Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent...

61

Transcript of Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent...

Page 1: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device
Page 2: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

SU

MM

ER

TO

PIC

AL

S M

EE

TIN

G S

ER

IES

20

17

PR

OG

RA

M –

AT

– A

– G

LA

NC

E

Wed

nes

day,

12 J

uly

8:0

0 –

8:3

0

CO

NT

INE

NT

AL

BR

EA

KF

AS

T –

Gra

nd

Ba

llro

om

Fo

yer

8:3

0 –

10

:00

WA

1:

Mid

-IR

Dev

ices

W

B1

: N

ovel

Pho

tonic

Dev

ices

and

Ap

pli

cati

on

s

WC

1:

PL

EN

AR

Y -

Inte

gra

ted

Pho

tonic

s

WE

1:

Tes

t &

Mea

sure

men

t fo

r 5

G

WF

1:

Quan

tum

Net

wo

rk

Theo

ry

10

:00

– 1

0:3

0

CO

FF

EE

BR

EA

K –

G

ran

d B

all

roo

m F

oy

er

10

:30

– 1

2:0

0

WC

2:

Hig

h-S

pee

d

Dev

ices

WD

2:

Ph

oto

nic

Inte

gra

ted

Cir

cuit

s fo

r

Ad

van

ced

Fu

nct

ion

alit

ies

in O

pti

cal

Sw

itch

ing I

WE

2:

Pho

tonic

/RF

Co

mp

onents

& F

SO

fo

r 5

G

WF

2:

Quan

tum

Net

wo

rk

Co

nst

rain

ts –

Bre

akd

ow

n

Ses

sio

n

I

NT

EG

RA

TE

D P

HO

TO

NIC

S

FO

R T

HE

UL

TR

AV

IOL

ET

AN

D V

ISIB

LE

SP

EC

TR

AL

RA

NG

E (

IPM

I)

INT

EG

RA

TE

D

PH

OT

ON

ICS

FO

R T

HE

MID

-IN

FR

AR

ED

(IP

UV

)

LO

W E

NE

RG

Y

INT

EG

RA

TE

D

NA

NO

PH

OT

ON

ICS

(L

EIN

)

OP

TIC

AL

SW

ITC

HIN

G

TE

CH

NO

LO

GIE

S F

OR

DA

TA

CO

M A

ND

CO

MP

UT

ER

CO

M

AP

PL

ICA

TIO

NS

(O

SD

C)

PH

OT

ON

ICS

RE

SE

AR

CH

FO

R

5G

AN

D B

EY

ON

D (

PR

5G

)

QU

AN

TU

M N

ET

WO

RK

S

(QN

W)

Ro

om

: M

IRA

MA

R A

TL

AN

TIC

I

AT

LA

NT

IC I

I B

AL

LR

OO

M I

B

AL

LR

OO

M I

I B

AL

LR

OO

M I

II

BA

LL

RO

OM

IV

Tu

esd

ay

, 11 J

uly

8:0

0 –

8:3

0

CO

NT

INE

NT

AL

BR

EA

KF

AS

T –

Gra

nd

Ba

llro

om

Fo

yer

8:3

0 –

10

:00

Tu

A1

: G

eSn M

ater

ials

and

Dev

ices

IV

Tu

B1

: II

I-N

itri

de

Pho

tonic

s

Tu

C1

: A

tto

joule

Pho

tonic

s L

EIN

/OS

DC

join

t se

ssio

n

T

uE

1:

5G

Sta

nd

ard

s an

d

Fie

ld T

rial

s

Tu

F1

: Q

uan

tum

Chan

nel

s and

Dec

oher

ence

10

:00

– 1

0:3

0

CO

FF

EE

BR

EA

K –

Gra

nd

Ba

llro

om

Fo

yer

10

:30

– 1

2:0

0

Tu

A2

: N

ovel

Inte

gra

tio

n

Tec

hno

log

y

Tu

B2

: P

ho

tonic

Cir

cuit

s an

d S

ourc

es f

or

Quantu

m I

nfo

rmati

on

Tu

C2

: In

tegra

ted

Nan

op

ho

tonic

s

Tu

D2

: O

pti

call

y

Sw

itched

Dat

a C

ente

r

Net

wo

rk A

rchit

ectu

res

and

Op

tica

l S

wit

chin

g

Syst

em

s I

Tu

E2

: 5

G P

ersp

ecti

ves

fro

m

Ind

ust

ry a

nd

Aca

dem

ia

Tu

F2

: S

ourc

es o

f

Enta

ngle

d P

ho

ton P

airs

12

:00

– 1

:30

LU

NC

H O

N O

WN

1:3

0 –

3:0

0

Tu

A3

: S

i B

ased

Mid

-IR

T

uB

3:

Nan

ob

iop

ho

tonic

s and

Sp

ectr

osc

op

y

Tu

C3

: N

ano

pho

tonic

s

for

Hig

h-S

pee

d

Tu

D3

: O

pti

call

y

Sw

itched

Dat

a C

ente

r

Net

wo

rk A

rchit

ectu

res

and

Op

tica

l S

wit

chin

g

Syst

em

s II

Tu

E3

: H

igh D

ata

Rat

e

Wir

eles

s

Tu

F3

: L

ong D

ista

nce

Quantu

m C

om

mu

nic

ati

on

3:0

0 –

3:3

0

CO

FF

EE

BR

EA

K –

G

ran

d B

all

roo

m F

oy

er

3:3

0 –

5:0

0

Tu

A4

: N

ovel

Si

Bas

ed

Inte

gra

ted

Pho

tonic

s

T

uC

4:

Nano

pho

tonic

Dev

ices

Tu

D4

: O

pti

call

y

Sw

itched

Dat

a C

ente

r

Net

wo

rk A

rchit

ectu

res

and

Op

tica

l S

wit

chin

g

Syst

em

s II

I

Tu

E4

: B

eyo

nd

5G

T

uF

4:

Str

uct

ure

of

Quantu

m N

etw

ork

No

des

Page 3: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Welcome to the 2017 IEEE Photonics Society Summer Topicals Meeting Series 

10 ‐ 12 July 2017 San Juan Marriott 

San Juan, Puerto Rico  The Summer Topicals Meeting is the premier conference series for exciting, new areas in photonic science, technology, and applications.  Experience the opportunity to learn about emerging fields and to interact with the research and technology leaders in an intimate environment.   The 2017 Summer Topical Meetings are focused on "Integrated Photonics". 

The following topical meetings will be held: 

1. Integrated Photonics for the Ultraviolet and Visible Spectral Range (IPUV) 2. Integrated Photonics for the Mid‐Infrared (IPMI) 3. Low Energy Integrated Nanophotonics (LEIN) 4. Optical Switching Technologies for Datacom and Computercom Applications (OSDC) 5. Photonics Research for 5G and beyond (PR5G) 6. Quantum Networks (QNW)   A unique aspect of the Topical Meeting is that IEEE Photonics Society volunteers propose and organize the event. Hence, I would like to thank each of the Topical Chairs and the Program Committee Members who have volunteered and invested their time organizing these conferences over the years. I also want to thank the plenary and invited speakers for giving us their perspectives on the exciting new developments and the challenges in these fields. Finally, I would like to express my sincere appreciation to the IEEE Photonics Society Conference Staff for their professional organization and arrangements. 

The topics to be discussed in this year's Summer Topicals span a broad range in emerging and hot areas of research, from materials to devices, integrated photonics, and systems. 

The IPUV topic will cover recent advances in photonic integrated circuits in the UV and visible spectra, with a broad range of applications in biochemical sensing, Raman spectroscopy, photo‐ionization, integrated spectrometers, nonlinear optics, LIDAR, and high density optical recording.   

The IPMI topic will bring together photonic engineers, materials scientist, optical physicists, and 

application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device design and integration.  

The LEIN topic aims to garner recent advances in nanophotonic devices ranging from nanolasers, detectors to modulators for chip‐level optical interconnects and will bring together diverse specialists to estimate bit energies of individual devices with integrated photonics specialists who can look at architectures to utilize such devices.  

