Homemade Bouncy Polymer.pdf

download Homemade Bouncy Polymer.pdf

of 40

Transcript of Homemade Bouncy Polymer.pdf

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    1/40

    HOMEMADE BOUNCY POLYMER

    An Entry for the2009 DIVISION SCIENCE FAIR

    TEAM CATEGORY

    CHINKEE MAE M. ALANZALONGrade VI Jose Rizal

    DAN ALFONSO VALENTIN V. SORIATRISHA KATE E. GENERAL

    Grade V E. AguinaldoResearchers

    Mr. MARK ANTHONY R. CUAResearch AdviserMarcela Marcelo Elementary School

    Pasay City

    October 2009

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    2/40

    2

    CHAPTER 1

    INTRODUCTION

    One might think that chemists are a bunch of boring scientists who wear lab

    coats and look at beakers all day, but did you know that many toys you play with are

    made using chemistry? Some of your favorite toys like Gak, Slime and Silly Putty

    started out as chemistry experiments. In fact, some of your favorite toys may have

    been invented by chemists who work for toy companies like: Crayola, Play-Doh or

    Mattell.

    Chemistry is the study of matter, and how different elements of matter

    interact. There are many different kids of matter, which need to be described using

    the concept of properties. Toys like silly putty are unique because of they have

    distinct properties that are different from the properties of other types of matter.

    There are two different kinds of properties, chemical properties and physical

    properties.

    Chemical properties are qualities that can be observed during a chemical

    reaction, like when vinegar reacts with baking soda. Physical properties are qualities

    that can be observed during physical change in the absence of a chemical reaction,

    like the melting of an ice cube. Physical properties can be used to describe the state

    of a chemical, which can be a solid, liquid or a gas. The physical and chemical

    properties of Silly Putty are what make it so much fun because it is a polymer that is

    stretchy and bouncy!

    Scientists use properties to describe all of the unique qualities of a chemical

    or a mixture of chemicals. To do this they use descriptive language, or words that

    are used to describe objects. Some descriptive words used to describe a chemical

    might be: hot, cold, squishy, hard, soft, crystalline, granular, smooth, liquid, clear,

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    3/40

    3

    opaque, and runny. There are many different qualities to be described. You just need

    to find the right words to use.

    The unique physical and chemical properties of a polymer or mixture can be

    changed by the amount of each different ingredient used to make them. Sometimes

    the amount of one ingredient compared to the amount of another ingredient can

    make a big difference. This is called a ratio, and a ratio can be useful to know how

    much of each ingredient to add to your mixture so you will end up with a mixture that

    has desirable properties.

    RATIONALE

    Balls have been toys practically forever, but the bouncing ball is a more recent

    innovation. Bouncing balls were originally made from natural rubber, though now

    bouncing balls can be made of plastics and other polymers.

    In this researcher, the bouncing ball is made from a polymer. Polymers are

    molecules made up of repeating chemical units.

    The researchers will change the ratio of two basic ingredients in homemade

    Silly Putty. They will describe the physical properties of each different mixture using

    a data table. Then they will choose the ratio of ingredients to create the best putty

    product.

    The use of bouncing polymer in science education provides number of

    advantages. One can use it to describe the chemical and physical properties of the

    mixtures. It can also be used to describe potential and kinetic energy. It can also

    demonstrate the Law of Conservation of Energy and Newtons Third Law of Motion

    for every action there is an equal and opposite reaction.

    The researcher would like to find out which is the best ratio of the two basic

    ingredients in homemade Silly Putty that would produce better and higher bounce.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    4/40

    4

    OBJECTIVES OF THE STUDY

    The main purpose of this research project is to come up with the best silly

    putty product. Specifically, it attempts to answer the following objectives:

    1. To evaluate the physical properties of the polymer balls;

    2. To describe the product of the different ratio of ingredients; and

    3. To determine the height of the bounce of the polymer balls.

    STATEMENT OF THE PROBLEM

    The main problem of the study is coming up with the best silly putty product

    based on various ratios of ingredients. Specifically, the study will seek to answer the

    following questions:

    1. Would it be possible to make a homemade bouncy polymer from a simple

    polymer found in white PVA glue and corn starch?

    2. Which of the following ratio will produce the best homemade bouncy polymer?

    3. What would be the effect of the varying ratio of the ingredients on the physical

    characteristics of the homemade bouncy polymer?

    SIGNIFICANCE OF THE STUDY

    Science is fun. It cannot only be learned in the four corners of the classroom

    but rather it can also be learned at home.

    Chemistry can be a very intimidating subject that is hard for some students to

    understand. This project study would like to help demonstrate some basic principles

    of chemistry. Specifically, this project study will help students understand that there

    is a difference between a physical change and a chemical change.

    Silly putty, as well as bouncing polymer is fascinating and educational. It can

    teach everyone about Chemistry, Physics and Mathematics.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    5/40

    5

    Results of the study would provide the pupils an opportunity to learn while

    having fun. Likewise, this study will provide opportunity to parents to have some

    quality time with their children.

    The result and findings of this study would give educators an alternative way

    of learning outside the classrooms. It would also encourage them to use other

    sources which are readily around them in teaching Science.

