Hopper Designing

download Hopper Designing

of 34

Transcript of Hopper Designing

  • 8/18/2019 Hopper Designing

    1/34

    F 4.1

  • 8/18/2019 Hopper Designing

    2/34

    Flow of Particulate Solids in Bunkers and Flow Problems

    Funnel or Core Flow Mass Flow Mass Flow with Funnel Flow Effect

    (Expanded Flow)

    Numbers show the sequence of discharge of bulk layers

    height

    levels of

    free bulk 

    surface velocity

    profiles5

    7

    6

    4

    3

    2

    8

    1

    Θ

    1

    7

    6

    8

    5

    4

    3

    2

    ϕb

    ϕb

    3 3

    4 42 2

    5 5

    6

    7

    6

    71 1

    8 8

    Θ1

    Θ2

    plug

    flow

    angle of 

    repose

    dead

    zones

    Θ

    Channelling, Piping, Ratholing Bridging, Arching

    dead

    zones

    ΘΘ

    F 4.2

  • 8/18/2019 Hopper Designing

    3/34

    F 4.3

  • 8/18/2019 Hopper Designing

    4/34

    Dynamics of Force Balance at Cohesive Powder Bridge

    B

    Θ

    dFT

    h

    Θ

    W

    1́dFV

    b

    dFf 

    VF

    dFV

    dFGdhB

    slot length l

    Dead weight of powder bridge

    Wall force

    Force of inertia

    Drag force of penetrating fluid

     F = 0 = - dFG + dFT + dFV + dFf 

    dFG = b g b dhB l. . . .

    dFV = 1' sin dhB cos 2l. . . .

    dFT = dFG .a

    g

    dFf  = Eu b l dhB .3 f  u

    2 (1 - )

    4 d 2

    . . .

    . ....

    F 4.4

  • 8/18/2019 Hopper Designing

    5/34

    1. Mass Flow

    - Avoid Channelling:

      Hopper angle = f(wall friction angle W, effektive angle of internalfriction e)

      see diagrams F 4.6 and F 4.7

    - Avoid Bridging:

    1.1 Free Flowing Bulk Solid (avoid machanical blocking of coarse lumps or rocks):

    σc,crit  critical uniaxial compressive strength

    ρb,crit bulk density at σ1,crit

    g gravitational acceleration

    article size

    k = 0.6 ... 1.4 shape dependent parameter

    bmin

    1.2 Cohesive Powder (avoid cohesive bridges): 

    - Effective wall stress at arch: ´ = 1 /ff (2)

      - Flow factor (diagram F 4.11): ff = f( e, W, ) (3)

    (4)

    (1a)

    (1b)

    Apparatus Design of Silo Hopper to Avoid Bridging

    F 4.5

    slot width (1c)

    bmin

    = + W

    b  · g · b

    1́ 1́

  • 8/18/2019 Hopper Designing

    6/34

    0 10 20 30 40 50 60

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

    hopper angle versus vertical in deg

      a  n  g   l  e  o   f  w  a   l   l   f  r

       i  c   t   i  o  n

      w

       i  n   d  e  g

    Mass Flow

    Core Flow

    effective angle of

    internal friction

    e = 70° 60° 50° 40° 30°

    12

    180° - arccos1 - sin e2 sin e

    - W - arc sin sin W sin e

    Bounds between Mass and Core Flowaxisymmetric Flow

    (conical hopper)

    select

    F 4.6

  • 8/18/2019 Hopper Designing

    7/34

    50

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

      a

      n  g   l  e  o   f  w  a   l   l   f  r   i  c   t   i  o  n

      w

       i  n   d  e  g

    55

    0 10 20 30 40 50 60

    hopper angle versus vertical  in deg

    Core Flow

    effective angle of  internal friction

    e = 70° 60° 50° 40° 30°

    Mass Flow

      60,5° +

    arc tan50° - e7,73°

    15,07°1-

    42,3° + 0,131° · exp(0,06 · e)

    W

    with W 3° ande 60°

    Bounds between Mass and Core Flow

    Plane Flow(wedge-shaped hopper)

    F 4.7

  • 8/18/2019 Hopper Designing

    8/34

    max

    l  m i  n  >  3   ·  b 

    m i  n 

       b  m  i  n

      b  m  i  n

    D  

    l  m i  n > 3  · b 

    m i  n 

    bmin

    max maxwall

    b m i  n 

    - Conical Hopper (axisymmetric stress field)

      Cone Pyramid

    shape factor m = 1  [ 3a ]