The OSDC topic will discuss the latest research and development in optical switching and memory technologies and address a series of challenges with respect to memory bandwidth, energy and speed requirements for the next generation high performance computers.  

2

Page 4: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

The PR5G topic will bring together global participants from both industry and academia and present advances in integrated microwave photonics technology, mm‐wave and THz wireless digital/analog radio over fiber systems, radio‐optical digital signal processing, and multi‐RAT networking.  

The QNW topic aims to provide an interdisciplinary setting to discuss the recent advances of quantum networks, including their novel application and functionalities, architectures and protocols, entanglement creation and manipulation, and quantum nodes and memories. 

In addition to the technical presentations, hallway discussions, and other networking, I hope that you have a chance to experience the beautiful beach and many other wonderful attractions in San Juan. 

Looking forward to seeing you in San Juan!   Zetian Mi, 2017 General Chair 

 

3

Page 5: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

IEEE Photonics Society  Summer Topicals Meeting Series 2017 Committee List   

General Chair Zetian Mi, University of Michigan, Ann Arbor, USA  

2017 Chair‐Elect Nick Fontaine, Nokia Bell Labs, USA  

Integrated Photonics For The Ultraviolet And Visible Spectral Range (IPUV) Topic Co‐Chairs Dirk England, Massachusetts Institute of Technology, USA Mohammad, Soltani, Raytheon BBN Technologies, USA  

Technical Program Committee Richard, Soref, University of Massachusetts Boston, USA Pol Van Dorpe, K.U. Leuven  Belgium Hong Tang, Yale University, USA  

Integrated Photonics For The Mid‐infrared (IPMI) Topic Co‐Chairs Jay Mathews, University of Dayton, USA Shui‐Qing (Fisher), University of Arkansas, USA  Jörg Schulze, University of Stuttgart, Germany Shumin Wang, Chinese Academy of Sciences, China  

Technical Program Committee Sasan Fathpour, University of Central Florida CREOL, USA  H. H. (Henry) Cheng, National Taiwan University, Taiwan Germán González‐Díaz, Universidad Complutense of Madrid, Spain Bruce "Chip" Claflin, Air Force Research Lab, USA   

Low Energy Integrated Nanophotonics (LEIN) Topic Co‐Chairs Michael Gerhold, U.S. Army Research Laboratory, USA Weidong Zhou, University of Texas at Arlington, USA  

4

Page 6: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Technical Program Committee David Miller, Stanford, USA Milos Popovic, Boston University, USA  

Optical Switching Technologies For Datacom And Computercom Applications (OSDC) Topic Co‐Chairs Theoni Alexoudi, Aristotle University of Thessaloniki, Greece Paraskeyas Bakopoulos, NTUA, Greece Richard Pitwon, Seagate, UK Nicola Calabretta, Technische Universiteit Eindhoven, The Netherlands George  Zervas, University of Bristol, UK  

Technical Program Committee Paraskevas Bakopoulos, ICCS‐NTUA, Greece Konstantinos Vyrsokinos, Aristotle University of Thessaloniki, Greece Laurent Schares, Thomas J. Watson Research Center, USA Luca Poti, CNIT, Italy Payman Samadi, Columbia University, USA Nihel Benzaoui, NOKIA Bell Labs, France Roberto Proietti, UC Davis, USA  

Photonics Research For 5G And Beyond (PR5G) Topic Co‐Chairs Andreas Stöhr, University of Duisburg, Germany Ken‐ichi Kitayama, Graduate School for the Creation of New Photonics Industries, Japan Michael Sauer, Corning Inc., USA   

Quantum Networks (QNW) Topic Co‐Chairs Michael Brodsky, U.S. Army Research Laboratory, USA Vladimir Malinovsky, U.S. Army Research Laboratory, USA Paul Alsing, Air Force Research Laboratory, USA 

5

Page 7: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Table of Contents

Program-at-a-Glance ........................................Inside Front Cover, 1

Welcome Letter ................................................................................2

Committee List ................................................................................4

Program ............................................................................................7

Photography Clause........................................................................51

Author Index ..................................................................................52

Hotel Map ............................................................Inside Back Cover

6

Page 8: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Final ProgramMonday, 10 JuLy 2017

8:00 am–8:30 am Grand Ballroom FoyerContinental Breakfast

8:30 am–10:00 am Miramar atlantic ISession Ma1 GeSn Materials and devices I Session Chair Dan Buca, Forschungszentrum Julich

8:30 am–9:00 am (Invited)Ma1.1 Synthesis of Ge-Sn alloys by Ion Implantation and Pulsed Laser Melting: Towards a

Group IV direct Band Gap Semiconductor, Jim S. Williams and Tuan T. Tran, RSPE, Australian National University, Canberra, Australia

Ion implantation and pulsed laser melting have been used to prepare good quality GeSn alloys withup to 12 at.% Sn on Ge substrates. Both compressively strained and unstrained alloys are obtainedand PL emission at 2.15 µm is obtained in the latter case.

9:00 am–9:30 am (Invited)Ma1.2 α-Sn and α-Sn1–xGex Film Growth, Characterization & Stability, Arnold M. Kiefer,

Air Force Research Laboratory, Wright-Patterson AFB, OH, USA, Gordon J. Grzybowski,Stephanie A. Chastang, Air Force Research Laboratory, Wright-Patterson AFB, OH, andKBRwyle, El Segundo, CA, USA, and Bruce B. Claflin, Air Force Research Laboratory,Wright-Patterson AFB, OH, USA

We report α-Sn and α-SnGe films grown by MBE on various substrates and resulting measuredproperties. We demonstrate films with Ge compositions beyond the solubility limit for metallic β-Snand suggest a wide range of Sn-Ge compositions are possible under the proper epitaxial constraints.

9:30 am–10:00 am (Invited)Ma1.3 Ge Growth using Pulsed Laser Solidification, Jifeng Liu, Dartmouth College

7

Page 9: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

8:30 am–10:00 am atlantic IISession MB1 Emerging uV-Visible Photonic Platforms I Session Chair Zetian Mi, University of Michigan, Ann Arbor, USA

8:30 am–9:15 am (Plenary)MB1.1 advances in Gan-based Quantum dots for Single Photon Emission, Yasuhiko

Arakawa, University of Tokyo

We discuss recent progress in growth and physics of GaN quantum dot for single photon emission at the ultraviolet wavelength, including position controlled nanowire quantum dots with a giantbiexciton binding energy over 60meV, which enabled single photon sources operating at 350 K.

9:15 am–9:30 amMB1.2 a new architecture for Fabrication of on-Chip arrays of nanoscale Light Sources in

the uV-Visible, Babak Nikoobakht, National Institutes of Standards and Technology,Gaithersburg, MD, USA

The current state-of-the-art methodologies for on-chip light sources rely on traditional microfabricationand thin film growth that lose their efficiency for creating optical sources with sub-100 nmdimensions. We present a platform for in-situ formation/integration of semiconductors forrealization of arrays of nanoscale light sources.

9:30 am–10:00 am (Invited)MB1.3 applications of aluminum nitride and Lithium niobate to Visible Photonics,

Matt Eichenfield, Sandia National Labs

We will discuss recent progress at Sandia National Laboratories in photonic devices made from or in conjunction with lithium niobate and aluminum nitride. Topics discussed will include nonlinearfrequency conversion, modulation, switching, and tunability of photonic devices.

8:30 am–10:00 am Ballroom ISession MC1 Platforms for nanophotonic Integration Session Chair Michael Gerhold, US Army Research Laboratory, USA

8:30 am–9:00 am (Invited)MC1.1 First-Priniciple Computational Simulation Techniques for active nanophotonic

devices, Shanhui Fan, Stanford

8

Page 10: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

9:00 am–9:30 am (Invited)MC1.2 nanophotonic devices for Power-Efficient Computing and optical Interconnects,

Zheng Wang, Zhoufeng Ying, Shounak Dhar, Zheng Zhao, David Pan and Ray T. Chen, University of Texas, Austin, Austin, TX, USA

To solve the problem in huge power consumption of the data centers and cloud computing, wedesign an extreme optical adder architecture suitable for ultra-high bit count. n-bit full adder are full implementable on a silicon platform using guided wave optics.