    SCOPE AND DELIMITATION

    The project study initiated after the researcher became interested and

    amazed about silly putty. The researcher made some readings and found that there

    silly putty can be possible made using readily available materials at home. There

    were also some studies and experiments where polymers are used as subject

    matter. With the help and guidance of the science teachers, the researcher came up

    with this project study.

    The researcher will try out various ratios using Elmers white glue, Borax,

    water, corn starch.

    They also used Zip-lock baggie, some bottles, weighing scale and graduated

    cylinder.

    The homemade bouncy polymers were evaluated in two ways: quantitatively,

    through the mass, volume, density, height of bounce/return, length of stretch and

    distance of roll, and qualitativelythrough the descriptive analysis of some observable

    characteristics of the homemade bouncy polymers.

    Findings of this study will be applicable only to the ratios of the materials used

    and the field of study that will be tested and may not be generalized with others.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    6/40

    6

    CHAPTER 2

    REVIEW OF RELATED LITERATURE

    This chapter reviews literature and studies related to the present project

    study. It presents literature on chemical properties, physical properties, polymers,

    and silly putty.

    RELATED LITERATURE

    Silly Putty, one of the most popular toys of the 20th century, was invented

    accidentally. Find out what a war, an indebted advertising consultant, and a ball of

    goo have in common.

    One of the most important resources needed for World War II war production

    was rubber. It was essential for tires (which kept the trucks moving) and boots (which

    kept the soldiers moving). It was also important for gas masks, life rafts, and even

    bombers. Beginning early in the war, the Japanese attacked many of the rubber-

    producing countries in Asia, drastically affecting the supply route. To conserve

    rubber, civilians in the United States were asked to donate old rubber tires, rubber

    raincoats, rubber boots, and anything else that consisted at least in part of rubber.

    Rations were placed even on gasoline to hinder people from driving their cars.

    Propaganda posters instructed people in the importance of carpooling and showed

    them how to care for their household rubber products so they would last the duration

    of the war.

    Even with this home front effort, the rubber shortage threatened war

    production. The government decided to ask U.S. companies to invent a synthetic

    rubber that had similar properties but that could be made with non-restricted

    ingredients. In 1943, engineer James Wright was attempting to discover a synthetic

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    7/40

    7

    rubber while working in General Electric's laboratory in New Haven, Conn. when he

    discovered something unusual. In a test tube, Wright had combined boric acid and

    silicone oil, producing an interesting gob of goo.

    Wright conducted a multitude of tests on the substance and discovered it

    could bounce when dropped, stretch farther than regular rubber, didn't collect mold,

    and had a very high melting temperature. Unfortunately, though it was a fascinating

    substance, it didn't contain the properties needed to replace rubber. Still, Wright

    assumed there had to be some practical use for the interesting putty. Unable to

    come up with an idea himself, Wright sent samples of the putty to scientists around

    the world. However, none of them found a use for the substance either. (Rosenberg,

    2009)

    The term polymer comes from the Greek word poly, meaning many, and

    meros meaning parts. The word parts refers to a grouping of atoms called

    molecular units, known as a monomer.

    POLYMERS

    Polymers are special organic molecules that form very long chains. Usually

    polymers make compounds that are stronger and more flexible than other

    compounds. Examples of polymers are: rubber, latex, and nylon (sciencelab, 2009).

    Polymer backbones are held together by covalent bonds - by atoms sharing

    electrons. Other atoms, or even groups of atoms, hook onto the backbone by

    covalent bonds too.

    Some polymers that are called ionic polymers have ionic pendant groups.

    Their backbones are still held together by covalent bonds. When it comes to

    polymers, all of their backbones are held together by covalent bonds (that is, by

    sharing electrons) (pslc, 2009).

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    8/40

    8

    Also, by choosing the right kind of polymer, our product can be soft or hard,

    flexible or stiff, or most anything we want.

    Most polymers will last a long, long, long, long time. That's good - especially if

    you use them to make clothes, jars, even chairs. But it's bad when polymers get

    thrown away. Some polymers are easier to recycle than others. It's important to

    recycle the polymers that we can, like drink bottles, so that our landfills don't get filled

    up so fast.

    Most polymers are safe and non-toxic. That's good. The monomers that are

    used to make polymers, though, are often toxic or stinky. That means that the

    companies that make polymers need to be very careful not to let the monomers get

    out before they're made into polymers (pslc, 2009).

    Remember that polymers are very very long chains. These long chains:

    can bend and twist and get all tangled up

    can stick to each other

    move much slower because they're so big

    The longer a polymer chain is, the more tangled up it can get. Since the

    chains are harder to pull out or separate, that can make things made out of polymers

    stronger.

    Some polymers are more straight and stiff than others. These won't tangle up

    as much, but they're strong for a different reason - stiff chains can pack together and

    stick to each other.

    Think of molecules as being like magnets. Some are like very weak magnets,

    and some are like strong magnets. So, some can be pulled apart easily, but others

    take a lot more energy to pull them apart (pslc, 2009).

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    9/40

    9

    Polymers are large molecules formed by the repetitive bonding of small

    molecules called monomers.

