III-----E

s

5

Fig. 5. Wind run (number if kilometres ) ji"Om each direction together with resultant wind at Cape Herschel during displacement periods I , 2 and 3 in I974.

(b) The analysis of the stresses in the fast ice near the edge of the polynya (details of the stress measurements are given by Ito and Muller (in press)) shows that there are two distinctive zones; a narrow band of 1.5 to 2 km width along the edge of the fast ice, which is characterized by compression, and the rest which is predominantly a tension area. The stress in the two zones was found to be clearly different (Fig. 6). Because, as already mentioned, the position of the edge moves 2 to 3 km during a storm, a fixed point located initially in the tension zone would be found in the compression zone after one or more storms. The northwards-moving markers were located in the compression zone. The 1975 results support more strongly this second explanation. Points closer to the fast-ice boundary changed their direction of movement sooner than those located at greater distances. The upper left point (Fig. 3B), the farthest from the boundary, stayed in the tension zone throughout the measuring period and did not change direction to the end. Further analysis of the stress data will be carried out to elucidate the more detailed mechanism relating stress and displacement on the meso-scale.

Page 7: HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and

FA ST-I CE MOV E MENT IN NORTH W AT E R

11-20 Apdl1975

O COC k ed Hat

10 km "' 0 .5 kg cm -' -----1.

P i m Island

Cape Sa bl ne

Fig. 6. Typical stress situations in thefas t ice of Kane Basill .

553

Besides the north or south mam direction of displacem ent in Kane Basin, in 1974 an eastward, and in 1975 a westward, componen t was noticed. This difference was due to changes in the boundary conditions. There was old ice in both years in the n orth of Pim I sland. In 1974 there was a huge ridged zone, with elevations of up to 5 m , and 200 m to 2 km in width, between first year and old ice (Fig. 2 , A) . The ice movement was generally parallel to this boundary wall. W estward movement was prevented by the wall while the water edge towa rds the east was a free boundary, thus an eastward component developed, and this particularly strongly with the points lying close to the ridged zone . In 1975 the border between first-year ice and old ice was not pronounced , and the coast line of Pim I sland was, therefore, regarded as the boundary. The ice was compressed a long the arch towards Pim I sland, hence the westward component.

The large southward disp lacement in Jones Sound during the last period of 1976 needs a dditional explanation. N umerous cracks up to one metre wide wi th a south-wes t to north-east d irection divided the fast ice into numerous strips which were, h owever, still part of the fast ice as they were connected together a t the south-west end w h ere the cracks disappeared . This fracture pat tern was caused by the earlier break-off of fas t ice along the steep Devon

Page 8: HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER … · J ourl/ol of Glaciolog)', Vol. 19 No. 81, 1977 HORIZONTAL MOVEMENT OF FAST ICE IN THE NORTH WATER AREA By HAJIME I TO and

554 JOURNAL OF GLACIOLOGY

Island coast. The displacement during this period, therefore, contains both rigid-body movement as well as deformation. The two sources of displacement cannot clearly be separated. The cracks also appeared in the earlier part of the season but rapidly r efroze unless the broken ice floe was immediately removed.

CONCLUSIONS

Classical surveying provides a workable method of measuring the horizontal movement of fast ice.

The influx of sea ice through the fast-ice boundary into the polynya is very small. The rate of displacement increases with rising temperatures. The direction of displacement is d eter­mined by wind, current, and boundary conditions. Two zones with different stress situations producing different displacements were noticed . Large structural features , e.g. the ridged zone, may have to be considered as the boundary condition for the analysis instead of the coast line. Once cracks appear in the area, the displacement may contain both rigid-body movement and deformation .

ACKNOWLEDGEMENTS

Financial support for the project came from the Government of Canada (DSS Contract Number OSX4-00g8), the U.S. National Science Foundation (Contract Number GV-40404A I) and the Schweizerische N ationalfonds zur F orderung der Wissenschaftlichen Forschung (Contract Number 2.383 .70) . Logistic support in the field was provided by the Polar Continental Shelf Project of the D epartment of Energy, Mines and R esources of Canada and by the Canadian Coast Guard, Ministry of Transport. The surveying instruments were loaned by the Institut fur Geodiisie und Photogrammetrie of the ETH Zurich.

The authors wish to acknowledge the support from numerous agencies and individuals, especially Brian Hill's and Martin Braun's excellent field assistance and Roger Braithwaite's helpful suggestions with the analysis.

REFERENCES

Ito, H., alld Muller, F. In press . Measurement of sea ice force by strain rosettes in the North Water area. [Paper presented at third Interna tional Conference on Port a nd O cean Engineering under Arctic Conditions, Fairbanks, Alaska, 1975.]

Muller , F ., alld others. 1973. Das North Water Proj ekt, [by] F. Muller, A. Ohmura [a nd] R . Braithwa ite. Geographica Helvetica, 28. J ahrg. , Nr. 2 , p. I I 1- 17.

Muller , F. , alld others. 1975. Temperature m easurement of ice and water surfaces in the North Water area using an a irborne radiation thermometer, by F. Muller, H. Bla tter a nd G. K appenberger. J ournal of Glaciology, Vol. 15, No. 73, p. 241 - 50.

Zick, W ., alld Thiele, P . 1972. Geodatische Arbeiten im Rahmen d es Canadian Arctic Channel Projec t, 1972. Polarforschung, Bd. 7, Jahrg. 42, Nr. 2, p. 82- 89.