9:30 am–10:00 am (Invited)MC1.3 Recent Progress in Monolithic Silicon Electronics-Photonics Integration in advanced

CMoS, Milos Popovic, C. Sun, M. Wade, M. Georgas, S. Lin, A. Atabaki, F. Pavanello, J. Shainline, L. Alloatti, J. Orcutt, R. Ram, V. Stojanovic, S. Moazeni, and N. Mehta

We present recent progress in silicon electronics-photonics integration in unmodified 45nm SOICMOS technology including various photonic devices, and systems including the first single-chipmicroprocessor with photonic I/O, low energy 40Gbps transmitters and receivers, and applicationsto optical switching.

8:30 am–10:00 am Ballroom IIISession ME1 5G architectures Session Chair Ken-ichi Kitayama, Graduate School for the Creation of New Photonics

Industries, Japan

8:30 am–9:00 am (Invited)ME1.1 TBd, Roberto Sabella Ericsson, Italy

9:00 am–9:30 am (Invited)ME1.2 Elastic optical Technologies and Sdn/nFV Control for 5G Mobile X-Haul,

Raul Muñoz, Josep Maria Fàbrega, Ramon Casellas, Michela Svaluto Moreolo, Ricard Vilalta, Laia Nadal and Ricardo Martínez, Centre Tecnològic de Telecomunicacionsde Catalunya (CTTC/CERCA), Castelldefels (Barcelona), Spain

This paper presents a 5G mobile x-haul architecture composed of central offices with OLTprogrammable S-BVTs, small-DC and Ethernet switching, and edge nodes located in the 5G cell-sitecabinets with cloudlet, Ethernet aggregation and elastic ONT to meet the specific 5G mobile x-hauling requirements.

9

Page 11: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

8:30 am–10:00 am Ballroom IVSession MF1 QnW Plenary Session Chair Michael Brodsky, US Army Research Laboratory, USA

8:30 am–9:15 am (Plenary)MF1.1 Quantum networking: From Today’s QKd Links to Tomorrow’s Quantum Internet,

William Munro, NTT Basic Research Labs., Atsugi, Japan

The development of quantum technologies allows for completely new ways to create, manipulateand store information. Quantum communication, the ability to transmit such information, is aprimitive for tomorrows quantum Internet. Here we discuss how starting with QKD we can realizethis future internet.

9:15 am–10:00 am (Plenary)MF1.2 Reminiscences on 25 years of dod Investments Leading to Quantum Information,

Peter Reynolds, Army Research Office, Research Triangle Park, NC, USA

I trace my DoD program management history from 1980’s laser cooling and trapping, to BoseEinstein condensation, atom lasers, Fermi degenerate gases, and atomtronics, to the beginnings ofQIS in the form of trapped ion qubits, optical lattices, and quantum emulation of condensed matter.

10:00 am–10:30 am Grand Ballroom FoyerCoffee Break

10:30 am–12:00 pm Miramar atlantic ISession Ma2 GeSn Materials and devices II Session Chair Jifeng Liu, Dartmouth College, USA

10:30 am–11:00 am (Invited)Ma2.1 GeSn-based Light Sources and Photoconductors towards Integrated Photonics for

the Mid-Infrared, Joe Margetis, John Tolle, ASM, Phoenix, AZ, USA, Sattar Al-Kabi,Yiyin Zhou, Huong Tran, Thach Pham, Wei Dou, Perry Grant, Shui-Qing Yu, University ofArkansas, Fayetteville, AR, USA, Wei Du, Seyed Ghetmiri, Mansour Mortazavi, Universityof Arkansas at Pine Bluff, Pine Bluff, AR, USA, Greg Sun, Richard Soref, University ofMassachusetts at Boston, Boston, MA, USA, Yiyin Zhou, Perry Grant and Baohua Li,Arktonics LLC, Fayetteville, AR, USA

GeSn-based optically pumped lasers and photoconductors have been systematically investigated.The operation wavelength of these devices covers 2–3 μm. Since GeSn technique is fully compatiblewith current CMOS process, the GeSn-based devices can be widely used in the area of Si integratedphotonics.

10

Page 12: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

11:00 am–11:30 am (Invited)Ma2.2 (Si)GeSn Plasmonics, Inga Anita Fischer, Lion Augel, Audrey Berrier, Michael Oehme,

Jörg Schulze, University of Stuttgart, Stuttgart, Germany

Based on experimental results for the permittivity of highly doped GeSn layers we discuss the use of (Si)GeSn as tunable plasmonic materials at wavelengths > 5 um.

11:30 am–12:00 pm (Invited)Ma2.3 SiGeSn/GeSn Heterostructures for Group IV Lasers, Dan Buca

10:30 am–12:00 pm atlantic IISession MB2 nonlinear and Quantum Photonics Session Chair Matt Eichenfield, Sandia National Laboratories, USA

10:30 am–11:00 am (Invited)MB2.1 Connecting Visible and Telecommunication Band Spectra with Silicon nitride

Quantum Photonics, Xiyuan Lu, Qing Li, Daron Westly and Kartik Srinivasan, NIST,Gaithersburg, MD, USA

We describe our recent development of silicon nitride nanophotonic devices for connecting quantumstates in the visible and telecommunication band spectra. Device design, simulation, fabrication, andmeasurement results will be presented. Future directions and applications for integrated quantumphotonics will also be discussed.

11:00 am–11:30 am (Invited)MB2.2 Wide Band Parametric optical Processes in Crystalline Microresonators, Wei Liang,

Anatoliy A. Savchenkov, Vladimir S. Ilchenko, Danny Eliyahu, Andrey B. Matsko andLute Maleki, OEwaves Inc., Pasadena, CA, USA

We study several kinds of low-threshold crystalline whispering gallery mode resonator-based OPOsemitting broadband optical spectra. The parametric process is phase matched due to interaction ofdifferent mode families, as well as contribution from the interplay of second- and higher-order groupvelocity dispersion.

11:30 am–12:00 pm (Invited)MB2.3 Integrated nonlinear Photonics at Visible Wavelengths, Marko Loncar, Harvard

University

11

Page 13: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

10:30 am–12:00 pm Ballroom IISession Md2 optical Signal Processing and optical Memories & Buffering Session Chair George T. Kanellos, Aristotle University of Thessaloniki, Greece

10:30 am–11:00 am (Invited)Md2.1 Polarization Bistable VCSELs and Their applications to all-optical Signal

Processing, Hitoshi Kawaguchi, Nara Institute of Science and Technology, Kizugawa,Japan

We review recent progress in research of polarization bistable VCSELs and their applications tooptical signal processing. Low power-consumption operation and reliable operation with BER betterthan 1×10-9 of all-optical flip-flops, high speed memory operation, and header recognition arediscussed.

11:00 am–11:30 am (Invited)Md2.2 optical Memory and optical logic for ultralow Latency Processing Based on

Integrated nanophotonics, Masaya Notomi, A. Shinya, K. Nozaki, NTT Basic ResearchLaboratories, NTT Nanophotonics Center, T. Ishihara and K. Inoue, Kyushu University

We review recent progress in various photonic functional components, such as optical switches andmemories, based on advanced nanophotonic technologies including photonic crystals, and discusspossible applications for logic processing with ultralow latency.

11:30 am–12:00 pm (Invited)Md2.3 Electrically driven Hybrid InP-on-SoI nanocavities for Lasers, Switches and

Memories, Fabrice Raineri

The convergence of microelectronics and photonics currently triggers large technological andscientific efforts with the view to develop novel optoelectronic nanodevices. We demonstrate InP-on-SOI-based nanolaser diodes that can also be used for fast switches and memories operatingwith low activation energies.