    The bondings of these low molecular weight monomers produce high

    molecular weight polymeric substances which have mechanical and chemical

    properties suitable in the manufactures of fibers, films, protective coating, insulating

    materials and more. Polymers accommodate to meet the needs of a wide variety of

    uses in the world; therefore, they play an important role in the chemical industries.

    Aside from synthetic polymers such as polyethylene and polystyrene, there are

    biological/natural polymers as well that can be found in nature. Cellulose and starch

    are examples of biopolymers that are built from small sugar; while proteins are

    polymers built from amino acids. The basic idea of polymer remains the same

    between synthetic and biological polymers; however, synthetic polymers are much

    simpler than biopolymers due to the smaller size and simpler structure of the starting

    monomer. Polymer molecules may have anywhere from hundreds to thousands

    monomer units incorporated into a long chain, which depends on the properties of

    the polymer desired to achieve. Many simple alkenes, called vinyl monomers,

    undergo polymerization (polymer-forming reactions) that made commercially

    important polymers.

    Polymerization involves the chemical combination of a number of identical or

    similar molecules, monomers, to form a complex molecule, polymer, of high

    molecular weight.

    There are a whole bunch of different ways that we can describe polymers -

    what they look like, how they feel, how they smell, how they act, what they sound like

    when you drop them on the floor (ping! or splat!) They can be hard or soft, stiff or

    bendy, strong or weak, smooth or rough, shiny or dull - and lots more!

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    10/40

    10

    Scientists have come up with all kinds of ways to test polymers to answer

    questions like:

    How easy is it to scratch?

    How much weight can a thread (or fiber, or rope) hold?

    How long will it last if it's left out in the sun?

    How will it act if it gets hot? Will it melt if I leave it in the car in the middle of

    summer?

    How much heat does it take to make it all goopy?

    How fast will it dissolve in your tummy? (That one is important for pill

    coatings.)

    How well can I see through it?

    What happens if I hit it with a hammer? (This one might sound funny, but

    polymers that can take a hit with a hammer might just be good for

    something like a skateboarding helmet or hockey shin pads for goalies.)

    There are all kinds of instruments that scientists use to test different polymer

    properties. The goal is to get numbers (data) so that one polymer can be compared

    to another.

    Flexible plastics like polyethylene and polypropylene are different from rigid

    plastics in that they're easier to stretch (so their tensile strength is lower), but they

    tend not to break. Interestingly, the ability to stretch is what keeps them from

    breaking. They'll resist being stretched for a while, but if enough stress is put on a

    flexible plastic, it will eventually deform. You can try this at home with a piece of a

    plastic bag. If you try to stretch it, it will be very hard at first, but once you've

    stretched it far enough it will give way and stretch easily. The bottom line is that

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    11/40

    11

    flexible plastics may not be as strong as rigid ones, but they are a lot tougher (pslc,

    2009).

    Polymers are made up of many many molecules all strung together to form

    really long chains (and sometimes more complicated structures, too).

    Figure 2.1 This is a polymer. It's a very large molecule.

    Most of the polymers we'll talk about here are linear polymers. A linear

    polymer is made up of one molecule after another, hooked together in a long chain.

    This chain is called the backbone.

    Now, linear polymers don't have to be in a straight, rigid line. Those single

    bonds between atoms in the backbone can swivel around a bit, kinda like paper clips

    hooked together end-to-end.

    A LINEAR polymer chain starts at the beginning and goes straight to the end.

    You can take your finger and trace the curvy path from one end to the other.

    To the rest of the world, "linear" means "straight and not curved" but for polymers,

    linear means "straight and not branched".

    A BRANCHED polymer chain has extra beginnings (branches!) along the

    chain and so it has lots of ends.

    No matter where you start, you can't trace the entire polymer without

    backtracking.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    12/40

    12

    Different kinds of polymers: stretchy like a rubber band, tough like a football,

    soft like a sweater, silky and strong like a parachute, and even polymers that are

    bulletproof!! (pslc, 2009).

    Kinds of Polymer

    1. Natural Polymer.

    Plants are made of a polymer called cellulose. This is the tough stuff that

    wood and stems - and Paul's tree house! - are made from. Cellulose is also what

    makes fibers like cotton and hemp that we can twist into threads and weave into

    clothing. And many plants also make starch. Potatoes, corn, rice, and grains all

    have a lot of starch. Starch is also a polymer.

    Even though starch and cellulose are both made from the same sugar

    (glucose), they act very differently (because the glucose molecules are joined

    together differently). Starch will dissolve in water, but cellulose won't. So we

    make food from starches and we build things and make clothing out of cellulose.

    2. Plastics

    I'm just guessing that everyone out there knows what plastic is. The word

    plastic means pliable. Plastics are materials that can be shaped and molded easily.

    Plastics become easier to mold and shape when they're hot, and they melt when

    they get hot enough, so we call them thermoplastics. This name can help you tell

    them apart from cross linked materials that don't melt. These materials can seem a

    lot like plastics, but they're really thermosets.

    So we make things out of plastic by getting it really hot until it melts and then

    pouring it, stretching it, injecting it or blowing it into molded shapes, like drinking

    glasses and toys. It takes a lot of energy to deform plastics into shapes, but they

    stay the same shape. Until it gets hot enough, plastic cannot easily be deformed.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    13/40

    13

    Sometimes additives are added to a plastic to make it softer and more pliable. These

    additives are called plasticizers.