    - Wedge-shaped Hopper  (plane stress field)

      vertical front walls

    shape factor m = 0

    F 4.8

  • 8/18/2019 Hopper Designing

    9/34

    inclined front walls

    1  , 5   b m i  n 

       b  m  i  n

    l  m i  n   >  6   ·  b 

    m i  n 

    3   b m i  n 

      B

    1max

    2max

    1  , 5   b m i  n 

    F 4.9

  • 8/18/2019 Hopper Designing

    10/34

      u   n   c   o   n   f   i   n   e   d  y   i   e   l   d   s   t   r   e   n   g   t   h

      c

    c,0

    major principal stress during

    consolidation (steady-state flow) 1

    0

    c = a1 · 1 + c,0

       e   f   f   e

       c   t   i  v   e  w   a   l   l   s   t   r   e   s   s

       '

    ' = 1 / ff 1

    bmin 1'1'

    c,crit

    uniaxial compressive strength c

    ' c  flow

    ' c  stable arch

    ' c,crit

    Arching/Flow Criterion of a Cohesive Powder  in a Convergent Hopper

    F 4.10

  • 8/18/2019 Hopper Designing

    11/34

    20 30 40 50 60 70

    1,5

       f   l  o  w   f  a  c   t  o  r

       f   f

    effective angle of internal friction e in deg

    2

    1

    conical hopper

    wedge-shaped hopper

    Ascertainment of Approximated Flow Factor

    (angle of wall friction W = 10° - 30°)

    F 4.11

  • 8/18/2019 Hopper Designing

    12/34

    F 4.12

  • 8/18/2019 Hopper Designing

    13/34

       b  u   l   k   d  e  n  s

       i   t  y

       b

    b,0

    *

    90°

    1

    1

      u  n  c  o  n   f   i  n  e   d  y

       i  e   l   d  s   t  r  e  n  g   t   h

      c

    1 = c,st

    ff = 1

    c,0

    c,st

    major principal stress during

    consolidation (steady-state flow) 1

    0

    c = a1 · 1 + c,0

      a  n  g   l  e  s  o   f   i  n   t  e  r  n  a   l

       f  r   i  c   t   i  o  n

      e ,

      s   t ,

       i

      e   f   f  e  c   t   i  v  e  w  a   l   l

      s   t  r  e  s  s

       '

    b,crit

    b,st

    ' = 1 / ff 1

    bmin

    1'

    bmin,st

    1'

    stationary angle of internal friction st = const.

    angle of internal friction i  ≈ const.

    effective angle of internal friction e

    uniaxial compressive strength c

    bulk density b

    c,crit

    Consolidation Functions of a Cohesive Powder for Hopper Design  for Reliable Flow

    F 4.13

    0

  • 8/18/2019 Hopper Designing

    14/34

  • 8/18/2019 Hopper Designing

    15/34

    F 4.15

  • 8/18/2019 Hopper Designing

    16/34

    F 4.16

  • 8/18/2019 Hopper Designing

    17/34

    (9a)

    pv

    CF

    bC,min

    G (angle of internal friction i  or it) - function, see F 4.22

    Vertical pressure at filling, F 4.20:

    1  pv = f ( e, W, b, shaft cross section,

      silo height) (8a)

    c,crit  see F 4.19

    a) Maximum approach at filling and  consolidation:

    F 4.172. Core Flow

    Avoid channelling (stable funnel)

     Hopper angle

    2.1 Free Flowing Bulk Solid see 1.1

    2.2 Cohesive Powder

  • 8/18/2019 Hopper Designing

    18/34

    2. Core Flow - Supplement

    Avoid channelling (stable funnel)

     Hopper angle: W 

    2.1 Free Flowing Bulk Solid see 1.1

    2.2 Cohesive Powder

    bC,min

    AA

    ChannelA - A: Ring stress 1'' at surface of   channel wall

    1'' 1''

    bC,min

    G (Angle of internal friction i  or it) - function, see F 4.22

    b) Filling, consolidation and

    anisotropy1)

    :Horizontal pressure at filling, F 4.20:

    1''  ph = f ( e, W, b, shaft cross section  silo height)

    ≈(8b)

    (9b)

    c) Flow and radial stress field,F 4.10, Ring stress:

    (8c)1'' = 1ff d

    Flow factor of channelling:

    (8d)

    Two additional options:

    F 4.18

  • 8/18/2019 Hopper Designing

    19/34

    ct

      a  n  g   l  e  o   f  w  a   l   l   f  r   i  c   t   i  o  n

     

      w

      s   t  a

       t   i  o  n  a  r  y  a  n  g   l  e  o   f

       i  n

       t  e  r  n  a   l   f  r   i  c   t   i  o  n

      s   t

       b  u   l   k   d  e  n  s   i   t  y

           ρ   b

    mass flow hopper

    core flow hopper

    major principal stress 1

      a  n  g   l  e  o   f   i  n   t  e  r  n  a   l   f  r   i  c   t   i  o  n

       i  a  n   d

       i   t

    b

    e st

    it

    i

    w

      u  n   i  a  x   i  a   l  c  o  m  p  r  e  s  s   i  v  e  s   t  r  e  n  g   t   h

      c

      e   f   f  e  c   t   i  v  e  w  a   l   l  s   t  r  e  s  s

       1`

    c

    1

    1

    1

    1

    Consolidation Functions of Cohesive Powders for Hopper Design

    c,crit(core flow)

    c,crit

    ct,crit(mass flow)

    ct,crit(core flow)

      e   f   f  e  c   t   i  v  e  a  n  g   l  e  o   f

       i  n

       t  e  r  n  a   l   f  r   i  c   t   i  o  n

      s   t

    F 4.19

  • 8/18/2019 Hopper Designing

    20/34

    Calculation of Silo Pressures according to Slice-Element Method

    Force Balance F = 0

    Shaft (Filling F):

    H

       H   T  r

    pv

    pv

    pnpn pW

    pWdA

    y

    y

    pWpW

       d  y

       d  y

    ph ph

    H*

    b · g · dy

    b · g · dy

    pv + dpv

    pv + dpv

    Hopper:

    F 4.20

  • 8/18/2019 Hopper Designing

    21/34

  • 8/18/2019 Hopper Designing

    22/34

       f  u  n  c   t   i  o  n

       G

       i   )

    0 10 20 30 40 50 60 70 80

    angle of internal frictioni

    in deg

    10

    9

    8

    7

    6

    5

    4

    3

    2

    1

    0

    Function G( i) to Design a Hopper for Core Flow

    F 4.22

  • 8/18/2019 Hopper Designing

    23/34

    Estimation of Minimum Shaft Diameter

    Process Parameters and Geometrical Apparatus Parameters

    pressures p

       h  e   i  g   t   h   H

    pW

    pv

    ph

    shaft diameter Dmin

       h  e   i  g   h   t   H

    a) Calculation of vertical pressure

    Filling /Storage

    b) Consolidation function

    c

    1

    c,0

    c) Shaft design equation

    D H

    b

    or

    F 4.23

    a =1 - sin2 w1 + sin2 w+

    - (1 - sin2 w).(sin2 e - sin

    2w)

    (1 - sin2 w).(sin2 e - sin

    2w)

    (1a) (1b)

    (1c)

    (2)

    (3)

    (4)

    (5)

  • 8/18/2019 Hopper Designing

    24/34

    detail "Z"

    maximum roof loads:filter load: 6 kN

    snow load: 1 kN /m2

    gangway:walking monoload: 1,5 kN

    evenly distributed: 0,75 kN/m2

       h   2

       h   3

    18d3Fl 100 x15

    name and rated width of support

    ratedvolume

    Vm3

       i  n  p  u   t

      o  u   t  p  u   t   N   D   6

       T   G   L   0  -   2   5   0   1

       b  y  -  p  a  s  s

       f   i   l   t  e  r   l   i  n   k

       F   T   F   N

      r  e  s  e  r  v  e

      w  o  r   k  o  p  e  n   i  n  g

       l  e  v  e   l   i  n   d   i  c  a   t   i  o  n

      s  a   f  e   t  y   d  e  v   i  c  e

       l   i   f   t   i  n  g  a  r  m

      ~   T   G   L   3   1  -   4   6   1

      c  a  r  r   i  e  r  e  y  e

      ~   T   G   L   3   1  -   3   4   3

    20

    40

    80

    100

    160320

    100 200 200 600 600 150/50 200 B 160 A 300

    250

    300

    893 x666

    B 90

    B 110

    B 220B 325

    A 250

    -

    p1 p2 p3 p4 p5 r1 r2 s1 s2 t2t1

    3000

    5000

    30755080

    24

    36

    d1) d3

      n  u  m   b  e  r  o   f

       b  o   l   t  s

      w  o  r   k  o  p  e  n   i  n  g

    20

    40

    80

    100160

    320

    ratedvolume

    Vm3

    d1) R1 R2 1 2

     [ °] [ °]

    h1 h2 h4 h5 h7h3 h9

    =30°

    mass2)

    kg

    3000

    3000

    3000

    5000

    5000

    3000

    775 1050 35 40 325 1820 750

    1750 1550 25 30 420 3200 - 900300

    200

    150

    350

    1130

    1550

    2990

    34803875

    8180

    300

    800

    2800

    4290

    3000

    6000

    11000

    140007000

    16000

    59208920

    13920

    169201187020870

    1) d = vessel outer diameter2) total mass for Al Mg 3 ( sS = 2,7 t / m

    3)