12:00 pm–12:15 pmMd2.4 optical Time-Slot Interchanger and Si-Based delay Lines Towards Integrated

Feed-Forward Buffers, Miltiadis Moralis-Pegios, George Mourgias-Alexandris,Theonitsa Alexoudi, Aristotle University of Thessaloniki, Thessaloniki, Greece, Matteo Cherchi, Mikko Harjanne, Timo Aalto, VTT Technical Research Centre of Finland,Espoo Finland, Nikos Pleros and Konstantinos Vyrsokinos, Aristotle University ofThessaloniki, Thessaloniki, Greece

We demonstrate a time-slot interchanger unit utilizing differentially biased SOA-MZI wavelengthconverters. Replacement of the fiber delay lines with integrated waveguides is also investigated. We report error-free rearrangement of three 10Gbps data packets for the fiber case and error-freetransmission through the integrated delays.

12

Page 14: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

10:30 am–12:00 pm Ballroom IIISession ME2 5G Fiber Wireless Covergence Session Chair Michael Sauer, Corning Inc., USA

9:30 am–10:00 am (Invited)ME2.2 The Impact of 5G on the optical network, Michael Frankel, Ciena, Hanover, MD, USA

and Nigel Bragg, Ciena, London, United Kingdom

5G impact on optical network starts in 2019 in advanced economies. It becomes another service onMetro and Long Haul networks. Growth occurs in point-point connectivity from wireline edge toantenna sites demanding large bandwidth, low cost and power, and reach targets of <20 km.

10:00 am–10:30 am (Invited)ME2.3 End-to-End Quality of Service over advanced Heterogeneous 5G networks,

Halina Tarasiuk, Warsaw University of Technology, Warsaw, Poland

In this talk, I will show an impact of new use cases and new network technologies as networkvirtualization and SDN on end-to-end quality of service guarantees over advanced heterogeneous5G network. Current research topics in this area will be discussed.

10:30 am–12:00 pm Ballroom IVSession MF2 Entangling Protocol and Entanglement Manipulation Session Chair Janos Bergou, Hunter College, USA

10:30 am–11:00 am (Invited)MF2.1 Challenges for Realizing ubiquitous Quantum networks; Quantum digital

Signatures, Nicholas Peters, Oak Ridge

11:00 am–11:15 amMF2.2 Entanglement Swapping with Two Imperfect States, Brian T. Kirby, Siddhartha Santra,

Vladimir S. Malinovsky and Michael Brodsky, US Army Research Laboratory, Adelphi,MD, USA

We present a formal description of entanglement swapping of any two, arbitrarily mixed, densitymatrices. Application of this result reveals bounds on the rank and concurrence of the final state forseveral classes of input states.

13

Page 15: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

11:15 am–11:30 amMF2.3 Quantum-Scheme for Improving Interferometric Visibility with Imperfect

distributed Entangled-States, Siddhartha Santra, Brian T. Kirby, Vladimir S.Malinovsky, Michael Brodsky, US Army Research Laboratory, Adelphi, MD, USA

We analyze a quantum-scheme for measuring interferometric visibility for telescopic applicationswith imperfectly entangled states as a resource. The scheme overcomes photon loss thus permittingmeasurement with larger baseline leading to finer resolution of angular intensity distribution ofremote sources of light.

11:30 am–12:00 pm (Invited)MF2.4 Quantum Computation and the Entanglement of Photons by Photons, Barry M.

Garraway, University of Sussex, Brighton, United Kingdom

The quantum processing of cavity photons by photons can be achieved in theory by utilising a multi-mode cavity interacting with a multi-state system. The theory presented is based on an effectiveHamiltonian approach, and by selecting configurations which are less sensitive to decoherence.

12:00 pm–1:30 pmLunch Break (on own)

1:30 pm–3:00 pm Miramar atlantic ISession Ma3 IPMI Plenary Session Chair Shui-Qing Yu, University of Arkansas, USA

1:30 pm–2:00 pm (Invited)Ma3.1 Will Ge and GeSn Lasers Enable Si Photonics in the Mid-Infrared?, Alexei Chelnokov,

Nicolas Pauc, Alban Gassenq, Joris Aubin, Quang Minh Thai, Laurent Milord, MathieuBertrand, Kevin Guilloy, Johan Rothman, University Grenoble Alpes, Grenoble, France,Thomas Zabel, Hans Sigg, Paul Scherrer Institute, Villigen, Switzerland, Jean-MichelHartmann, Vincent Calvo and Vincent Reboud, University Grenoble Alpes, Grenoble,France

Already mature in the near-IR, silicon photonics now moves into mid-IR for gas sensing. Here also,monolithically-integrated laser sources are desperately needed. We demonstrate optically pumpedmid-IR GeSn-on-Si lasers in several cavity configurations. How far are we from CMOS-integratedelectrically-pumped room-temperature lasers?

2:00 pm–2:30 pm (Invited)Ma3.2 nanoheteroepitaxy as a Viable Route to Integrate III-V Compounds on Si Substrates:

The Cases for InP and Gaas, Giovanni Capellini, IHP, Frankfurt (Oder), Germany We show how nanoheteroepitaxy (NHE) can be exploited to integrate different semiconductors (Ge, GeSn, InP, GaAs) on suitably patterned Silicon substrates. As a first application, wedemonstrate two hybrid photodetectors featuring Ge o InP NHE and a SL graphene top electrode.

14

Page 16: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

1:30 pm–3:00 pm atlantic IISession MB3 Emerging uV-Visible Photonics Platforms II Session Chair Hongxing Jian, Texas Tech University, USA

1:30 pm–2:00 pm (Invited)MB3.1 Visible-Wavelength Photonic Integrated Circuits for Trapped-Ion Quantum

Computing, Karan K. Mehta, Gavin N. West and Rajeev J. Ram, Massachusetts Instituteof Technology, Cambridge, MA, USA

We report on work using visible integrated photonics to control trapped ions for quantuminformation processing. Planar radio frequency traps confine the ions while light is routed via visiblewaveguides and modulators and delivered to the ion by focusing grating couplers.

2:00 pm–2:30 pm (Invited)MB3.2 aIn Integrated Quantum Photonics Circuits, Stefan Preble, Rochester Institute of Tech.

2:30 pm–3:00 pm (Invited)MB3.3 Single Crystal aln Substrates for alGan-Based uV optoelectronics, Rafael Dalmau,

Baxter Moody, H. Spalding Craft and Raoul Schlesser, HexaTech, Inc., Morrisville, NC,USA

Wide bandgap nitride semiconductors have attracted interest for next-generation optoelectronic andpower handling devices. Performance gains are enabled by lattice–matched, native substrates, whichare experiencing steadily increasing demand. Prospects for AlGaN-based UVC emitters developedon native, single crystal AlN substrates will be presented.

1:30 pm–3:00 pm Ballroom IISession Md3 Silicon Photonic Switches/Electro-optic Switches/Electronic-Photonic

Cointegration I Session Chair Paraskevas Bakopoulos, National Technical University of Athens (NTUA), Greece

1:30 pm–2:00 pm (Invited)Md3.1 Silicon Photonic Switch with Spot Size Converters for Low-Loss, Polarization-

Insensitive optical Coupling to Fibers, Shigeru Nakamura, Shigeyuki Yanagimachi,NEC Corp., Tsukuba, Ibaraki, Japan, Hitoshi Takeshita and Akio Tajima, NEC Corp.,Kawasaki, Kanagawa, Japan

We demonstrate compact 8×8 silicon photonic switch modules with low loss, low polarizationsensitivity, and low cross-talk properties. Port count extensibility using multiple compact modulesand faster switching based on thermo-optical effect of silicon are useful also for datacenterapplications.