    3. Elastomer

    Elastomer is a big fancy word, and all it means is "rubber". Some polymers

    which are elastomers include polyisoprene or natural rubber, polybutadiene,

    polyisobutylene, and polyurethanes. What makes elastomers special is the fact that

    they bounce, which is to say that they can be stretched to many times their original

    length, and can bounce back into their original shape without permanent deformation

    (pslc, 2009).

    Polymers are used to make numerous things, including clothing, plastic

    containers, nonstick cookware, and bulletproof vests. Try this experiment to see how

    polymers can make a toy.

    If you use the scientific method, you make observations before experimenting

    and forming or testing a hypothesis. You've followed a procedure to make a

    bouncing ball. Now you can vary the procedure and use your observations to make

    predictions about the effects of the changes.

    Observations you can make and then compare as you change the

    composition of the ball include the diameter of the finished ball, how sticky it is, how

    long it takes to solidify into a ball, and how high it bounces. (Helmenstine, 2009).

    What makes polymers so fun is that how they act depends on what kinds of

    molecules they're made up of and how they're put together? The properties of

    anything made out of polymers really reflect what's going on at the ultra-tiny

    (molecular) level. So, things that are made of polymers look, feel, and act depending

    on how their atoms and molecules are connected, as well as which ones we use to

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    14/40

    14

    begin with! Some are rubbery, like a bouncy ball, some are sticky and gooey, and

    some are hard and tough, like a skateboard (pslc, 2009).

    Use simple chemistry to make a polymer bouncy ball with household

    ingredients. The ingredients used to make this ball form a type of elastic polymer that

    bounces like a store-bought super ball (ehow, 2009).

    Making polymer bouncy balls is a great project for anyone with an interest in

    chemistry, though kids probably get more out of the finished product than adults. Or

    maybe not... they are pretty fun. You can make polymer balls yourself using common

    household ingredients.

    You can also purchase kits that allow you to make balls in neon and glowing

    colors. The molds that come with the kits can be re-used to shape balls you make

    using your own ingredients (Helmenstine, 2009).

    Plastics and rubbers are made from polymers- long chains of molecules that

    can be zipped together. The long tangled up polymer chains can be stretched out or

    squashed up. This makes the material elastic, which is an excellent property for a

    bouncy ball. We can make a bouncy ball from a simple polymer found in white PVA

    glue.

    Polymers are made by combining many individual units called monomers into

    a single larger unit. You will be making a "bouncing ball" polymer in this experiment

    by combining Elmer's white glue and 20 Mule Team borax. The monomer unit in the

    bouncing ball polymer is polyvinyl acetate (from Elmer's glue).

    When borax is dissolved in water, some borate ions form:

    Na2B4O7 + 9H2O ----> 2 Na+ + 2H+ + 4B(OH)4-

    The borate ions form bridges connecting the polyvinyl acetate chains in the

    glue to one another. This is called a cross linking polymer.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    15/40

    15

    This polymer also displays hydrogen bonding. The cross linking and hydrogen

    bonding produce a three-dimensional polymer with many open spaces for water to

    occupy (www.files.chem.vt.edu, 2009)

    Polymers are molecules made up of repeating chemical units. Glue contains

    the polymer polyvinyl acetate (PVA), which cross-links to itself when reacted with

    borax (Helmenstine, 2009)

    PVA (polyvinyl acetate) is a polymer or long chained molecule - so too is

    starch (present in the custard powder). The borax causes cross-links to develop

    between the two polymers and the mixture becomes stiff. It is important to get the

    correct amount of borax, too much i.e. too many cross-links, and the mixture is

    brittle; too little and the mixture flows; just right and the mixture can be rolled into a

    ball and bounced! Polymers (like PVA and starch) are a very important part of our

    world.

    The ingredients combine to make a fairly solid mixture which when rolled into

    a ball, you should be able to throw and bounce! (yummyscience, 2009)

    The glue is a polymer (long chain molecule) called polyvinyl acetate (PVA),

    and the custard powder contains corn flour which is a starch. Starch is also a

    polymer, this time made up from smaller glucose molecules. The borax acts as a

    cross linking agent and binds the two polymer chains together. Too much borax

    gives too many cross-links and hence a brittle substance. Too little borax means not

    enough cross-links giving a weak substance that's easily pulled apart.

    The ball is made of an elastic material. When it bounces the ball gets

    squashed and the kinetic energy gets converted to elastic potential energy, and

    some heat, plus a little sound. The ball then unsquashes and bounces back up. So

    as the ball bounces there are number of energy transfers: Gravitational energy is

    http://www.files.chem.vt.edu/http://www.files.chem.vt.edu/http://www.files.chem.vt.edu/http://www.files.chem.vt.edu/
  • 7/27/2019 Homemade Bouncy Polymer.pdf

    16/40

    16

    transferred to kinetic as it falls. When it hits the ground the ball squashes. The kinetic

    energy is transferred to elastic strain energy in the ball. As the ball unsquashes the

    strain energy is converted back to kinetic energy. Some of the energy is 'lost' as

    heat, sound, etc, which is why the ball doesn't bounce up to the same height it was

    dropped from (planetscience, 2009).