    =30°

    Standard Silo

    earthing

    F 4.24

  • 8/18/2019 Hopper Designing

    25/34

    Comparison of Models to Calculate theHopper Discharge Mass Flow Rate

    valid for: consider:

    cohesion-less

    hoppershape

    flowcondi-tions

      a   i  r   d  r  a  g

      p  r  e  s  s  u  r  e

       d  e  p  e  n   d  e  n  c  y  o   f

      c  o   h  e  s   i  v  e

    F 4.25

  • 8/18/2019 Hopper Designing

    26/34

    F 4.26

  • 8/18/2019 Hopper Designing

    27/34

    Stationary Discharge Flow Rate versus Particle Size for Sand

    conical mass flow hopper

    1,5

    1,4

    1,3

    1,2

    1,1

    1,0

    0,9

    0,8

    0,7

    0,60,5

    0,4

    0,3

    0,2

    0,1

      0

       d   i  s  c   h  a  r  g  e   f   l  o  w  r  a   t  e  v  s

       i  n  m   /  s

    b = 0,156 m

    = 10°

    b = 0,036 m

    = 10°b = 0,036 m

    = 15°

    b = 0,0167 m= 10°

    b = 0,0103 m

    = 10°

    calculated (Tomas)measured (Carleton)

    5 10 -2 2  5  10-1 2 5 10 0 2 5 101 2 5 102

    particle size d in mm

    k =3, = 1, ff > 10b c

    F 4.27

  • 8/18/2019 Hopper Designing

    28/34

  • 8/18/2019 Hopper Designing

    29/34

    F 4.29

  • 8/18/2019 Hopper Designing

    30/34

    Equipment for Filling of Silos

    - to avoid segregation

    F 4.30

  • 8/18/2019 Hopper Designing

    31/34

    Methods to Control the Level of Silos

    1. Pressure gauges 2. Mechanical plumb

    3. Revolving blade devices

    4. Membrane pressure switch

    5. Conductivity measurement

    6. Capacity measurement

    7. Radiometric measurement 8. Ultra-sonic measurement

    F 4.31

  • 8/18/2019 Hopper Designing

    32/34

    bladetype

    material installationlength in m

      type

    N

    St

    N C - 0,4 - 0,14 - NSt C - 0,4 - 0,14 - St

    N C - 0,4 - 0,36 - NSt C - 0,4 - 0,36 - St

    N C - 0,4 - 0,11 - NSt C - 0,4 - 0,11 - St

    0,250,51,0

    0,250,51,0

    0,4

    bendedprotection

    pipe

    C - 0,25 - 0,14 - NC - 0,5 - 0,14 - NC - 1,0 - 0,14 - N

    C - 0,25 - 0,14 - StC - 0,5 - 0,14 - StC - 1,0 - 0,14 - St

       1   4   5

    0,14 C

    145

    0,14

    360

    0,36

    110

         ∅   1

       0

    0,11

    Revolving Blade Level Indicator LS 40

    LS 40/A - 0,1 toLS 40/A - 3,0

    normal edition

    LS 40/B - 0,25 toLS 40/B - 6,0

    with protection pipe from

    carbon (St) or

    stainless steel (N)

    LS 40/C - 0,25 toLS 40/C - 1,0

    LS 40/C - 0,4 - 0,14

    installation atinclined wall

      r  a   t  e   d    l

      e  n  g   t   h

      r  a   t  e   d 

       l  e  n  g   t   h

    F 4.32

  • 8/18/2019 Hopper Designing

    33/34

    Hopper Locks

    horizontal gate vertical gate horizontal rotaryslide-valve

    double rotaryslide-valve

    ball valve rotary disk valve

    discharge chute withclaw lever lock

    lock with swivel chute

    F 4.33

  • 8/18/2019 Hopper Designing

    34/34

    Size in mm h1  h2  l1  l2  l3  Mass P

      in kg in kW  250 120 136 1245 905 180 200

    315 1450 1045 217 230

    400 140 1735 1235 265 260500 119 2050 1445 317 325

    630 2405 1685 380 410

      800 2915 2025 465 535

    1000 180 101 3530 2435 570 785

    Hopper gates with drive

    118

    1111600.75

    1.1

    b1 see table above

    0.55

    Size in mm b1  d1  h1  h2  l1  l2  l3  Mass in  kg

      250 250 120 86 1097 982 180 70

    315 315 1230 1115 218 92

    400 410 315 140 100 1420 1305 265 123

      500 515 1630 1515 318 147

    630 630 1925 1810 380 221  800 800 400 160 114 2652 2362 465 393

    1000 1000 180 132 3100 2810 570 570

    Hopper gates

    F 4.34