15

Page 17: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

2:00 pm–2:30 pm (Invited)Md3.2 Silicon 16x16 Switch Matrix Based on dual-Ring assisted MZI Structures with Fast

and Energy Efficient Switching, Linjie Zhou, Liangjun Lu, Zhanzhi Guo and JianpingChen, Shanghai Jiao Tong University, Shanghai, China

We review our recent progress on silicon photonic switches based on dual-ring assisted MZI switchelements. The ring resonances are aligned using thermal tuning to set the initial switching state.Nano-second switching is realized upon free-carrier injection with PIN diodes in the ring resonators.

1:30 pm–3:00 pm Ballroom IIISession ME3 5G Fronthaul/Backhaul Session Chair Takeshi Nakamura, NTT DoCoMo, Japan

1:30 pm–2:00 pm (Invited)ME3.1 optical access network Technologies for Future Radio access networks, Jun Terada,

Tatsuya Shimada and Akihiro Otaka, NTT Corp., Yokosuka, Japan

This paper describes optical access network technologies that support future radio access networks.Packet-based BBU is expected to accommodate multiple services and PON with low-latencyscheme is a promising candidate to for MFH transmission in future radio access networks.

2:00 pm–2:30 pm (Invited)ME3.2 optical access Technologies for 5G Mobile Communication networks, Hwan Seok

Chung, Han Hyub Lee, Keong-Hwan Doo, Kwangok Kim, Seoug-Hwan Kim,Seung-HyunCho, Jun Ki Lee and Jong Hyun Lee, ETRI, Daejon, South Korea

We reviews optical access technologies for 5G mobile communication networks such as mobile datacompression, high-speed passive optical network (PON), and analog radio over fiber (RoF)technologies. Recent feasibility studies for future optical access network with optical mobileconvergence are discussed.

2:30 pm–3:00 pm (Invited)ME3.3 Concepts and Requirements for the Ethernet-Based Evolved Fronthaul, Nathan J.

Gomes, Philippos Assimakopoulos, University of Kent, Canterbury, United Kingdom,Philippe Chanclou, Orange Labs, Lannion, France, Jörg-Peter Elbers, Daniel Münch,ADVA Optical Networking, Munich, Germany and Volker Jungnickel, Fraunhofer-HHI,Berlin, Germany

The use of Ethernet in the fronthaul permits convergence and exploitation of statistical multiplexinggains of the new interfaces, but minimum latency and latency variation requirements may becomechallenging. The techniques proposed to meet these challenges are summarized.

16

Page 18: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

1:30 pm–3:00 pm Ballroom IVSession MF3 Qubit Encoding-Exploiting Photonic degrees of Freedom Session Chair Zhiliang Yuan, Toshiba, UK

1:30 pm–2:00 pm (Invited)MF3.1 Manipulation of Broadband Time-Frequency Entangled Photons, Anrew Weiner,

Purdue University

2:00 pm–2:30 pm (Invited)MF3.2 Quantum Information Processing and networking with Polychromatic Photons,

Pavel Lougovski, Joseph M. Lukens and Nicholas A. Peters, Oak Ridge NationalLaboratory, Oak Ridge, TN, USA

Quantum information processing (QIP) with the spectral degree of freedom of a photon offers animmense parallelization capability. We discuss how to unlock this power using classical telecomequipment such as pulse shapers and electro-optic modulators and implement QIP natively over aquantum network.

2:30 pm–3:00 pm (Invited)MF3.3 Photon orthogonal Temporal Modes as a Complete Quantum Information

Framework,Michael Raymer, Univesity of Oregon, Eugene, OR, USA

Quantum information can be encoded in the temporal shape (temporal mode) of single photons.Field-orthogonal temporal modes provide a new framework for quantum information science. They span a high-dimensional quantum state space and lend themselves to integration into existingsingle-mode fiber communication networks.

3:00 pm–3:30 pm Grand Ballroom FoyerCoffee Break

17

Page 19: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:30 pm–5:00 pm Miramar atlantic ISession Ma4 GeSn Materials and devices III Session Chair Arnold Kiefer, Air Force Research Labs, USA

3:30 pm–4:00 pm (Invited)Ma4.1 novel Group IV nano- and Micro- Structures for Light Sources on Silicon, Y. Y. Li,

Chinese Academy of Sciences, Shanghai, China, Y. Han, Chinese Academy of Sciences,Shanghai, China and University of Chinese Academy of Sciences, Beijing, China,Y. X.Song, Chinese Academy of Sciences, Shanghai, China, Z. P. Zhang, Z. Y. S. Zhu, ChineseAcademy of Sciences, Shanghai, China and ShanghaiTech University, Shanghai, China,Q. M. Chen, J. J. Liu, Chinese Academy of Sciences, Shanghai, China and University ofChinese Academy of Sciences, Beijing, China, and S. M. Wang, Chinese Academy ofSciences, Shanghai, China, ShanghaiTech University, Shanghai, China and ChalmersUniversity of Technology, Gothenburg, Sweden

We present our researches on novel group IV nano- and micro- structures on Si. Tensile-strained Ge QDs were grown and photoluminescence was achieved. The GeSn thin films were demonstrated,and partially suspended GeSn microstructures were fabricated for relaxing the compressive strain.

4:00 pm–4:30 pm (Invited)Ma4.2 GeSn/SiGeSn ordering alloys, Oussama Moutanabbir, Polytechnic of Montreal

4:30 pm–5:00 pm (Invited)Ma4.3 Spin-optoelectronic Functionalities of Group IV Materials, Fabio Pezzoli, Sebastiano

De Cesari, Elisa Vitiello, LNESS and Università di Milano-Bicocca, Milano, Italy andMaksym Myronov, The University of Warwick, Coventry, United Kingdom

We address the convergence of spintronics and photonics on group IV semiconductors, with aspecial focus on Ge and GeSn alloys. By leveraging optical investigations, we will gather insightsinto a rich spin physics and explore prospects for the exploitation of advanced spin-optoelectronicfunctionalities.

3:30 pm–5:00 pm atlantic IISession MB4 Emerging uV-Visible Photonic Platforms III Session Chair Wolfram Pernice, University of Muenster, Germany

3:30 pm–4:00 pm (Invited)MB4.1 Hexagonal Boron nitride Epilayers for deep uV Photonics, Hongxing Jiang and

Jingyu Lin, Texas Tech University, Lubbock, TX, USA

Hexagonal BN (h-BN) possesses extraordinary properties including large bandgap (~6.5 eV) as wellas high optical absorption and emission. We provide a briefly overview of MOCVD growth andexploration of the basic properties and applications of h-BN epilayers.

18

Page 20: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

4:00 pm–4:30 pm (Invited)MB4.2 III-nitride on Silicon Photonic Circuits, P. Boucaud, I. Roland, Y. Zeng, F. Tabataba-

Vakili, M. El Kurdi, S. Sauvage, X. Checoury, Université Paris-Saclay, Orsay, France, M. Gromovyi, S. Rennesson, F. Semond, J.-Y. Duboz, Université Côte d’Azur, Valbonne, France, M. de Micheli, Université de Nice-Sophia Antipolis, Nice, France, J. Selles, C. Brimont, T. Guillet, CNRS-Université de Montpellier, Montpellier, France and B. Gayral, CEA, Grenoble, France and University Grenoble Alpes, Grenoble, France

We present recent progress achieved with III-nitride photonic circuits epitaxially grown onsilicon(111). The photonic circuits embed two-dimensional photonic crystals and microdiskresonators coupled to suspended waveguides. We discuss the linear and nonlinear response of theresonators through second and third harmonic generation.

4:30 pm–5:00 pm (Invited)MB4.3 Fin Photonics: a new architecture for Photonic Integrated Circuits on

unconventional Substrates, Lee Bassett, University of Pennslyvania, PA, USA

Single-mode fin waveguides can be fabricated directly on bulk, high-refractive-index substratesusing standard lithography. This CMOS-compatible architecture facilitates electronic-photonic co-integration in silicon, as well as scalable photonic circuits in wide-bandgap materials likediamond and SiC for nonlinear and quantum photonics.