    What's Happening?

    The white glue contains polyvinyl acetate, a strong and flexible polymer that

    gives the ball strength. Cornstarch contains amylopectin, a polymer whose shape is

    best described as "branched" - it sticks out like the branches of a tree - and gives the

    ball the property of elasticity. Elasticity allows the ball to return to its original shape

    after being compressed or stretched, such as hitting the floor. So instead of

    splattering everywhere, the ball bounces back up. The borax is needed to help the

    glue and the starch stick together. This connects the two polymers into a netlike

    formation, keeping the ball from crumbling or becoming slime when it is bounced.

    SUMMARY

    Polymers are long-chained molecules formed by repetitive molecules called

    monomers.

    Polymers exist from natural to synthetic forms. They have been used in

    various ways from plastics to rubbers.

    Bouncy balls can be made out of glue, corn starch and borax due to its

    composition, polyvinyl acetate (PVA). Polymerization causes this reaction to occur.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    17/40

    17

    DEFINITION OF TERMS

    The following terms are defined according to how they will be used in the

    study.

    Bounce is the height of the homemade polymer reached after releasing at a certain

    starting point.

    Glue a sticky white substance whose property is made up of polyvinyl acetate.

    Elastomer is a polymer with rubbery characteristics.

    Polymer is a large molecule formed by the repetitive bonding of small molecules

    called monomers.

    Roll is the distance traveled by the homemade bouncy polymer over a 45 angle of

    inclined plane.

    Silly putty is a toy that is a ball of soft, moldable, rubber-like material.

    Stretch is the length of the homemade polymer to stay together before it is torn

    apart.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    18/40

    18

    CHAPTER 3

    METHODOLOGY

    This chapter discussed the materials used, the formulas to be tested,

    instrument to be used, data collection and data analysis.

    RESEARCH METHOD

    The project study aimed to evaluate which ratio would produce the best

    homemade bouncy polymer. This study will further examine the characteristics of

    polymers produced from different ratio of solutions.

    MATERIALS

    The researcher will use some household materials readily available at home.

    Warm water, Elmers white glue, corn starch, borax, Zip-lock baggie, some

    bottles, weighing scale, beaker and graduated cylinder.

    PROCEDURE

    After gathering the necessary materials, the researcher prepared the following

    solutions

    They will prepare the Glue solution, which made up 30 ml of Elmers white

    glue and 30 ml of water. Stir well until the glue is fully diluted and no gooey clumps

    remain.

    They will also prepare the Borax solution, which is up of 360 ml of warm water

    and 10 ml of Borax. Stir well until no particles of Borax remain and the solution is

    clear.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    19/40

    19

    Label 5 Zip-lock baggies: Polymer #1, Polymer #2, Polymer #3, Polymer #4

    Polymer #5.

    Combined the solutions in the Zip-lock baggies using the following ratios:

    Zip-lock Baggie Borax Solution Glue Solution Corn starch

    Polymer # 1 1 Tbsp 5 Tbsp 1 Tbsp

    Polymer # 2 2 Tbsp 4 Tbsp 1 Tbsp

    Polymer # 3 3 Tbsp 3 Tbsp 1 Tbsp

    Polymer # 4 4 Tbsp 2 Tbsp 1 Tbsp

    Polymer # 5 5 Tbsp 1 Tbsp 1 Tbsp

    Seal the baggie, and using your fingers squish the mixture around to mix

    together the ingredients. When the mixture begins to form a sticky glob, take it out of

    the baggie. Start molding the ball with your hands.

    DATA GATHERING

    The data gathered was based from the objectives of the project study. Since

    the study wanted to assess the describable characteristics of each ratio and

    compare it, it dealt on some numerical data based on the mass, volume, density,

    height of bounce/return, length of stretch and distance of roll.

    5 trials were done for the height of bounce/return, length of stretch and

    distance of roll of each homemade bouncy polymer.

    The researchers will also describe the observable physical characteristics of

    the products from the 5 ratios of the polymers.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    20/40

    20

    The problems encountered in the project study were noted.

    DATA ANALYSIS

    The data collected were analyzed using mean and standard deviation.

    The researcher would get the average of the height of bounce/return, length

    of stretch and distance of roll, in centimeters.

    Height of Bounce/Return

    Trials

    Polymer

    1

    Polymer

    2

    Polymer

    3

    Polymer

    4

    Polymer

    51

    2

    3

    4

    5

    Average

    Length of Stretch

    TrialsPolymer

    1Polymer

    2Polymer

    3Polymer

    4Polymer

    5

    1

    2

    3

    4

    5

    Average

    Distance of Roll

    TrialsPolymer

    1Polymer

    2Polymer

    3Polymer

    4Polymer

    5

    1

    2

    3

    4

    5

    Average

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    21/40

    21

    Below is an illustration how the researcher underwent the process of the

    project study.