3:30 pm–5:00 pm Ballroom ISession MC4 Low Energy approaches Session Chair David Miller, Stanford University, USA

10:00 am–10:30 am (Invited)MC4.2 Photonic Interconnect with Superconducting Electronics for Large-Scale

neuromorphic Computing, Sonia M. Buckley, Jeff Chiles, Adam N. McCaughan,Richard P. Mirin, Sae Woo Nam and Jeffrey M. Shainline, National Institute of Standardsand Technology, Boulder, CO, USA

Advanced neuromorphic systems require massive interconnectivity, extreme energy efficiency, andcomplex signaling mechanisms. Here we propose an integrated optoelectronic platform utilizingsuperconducting electronics with photonic signaling to enable neuromorphic computing beyond thescale of the human brain.

10:30 am–11:00 am (Invited)MC4.3 Photonic Crystal and Inverse-designed devices for Low Energy Integrated

nanophotonics, Tomas Sarmiento and Jelena Vuckovic, Standford University, CA, USA

We have demonstrated fast light sources and modulators with record low energy consumption byleveraging the moderate Q factor and small mode volume of photonic crystal cavities. We are alsoinvestigating nanophotonics engineered using an inverse design algorithm to further improve thedevice performance.

19

Page 21: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:30 pm–5:00 pm Ballroom IISession Md4 Silicon Photonic Switches/Electro-optic Switches/Electronic-Photonic

Cointegration II Session Chair Theoni Alexoudi, Aristotle University of Thessaloniki, Greece

3:30 pm–4:00 pm (Invited)Md4.1 devices and architectures for Rapidly Reconfigurable Photonic Switching Systems,

Benjamin G. Lee, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

This talk will review recent work developing a scalable photonic switching platform that enablesreconfiguration at the nanosecond scale, addressing innovations in device design, packaging, andarchitecture that can overcome scaling limitations imposed by the physical layer.

4:00 pm–4:30 pm (Invited)Md4.2 Loss and Crosstalk Solutions in Fast Silicon Photonic Switch Systems, Dominic J.

Goodwill, Hamid Mehrvar and Eric Bernier, Huawei Technologies Canada, Ottawa, ON,Canada

Silicon photonic carrier-injection switches can enable Petabits/s packet switch cores. These switchesare compatible with 100GigE and future 400GigE link budgets, using crosstalk suppressiontopology, aggressive loss reduction including 0.001dB crossings, polarization control and rapidauto-calibration, and removing self-heating transients to prevent dynamic crosstalk.

4:30 pm–5:00 pm (Invited)Md4.3 Large-Scale Silicon Photonic Switches with MEMS, Tae Joon Seok, Gwangju Institute

of Science

20

Page 22: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:30 pm–5:00 pm Ballroom IIISession ME4 Integrated Photonics for 5G Session Chair Hiroshi Murata, Osaka University, Japan

3:30 pm–4:00 pm (Invited)ME4.1 Photonic Integration Technology for the Interface between the optical and Wireless

Part in 5G networks: The H2020-ICT-HaMLET approach, Panos Groumas, NationalTechnical University of Athens, Athens, Greece and Optagon Photonics, Athens, Greece,Christos Tsokos, National Technical University of Athens, Athens, Greece, Moritz Kleinert,Fraunhofer Institute for Telecommunications, Berlin, Germany, Denys Marchenko, LioniXB.V, Enschede, The Netherlands, Vasilis Katopodis, National Technical University ofAthens, Athens, Greece, Matthijn Dekkers, SolMateS, Enschede, The Netherlands, MatteoFalcucci, Linkra Srl, Agrate Brianza (MB), Italy, Roelof Bernardus Timens, LioniX B.V,Enschede, The Netherlands and SATRAX B.V, Enschede, The Netherlands, LefterisGounaridis, National Technical University of Athens, Athens, Greece, Chris G. Roeloffzen,LioniX B.V, Enschede, The Netherlands and SATRAX B.V, Enschede, The Netherlands,Antonello Vannucci, Linkra Srl, Agrate Brianza (MB), Italy, Rene G. Heideman, LioniX B.V, Enschede, The Netherlands, Norbert Keil, Fraunhofer Institute forTelecommunications, Berlin, Germany, Christos Kouloumentas, National TechnicalUniversity of Athens, Athens, Greece and Optagon Photonics, Athens, Greece and Hercules Avramopoulos, National Technical University of Athens, Athens, Greece

Photonic integration technology that will enable the development of transceivers interfacing theoptical and wireless interfaces in future 5G networks, along with preliminary results from oursystem testbeds are presented. The technology is developed within the framework of H2020-ICT-HAMLET project.

4:00 pm–4:30 pm (Invited)ME4.2 Integrated Photonic devices for analog Photonic Systems, Leif Johanson, UCSB

4:30 pm–5:00 pm (Invited)ME4.3 100G Solution Tailored for 5G Based upon CaPS3, Luca Poti, Gianluca Meloni, CNIT,

Pisa, Italy, Francesco Fresi, Marco Secondini, Enrico Forestieri, Scuola SuperioreSant’Anna, Pisa, Italy, Fabio Cavaliere, Ericsson, Pisa, Italy and Giancarlo Prati, ScuolaSuperiore Sant’Anna, Pisa, Italy

CAPS-3 modulation format is used in 100G system for 5G applications. CAPS-3 is simple togenerate, can be direct detected, and is able to defeat any significant amount of chromaticdispersion, without the need of digital signal processing in a distance range between 10 and 20 km.

21

Page 23: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:30 pm–5:00 pm Ballroom IVSession MF4 Single Photon Sources, Switches, detectors Session Chair Michael Fanto, Air Force Research Labs, USA

3:30 pm–4:00 pm (Invited)MF4.1 Manipulation of Quantum Light Pulses by Electro-optic Phase Modulation, Brian

John Smith, University of Oregon, Eugene, OR, USA, Michal Karpinski, University ofWarsaw, Warsaw, Poland, Laura J. Wright, University of Oxford, Oxford, United Kingdom,Michal Jachura, University of Warsaw, Warsaw, Poland, Christoph Soeller, Valerian Thieland Alexander Davis, University of Oxford, Oxford, United Kingdom

We report an experimental demonstration of deterministic pulse-mode manipulation of singlephotons achieved by application of controlled spectral and temporal phases. These techniques enablequantum wavelength- and time-division multiplexing applications, realization of multimode unitarytransformations, and facilitate interfacing of different physical platforms.

4:00 pm–4:30 pm (Invited)MF4.2 all-optical Switching for Photonic Quantum networks, Prem Kumar, Northwestern

University

4:30 pm–5:00 pm (Invited)MF4.3 Pushing Single Photon detection to the Limits (and Perhaps Beyond), Alan Migdal,

NIST

5:15 pm–6:30 pm Ballroom IVPanel Session Integrated Photonics

David Miller, Stanford University, USA Milos Popovic, Boston University, USAMo Soltani, Raytheon BBN Technologies, USA Scott Diddams, NIST, USAVladimir Stojanovich, UC-Berkeley, USA Fisher Yu, University of Arkansas, USA

22

Page 24: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

7:00 pm–9:00 pm TuscanySession MP Welcome Reception/Poster Session Session Chair Zetian Mi, University of Michigan, Ann Arbor, USA

7:00 pm–9:00 pm MP1 Structural and Electrical Characterization of Silicon Supersaturated with Gold by

Pulsed Laser Melting of nanometer-Thick Gold Films, Philippe K. Chow, QuentinHudspeth and Jeffrey Warrender, US Army ARDEC – Benet Laboratories, Watervliet, NY,USA

Raman spectroscopy and Rutherford backscattering spectrometry reveal that the thickness of a goldfilm deposited on silicon influences resolidification after pulsed-laser melting, giving rise to surfacemorphologies not observed with ion-implanted and laser-melted silicon. As film thicknessapproaches 5nm, the morphology dominates electrical behavior.