    Planning the procedure and materials needed

    Gathering of materials needed

    Preparing the borax solutions

    Preparing the glue solution

    Mixing the two solutions in a zip-lock baggie

    Adding the corn starch

    Squishing the solution inside the baggie

    Rolling the polymer in the palm

    Evaluating and assessing the product

    Figure 3.1. Flowchart of the procedure

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    22/40

    22

    CHAPTER 4

    RESULTS, ANALYSIS AND INTERPRETATION

    Homemade bouncy polymer can be made using materials readily available at

    home. It was able to produce bouncing polymer which has rubbery characteristics.

    The results of this project study were shown in the preceding tables and

    figures.

    MASS

    Based on the observation, when the result from each ratio have the following

    measurement:

    Polymer Mass

    1 40

    2 40

    3 40

    4 40

    5 40Table 4.1 Comparison of Mass of the Polymers

    Graph 4.1 Comparison of Mass of the Polymers

    After mixing the Borax solution and the glue solution, together with the corn

    starch, the five (5) polymer products were weighed and it was found out the mass

    was the same at 40 grams.

    0

    5

    10

    15

    20

    25

    30

    35

    40

    Mass(ingrams)

    1 2 3 4 5

    Polymer

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    23/40

    23

    VOLUME

    Based on the observations, the following volumes were gathered:

    Polymer Volume

    1 902 85

    3 80

    4 78

    5 75

    Table 4.2 Comparison of Volume of the Polymers

    Graph 4.2 Comparison of Volume of the Five Polymers

    Polymer 1 has a volume of 90 ml followed by Polymer 2 with 85 ml, then

    Polymer 3 with 80 ml, Polymer 4 with 78 ml and Polymer 5 with 75 ml.

    DENSITY

    After getting the Mass and Volume of the 5 Polymers, the following Densities

    were met:

    Result Density

    1 0.44

    2 0.47

    3 0.50

    4 0.51

    5 0.53

    Table 4.3 Comparison of Density of the Polymers

    65

    70

    75

    80

    85

    90

    Volume(inmL)

    1 2 3 4 5

    Polymer

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    24/40

    24

    Graph 4.3 Comparison of Density of the Five Polymers

    Polymer 1 has a density of 0.44 g/ml. Polymer 2 has 0.47 g/ml. Polymer 3

    has 0.50 g/ml. Polymer 4 has 0.51 g/ml and Polymer 5 has 0.53 g/ml.

    HEIGHT OF BOUNCE/RETURN

    Based on the observations, after the 5 Polymers were dropped, the following

    data were noted:

    TrialsPolymer

    1Polymer

    2Polymer

    3Polymer

    4Polymer

    5

    1 6 5 0 0 0

    2 6 5 0 0 0

    3 7 6 0 0 0

    4 8 5 0 0 0

    5 5 4 0 0 0Average 6.4 5 0 0 0

    StandardDeviation

    1.02 0.63 0.00 0.00 0.00

    Table 4.4 Comparison of Height of Bounce/Return of the Polymers

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    Density(ing/mL)

    1 2 3 4 5

    Polymer

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    25/40

    25

    Graph 4.4 Comparison of Height of Bounce/Return of the Five Polymers

    Polymer 1 has an average bounce/return height of 6.4 while Polymer 2 has an

    average bounce/return height of 5.0 cm., after being release at a starting position of

    77 cm. Polymer 3, 4 and 5 did not bounce at all.

    LENGTH OF STRETCH

    The 5 Polymers were pulled to test its ability to be stretched. The following

    figures were recorded:

    TrialsPolymer

    1Polymer

    2Polymer

    3Polymer

    4Polymer

    5

    1 30 46 0 0 0

    2 54 36 0 0 0

    3 59 34 0 0 0

    4 35 29 0 0 0

    5 40 29 0 0 0Average 43.6 34.8 0 0 0

    StandardDeviation

    11.11 6.24 0.00 0.00 0.00

    Table 4.5 Comparison of the Length of Stretch of the Polymers

    0

    1

    2

    3

    4

    5

    6

    7

    HeightofBounce(incm.)

    1 2 3 4 5

    Polymer

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    26/40

    26

    Graph 4.5 Comparison of the Length of Stretch of the Polymers

    Polymer 1 has an average stretch distance of 43.6 cm before it breaks.

    Polymer 2 broke at an average stretch distance of 34.8 cm. Polymer 3, 4 and 5 was

    not possible to be stretch.

    DISTANCE OF ROLL

    In a 45 inclined plane, each Polymer was allowed to roll. The following data

    were collected:

    TrialsPolymer

    1Polymer

    2Polymer

    3Polymer

    4Polymer

    5

    1 84 26 0 0 0

    2 46 36 0 0 0

    3 119 40 0 0 0

    4 58 38 0 0 0

    5 117 43 0 0 0Average 84.8 36.6 0 0 0

    StandardDeviation

    29.77 5.78 0.00 0.00 0.00

    Table 4.6 Comparison of the Distance of Stretch of the Polymers

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Distance(incm.)

    1 2 3 4 5

    Polymer

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    27/40

    27

    Graph 4.6 Comparison of the Distance of Stretch of the Polymers

    Polymer 1 traveled an average roll distance of 84.8 cm while Polymer 2 had

    an average roll distance of 36.6. Polymer 3, 4 and 5 did not roll at all.