MP2 Intrinsic damping in Silicon Slab Waveguides in the Mid-Infrared, ChristianRanacher, Andreas Tortschanoff, Cristina Consani, Nithin Ravi Kumar, Mohssen Moridi,Carinthian Tech Research AG, Villach, Austria, Thomas Grille, Infineon TechnologiesAustria , Villach, Austria, and Bernhard Jakoby, Johannes Kepler University, Linz, Austria

The mid-infrared region is prominent for gas sensing due to the unique footprint of various volatileorganic compounds. We investigated the intrinsic damping in silicon slab waveguides in the mid-infrared region in order to provide a platform for evanescent-field sensing using silicon waveguides.

MP3 Material Gain for Bi-Containing III-V Quantum Wells Grown on Gaas, InP, and GaSb Substrates: Towards Longer Wavelengths, Marta Gladysiewicz and R. Kudrawiec, Wroclaw University of Science and Technology, Wroclaw, Poland

The 8-band kp Hamiltonian is applied to calculate the electronic band structure and material gain forBi-containing III-V quantum wells grown on GaAs, InP, and GaSb substrate. It is shown that thegain peak strongly shifts to longer wavelengths due to Bi incorporation.

MP4 Suspended GeSn Microstructure for Light Source on Si, Yi Han, Chinese Academy ofSciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China,Yaoyao Li, Yuxin Song, Chinese Academy of Sciences, Shanghai, China, Zhenpu Zhang,Chinese Academy of Sciences, Shanghai, China and ShanghaiTech University, Shanghai,China, Juanjuan Liu, Chinese Academy of Sciences, Shanghai, China and University ofChinese Academy of Sciences, Beijing, China, Zhongyunshen Zhu, Chinese Academy ofSciences, Shanghai, China and ShanghaiTech University, Shanghai, China and ShuminWang, Chinese Academy of Sciences, Shanghai, China and ShanghaiTech University,Shanghai, China and Chalmers University of Technology, Gothenburg, Sweden

A novel suspended GeSn microstructure is demonstrated by selective etching of GeSn thin film onGe. XRD and µ-Raman measurements show that the compressive strain in the GeSn thin film iseffectively relaxed, and furthermore, unexpected tensile strain was introduced in the suspendedGeSn.

23

Page 25: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

MP5 GeSn/Ge dual-nanowire Heterostructure, Zhongyunshen Zhu, Chinese Academy ofSciences, Shanghai, China and ShanghaiTech University, Shanghai, China, Yuxin Song,Chinese Academy of Sciences, Shanghai, China, Yi Han, Chinese Academy of Sciences,Shanghai, China and University of Chinese Academy of Sciences, Beijing, China, YaoyaoLi, Chinese Academy of Sciences, Shanghai, China, Zhenpu Zhang, Chinese Academy ofSciences, Shanghai, China and ShanghaiTech University, Shanghai, China, Liyao Zhang,Chinese Academy of Sciences, Shanghai, China and Shumin Wang, Chinese Academy ofSciences, Shanghai, China and ShanghaiTech University, Shanghai, China and ChalmersUniversity of Technology, Gothenburg, Sweden

A dual-nanowire heterostructure with a GeSn layer laterally laying on Ge nanowires is demonstratedby MBE. The strain field analyzed by FEM shows that this structure can significantly release thecompressive strain in GeSn for potential direct bandgap conversion as a Si-based light source.

MP6 Tunable HMM-Based devices for Integrated Photonics, Bartosz Janaszek, AnnaTyszka-Zawadzka, Institute of Microelectronics and Optoelectronics WUT, Warsaw,Poland and Pawel Szczepański, Institute of Microelectronics and Optoelectronics WUT,Warsaw, Poland and National Institute of Telecommunications, Warsaw, Poland

This paper demonstrates the functionality of Tunable Hyperbolic Metamaterials (HMMs) based onstimulus-sensitive materials in the context of potential applications. Special emphasis was laid onpossible implementation within integrated systems as e.g. optical delays/buffers, reflectionmodulators, or selective amplifiers with controllable gain spectrum.

MP7 100Gb/s ultra Wide Misalignment Tolerance WdM Transmitter with novel VerticalGrating Coupler, Beiju Huang, Chinese Academy of Sciences, Beijing, China, Zan Zhang,Chang’an University, Xi’an, China, Zanyun Zhang, Tianjin Polytechnic University,Tianjin, China, Chuantong Cheng, Chinese Academy of Sciences, Beijing, China andHongda Chen, Chinese Academy of Sciences, Beijing, China and University of ChineseAcademy of Sciences, Beijing, China

A 4×25Gb/s ultra wide misalignment tolerance WDM transmitter with novel vertical grating couplerhas been demonstrated on CMOS-compatible SOI Platform. The misalignment tolerance along thehorizontal direction of grating coupler is as high as ±4μm.

MP8 Photonic Crystal Surface-Emitting Lasers on Silicon Substrates, Shih-Chia Liu, Deyin Zhao, Yonghao Liu, Hongjun Yang, University of Texas at Arlington, TX, USA, Carl Reuterskiöld-Hedlund, Mattias Hammar, KTH-Royal Institute of Technology, Kista,Sweden, Zhenqiang Ma, University of Wisconsin-Madison, WI, USA and Weidong Zhou,University of Texas at Arlington, TX, USA

We report here photonic crystal surface emitting lasers on bulk silicon substrates. Optically pumpedlasers were demonstrated with single mode operation. Thermal resistance of such oxide-free cavitywas investigated to evaluate the heat dissipation and lasing characteristics.

24

Page 26: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

TuESday, 11 JuLy 2017

8:00 am–8:30 am Grand Ballroom FoyerContinental Breakfast

8:30 am–10:00 am Miramar atlantic ISession Tua1 GeSn Materials and devices IV Session Chair Stephan Wirths, IBM, USA

8:30 am–9:00 am (Invited)Tua1.1 Material analysis of GeSn/SiGeSn Quantum Wells Based on Many-Body Theory,

Takeshi Fujisawa and Kunimasa Saitoh, Hokkaido University, Sapporo, Japan

Material characteristics (optical gain/absorption, refractive index change) of GeSn/SiGeSn quantumwells in mid-IR region is theoretically investigated based on many-body theory. The strategies fordesigning quantum wells having large material gain or absorption under applied electric field arediscussed.

9:00 am–9:30 am (Invited)Tua1.2 Modeling of the Electronic Band Structure and the Material Gain in GeSn-Based

Quantum Wells, R. Kudrawiec, H. S. Mączko, and M. Gladysiewicz, Wroclaw Universityof Science and Technology, Wrocław, Poland

It is shown that the emission wavelength from GaSn-based quantum wells grown on GeSn/Si virtualsubstrate can be controlled by the content of virtual substrate while the light polarization can becontrolled via the built-in strain from 100% TE to 80% TM mode.

9:30 am–10:00 am (Invited)Tua1.3 analysis of direct Transition in GeSn/Ge Quantum Well Systems for Photonic

applications, Guo-En Chang, National Chung Cheng University, Chiayi County, Taiwan

We present a variational study of direct transitions in GeSn/Ge quantum well system for photonicapplications. The exciton radiuses, binding energies, and oscillator strengths are calculated forvarious Sn contents are calculated and discussed.

25

Page 27: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

8:30 am–10:00 am atlantic IISession TuB1 III-nitride Photonics Session Chair Philippe Boucaud, University of Paris-Saclay, France

8:30 am–9:00 am (Invited)TuB1.1 Top-down Fabrication for III-nitride nanophotonics, George T. Wang, Benjamin

Leung, Sandia National Laboratories, Albuquerque, NM, USA, Changyi Li, Miao-ChanTsai, University of New Mexico, Albuquerque, NM, USA, Sheng Liu, Jeremy B. Wright,Daniel D. Koleske, Ping Lu, Jeffrey J. Figiel, Ting S. Luk, Igal Brener, Arthur J. Fischer,Xiaoyin Xiao, Jeffrey Y. Tsao, Michael E. Coltrin, Sandia National Laboratories,Albuquerque, NM, USA, Ganesh Balakrishnan and Steven R. J. Brueck, University of New Mexico, Albuquerque, NM, USA

New top-down approaches for realizing high aspect ratio III-nitride (GaN-based) photonicnanostructures with controlled dimensions, including nanowires and quantum dots are presented.Approaches to controlling the lasing properties of these structures are highlighted.