    OBSERVABLE CHARACTERISTICS

    Polymer Characteristics

    1 White in color, rubbery, easy to mold into a ball, smooth, soft

    2White in color, rubbery, easy to mold into a ball but it is alsoeasily can loose its shape, smooth, soft

    3 White in color, slimy, not too easy to mole into a ball

    4White in color, some small formation of gooey substance can beobserve

    5 White in color, watery

    Table 4.7 Observable Characteristics of the Polymers

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Distance(

    incm.)

    1 2 3 4 5

    Polymer

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    28/40

    28

    COST ANALYSIS

    The following were the cost made in this project study.

    MaterialTotal

    AmountCost

    Costper unit

    Unitsused

    Expensesfor thesetup

    Glue 130 P 51.00 P 0.39 30 P 11.77

    Borax 1000 42.00 0.04 10 0.42

    Corn starch 200 18.50 0.09 10 0.93

    Water 360 0.00 0.00 0 0.00

    Zip-lock baggie 30 88.25 2.94 5 14.71

    Total expenses P 27.82

    Polymer products 5

    Cost per Polymer product P 5.56

    Table 4.8 Cost Analysis of the Research Project

    The amount of each material was divided by the cost of the material to get the

    cost per unit. Then the cost per unit was multiplied to the amount of units used to

    enable the researchers to get the expenses based on the setup of the project study.

    The total cost of the five (5) polymer products amounted to P27.82. The cost of each

    polymer product was P 5.56.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    29/40

    29

    CHAPTER 5

    SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

    SUMMARY OF FINDINGS

    Based on the observation, homemade bouncy polymer can be created by

    mixing Borax dissolved in water, glue diluted in water and cornstarch.

    The characteristics of the polymer depend on the amount or ratio of the

    solution. The more glue solution is added the more elastic the polymer is while the

    more Borax solution is added the more watery it is.

    All the Polymers weighted the same, 40 grams. Polymer 1 has the highest

    volume with 90 ml. Polymer 5 has the highest density with 0.53 g/ml.

    Polymer 1 has an average bounce/return height of 6.4 cm; an average stretch

    distance of 43.6 cm; and, an average roll distance of 84.8 cm.

    Polymer 2 has an average bounce/return height of 5.0 cm; an average stretch

    distance of 34.8 cm; and, average roll distance of 36.6.

    Polymer 3, 4 and 5 did not bounce at all; was not possible to be stretch; and,

    did not roll at all.

    The total cost of the five (5) polymer products amounted to P27.82. The cost

    of each polymer product was P 5.56.

    CONCLUSION

    Based on the results and findings of the project study, the following

    conclusions were obtained:

    1. It is possible to make a homemade bouncy polymer using PVA glue and

    cornstarch with the addition of Borax dissolved in water.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    30/40

    30

    2. Polymer 1 with the ratio of 1:5:1 (Borax solution:glue solution:cornstarch)

    produced the best homemade bouncy polymer. It has the highest average

    bounce/return, highest average stretch distance and highest average roll

    distance.

    3. Varying ratio of the ingredients, Borax solution and glue solution, affect the

    physical characteristics of the homemade bouncy polymer. Using less borax

    will produce a 'goopier' type of ball while adding more glue for a slimier ball.

    RECOMMENDATIONS

    Making a homemade bouncy polymer produced a positive result. With this

    basis, the researchers recommend the adaptation of this homemade bouncy polymer

    on the teaching-learning process which can be used by both teachers and students

    specifically in representing chemical reactions in Chemistry and demonstration of

    some laws in Physics.

    To further improve the project study, the researcher would also like to

    recommend the following:

    1. Experiment with the ratio between the amounts of glue, cornstarch, and

    borax;

    2. Experiment on the floor where the homemade bouncy polymer will bounce

    the highest, on a wood, on a glass or on a concrete floor;

    3. Experiment if temperature will affect the characteristics of the homemade

    bouncy polymer;

    4. Experiment if the size will affect the height of bounce/return, length of

    stretch and distance of roll; and,

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    31/40

    31

    5. Experiment if the homemade polymer can be used as an alternative on

    some rubber products.

    Moreover, other investigators are encouraged similar project to improve the

    quality and provide homemade bouncy polymer.

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    32/40

    32

    BIBLIOGRAPHY

    Helmenstine , Anne Marie, Ph.D.

    http://chemistry.about.com/od/demonstrationsexperiments/ss/bounceball.htm.Retrieved on 09/04/2009 1:42:15 PM

    Po, J.C. Toronto.http://www.utm.utoronto.ca/~w3chm140/PBL/PBL4/index.html.Retrieved on 09/03/2009 2:07:05 PM]

    http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_003306&use_sec=true&sec_url_var=region1&__uuid=c9cce327-6b0d-4e56-8f47-e4fb421f6bee Retrieved on 09/10/200903:30:10 PM

    http://www.ehow.com/how_4911152_make-bouncy-balls-polymers.htmlRetrieved on09/4/2009 1:46:36 PM

    http://www.files.chem.vt.edu/RVGS/ACT/lab/Experiments/Exp_8-Bouncing_Ball.htmlRetrieved on 09/11/2009 03:29:24 PM

    http://www.hometrainingtools.com/article.asp?ai=1462&bhcd2=1252625633Retrieved on 09/11/2009 03:23:18 PM

    http://www.planet-science.com/sciteach/index.html?page=/experiment/expts/custard_balls.htmlRetrieved on 09/11/2009 03:24:19 PM

    http://www.pslc.ws/macrog/kidsmac Retrieved on 09/04/2009 1:50:23 PM

    http://www.sciencemathlabs.com/glueball.pdf Retrieved on 09/05/2009 1:15:20 PM

    http://www.yummyscience.co.uk/ys_pages/ys_custard.htmlRetrieved on 09/10/2009 03:26:02 PM

    http://chemistry.about.com/od/demonstrationsexperiments/ss/bounceball.htmhttp://chemistry.about.com/od/demonstrationsexperiments/ss/bounceball.htmhttp://www.utm.utoronto.ca/~w3chm140/PBL/PBL4/index.htmlhttp://www.utm.utoronto.ca/~w3chm140/PBL/PBL4/index.htmlhttp://www.utm.utoronto.ca/~w3chm140/PBL/PBL4/index.htmlhttp://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_003306&use_sec=true&sec_url_var=region1&__uuid=c9cce327-6b0d-4e56-8f47-e4fb421f6beehttp://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_003306&use_sec=true&sec_url_var=region1&__uuid=c9cce327-6b0d-4e56-8f47-e4fb421f6beehttp://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_003306&use_sec=true&sec_url_var=region1&__uuid=c9cce327-6b0d-4e56-8f47-e4fb421f6beehttp://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_003306&use_sec=true&sec_url_var=region1&__uuid=c9cce327-6b0d-4e56-8f47-e4fb421f6beehttp://www.ehow.com/how_4911152_make-bouncy-balls-polymers.htmlhttp://www.ehow.com/how_4911152_make-bouncy-balls-polymers.htmlhttp://www.files.chem.vt.edu/RVGS/ACT/lab/Experiments/Exp_8-Bouncing_Ball.htmlhttp://www.files.chem.vt.edu/RVGS/ACT/lab/Experiments/Exp_8-Bouncing_Ball.htmlhttp://www.hometrainingtools.com/article.asp?ai=1462&bhcd2=1252625633http://www.hometrainingtools.com/article.asp?ai=1462&bhcd2=1252625633http://www.planet-science.com/sciteach/index.html?page=/experiment/expts/custard_balls.htmlhttp://www.planet-science.com/sciteach/index.html?page=/experiment/expts/custard_balls.htmlhttp://www.planet-science.com/sciteach/index.html?page=/experiment/expts/custard_balls.htmlhttp://www.pslc.ws/macrog/kidsmachttp://www.pslc.ws/macrog/kidsmachttp://www.sciencemathlabs.com/glueball.pdfhttp://www.sciencemathlabs.com/glueball.pdfhttp://www.yummyscience.co.uk/ys_pages/ys_custard.htmlhttp://www.yummyscience.co.uk/ys_pages/ys_custard.htmlhttp://www.yummyscience.co.uk/ys_pages/ys_custard.htmlhttp://www.sciencemathlabs.com/glueball.pdfhttp://www.pslc.ws/macrog/kidsmachttp://www.planet-science.com/sciteach/index.html?page=/experiment/expts/custard_balls.htmlhttp://www.planet-science.com/sciteach/index.html?page=/experiment/expts/custard_balls.htmlhttp://www.hometrainingtools.com/article.asp?ai=1462&bhcd2=1252625633http://www.files.chem.vt.edu/RVGS/ACT/lab/Experiments/Exp_8-Bouncing_Ball.htmlhttp://www.ehow.com/how_4911152_make-bouncy-balls-polymers.htmlhttp://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_003306&use_sec=true&sec_url_var=region1&__uuid=c9cce327-6b0d-4e56-8f47-e4fb421f6beehttp://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_003306&use_sec=true&sec_url_var=region1&__uuid=c9cce327-6b0d-4e56-8f47-e4fb421f6beehttp://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_003306&use_sec=true&sec_url_var=region1&__uuid=c9cce327-6b0d-4e56-8f47-e4fb421f6beehttp://www.utm.utoronto.ca/~w3chm140/PBL/PBL4/index.htmlhttp://chemistry.about.com/od/demonstrationsexperiments/ss/bounceball.htm
  • 7/27/2019 Homemade Bouncy Polymer.pdf

    33/40

    33

    APPENDICES

    Appendix A Formula Used in the Project Study ............................. 33

    Appendix B Materials Used .......................................................... 34

    Appendix B Procedures ................................................................ 35

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    34/40

    34

    APPENDIX A

    FORMULA USED IN THE PROJECT STUDY

    Finding the Mean:

    __

    X = X / N

    _Where: X = Mean

    X = Sum of scoresN = no. of cases

    Finding the Standard Deviation:

    SD =

    Where: SD = Standard deviation

    = Squared deviation from the meann = no. of cases

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    35/40

    35

    APPENDIX B

    MATERIALS

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    36/40

    36

    APPENDIX C

    PROCEDURES

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    37/40

    37

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    38/40

    38

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    39/40

    39

  • 7/27/2019 Homemade Bouncy Polymer.pdf

    40/40