9:00 am–9:30 am (Invited)TuB1.2 Photonic Engineering of III-nitride active and Passive devices, Jung Han, Yale

University

III nitride semiconductors are promising yet challenging for visible and UV photonics. One of themain challenges is the formation of waveguide and cavity within epitaxial constraints. We willdiscuss the use of electrochemical method to produce active (lasers) and passive photonic devices(waveguides).

9:30 am–10:00 am (Invited)TuB1.3 alGan nanowire deep ultraviolet optoelectronics, Songrui Zhao, Sharif Sadaf, McGill

University, Montreal, Quebec, Canada, Xianhe Liu and Zetian Mi, McGill University,Montreal, Quebec, Canada and University of Michigan, Ann Arbor, MI, USA

We have investigated the epitaxy and properties of AlGaN nanowires on a Si platform. We havedemonstrated electrically pumped semiconductor lasers in the UV-B and UV-C bands. With the useof Al-tunnel junction, we have further achieved high efficiency LEDs in the UV-C band.

8:30 am–10:00 am Ballroom ISession TuC1 attojoule Photonics Session Chair Michael Gerhold, US Army Research Laboratory, USA

8:30 am–8:45 am (Tutorial)TuC1.1 attojoule optoelectronics – Saving Even More Energy with optics, David A. B. Miller,

Stanford University, Stanford, CA, USA

Sub-micron optoelectronics promises sub-fJ/bit operating energies. Efficient device mechanisms,tight integration, low-loss nanophotonics, and new approaches to eliminate most link circuitry,including 2D array communications enabled by silicon photonics, could enable us to take fulladvantage of such devices for low-energy processing and communication.

26

Page 28: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

8:45 am–9:30 am (Plenary)TuC1.2 opportunities for Integrated nanophotonics: From across data-Centers to

Connecting Logic Gates, Vladimir Stojanovic, UC Berkeley

8:30 am–10:00 am Ballroom IIISession TuE1 5G Standards and Field Trials Session Chair Tetsuya Kawanishi, Waseda University, Japan

8:30 am–9:00 am (Invited)TuE1.1 5G Trials Toward 2020 and Beyond, Tekashi Nakamura, NTT DoCoMo, Japan

9:00 am–9:30 am (Invited)TuE1.2 advanced Photonic devices for 5G network in dense user Enviroment, Hiroshi

Murata, Osaka University, Japan

Millimeter-wave (MMW) wireless technology is promising for fifth generation (5G) mobilecommunication systems owing to the outstanding characteristics for high-speed data transfer andmassive connection capability by frequency and spatial multiplexing. Therefore, photonic links forMMW wireless networks are becoming more important.

8:30 am–10:00 am Ballroom IVSession TuF1 Quantum Channels and decoherence Session Chair Paul Kwiat, University of Illinois at Urbana–Champaign, USA

8:30 am–9:00 am (Invited)TuF1.1 Complementarity in Multipath Interferometers, Janos Bergou, Hunter College, CUNY

9:00 am–9:30 am (Invited)TuF1.2 Entanglement and decoherence in optical amplifiers, James D. Franson,

University of Maryland Baltimore County, Baltimore, MD, USA

An ideal optical amplifier is generally considered to be a linear device. We show that entanglementbetween the signal and idler modes can produce nonlinear behavior and decoherence even for smallgains where the added noise is negligible.

27

Page 29: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

9:30 am–9:45 amTuF1.3 a Cold-atom Quantum Memory for Long distance Quantum networks, Paul D.

Kunz, Neal E. Solmeyer, Kevin C. Cox, David H. Meyer, Army Research Laboratory,Adelphi, MD, USA

The primary limitation of current state-of-the-art quantum memories, that prevents them fromenabling long distance quantum networking, is inefficiency in the write-in and read-out processes.We present our work addressing these processes respectively using Rydberg blockade and highcooperativity cavity coupling.

9:45 am–10:00 amTuF1.4 on-Chip Quantum optical networks Comprising Co-designed Spectrally uniform

Single Photon Source array and dielectric Light Manipulating Elements, SwarnabhaChattaraj, Jiefei Zhang, University of Southern California, Los Angeles, CA, USA, SiyuanLu, University of Southern California, Los Angeles, CA, USA and IBM Thomas J. WatsonResearch Center, Yorktown Heights, New York, USA and Anupam Madhukar, University ofSouthern California, Los Angeles, CA, USA

We present an approach to quantum optical networks comprising spectrally uniform ordered array ofsingle quantum dots as on-chip single photon sources integrated with dielectric light manipulatingmultifunctional units that guide, propagate and create interference of the emitted photons aimed atquantum information processing.

10:00 am–10:30 am Grand Ballroom FoyerCoffee Break

10:30 am–12:00 pm Miramar atlantic ISession Tua2 novel Integration Technology Session Chair Bruce Claflin, USA Air Force, USA

10:30 am–11:00 am (Invited)Tua2.1 Integration of Silicon Carbide on Silicon for Its application in ultraviolet

Photodetectors, Maksym Myronov and Gerard Colston, University of Warwick, Coventry, United Kingdom

Cubic silicon carbide (3C-SiC) offers an alternative wide bandgap semiconductor to conventionalmaterials such as hexagonal silicon carbide (4H-SiC) or gallium nitride (GaN) for the detection ofUV light. Novel low-temperature epitaxy technology, leading to the invention of state of the artwafer scale.

28

Page 30: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

11:00 am–11:30 am (Invited)Tua2.2 Rhombohedral Super Hetero Epitaxy of Cubic SiGe on Trigonal c-Plane Sapphire,

Sang H. Choi and Adam J. Duzik, NASA Langley Research Center, Hampton, VA, USA

New rhombohedral super-hetero-epitaxy technology was developed at NASA. This epitaxytechnology enables the growth of unprecedented cubic-trigonal hybrid single crystal structures withlattice match on sapphire (Al2O3) substrates, hence with little strain and very few defects at theinterface.

11:30 am–12:00 pm (Invited)Tua2.3 Monolithic Integration of III-V Materials on Si for Solar Cell, nano- and

optoelectronic applications, Stephan Wirths, IBM

10:30 am–12:00 pm atlantic IISession TuB2 Photonic Circuits and Sources for Quantum Information Session Chair George Wang, Sandia National Laboratories, USA

10:30 am–11:00 am (Invited)TuB2.1 Carbon nanotube Single Photon Circuits, Wofram Pernice, Karlsruhe Institute of Tech.

11:00 am–11:30 am (Invited)TuB2.2 Quantum Emission from atomic defects in Wide-Bandgap Semiconductors, Gabriele

Grosso, Benjamin Lienhard, Hyowon Moon, MIT, USA, Diego Scarabell, ColumbiaUniversity, New York, NY, USA, Tim Schroeder, Kwang-Yong Jeong, Tsung-Ju Lu, MIT,USA, Amanuel M. Berhane, University of Technology Sydney, New South Wales, Australia,Shalom Wind, Columbia University, New York, NY, USA, Igor Aharanovich, University ofTechnology Sydney, New South Wales, Australia and Dirk Englund, MIT, MA, USA

Non-classical light sources, such as atoms and atom-like emitters play central roles in many areas ofquantum information processing with applications as single photon generators, sources fornonlinearity and quantum memories.

11:30 am–12:00 pm (Invited)TuB2.3 Multi-Level Photonics for Trapped-Ion Quantum Computing, Dave Kharas,

Cheryl Sorace-Agaskar, Suraj Bramhavar, William Loh, Jeremy M. Sage, Paul W.Juodawlkis and John Chiaverini, Massachusetts Institute of Technology, Lexington, MA, USA

A scalable trapped-ion-based quantum-computing architecture requires the capability to opticallyaddress individual ions at several wavelengths. We demonstrate a dual-layered silicon nitridephotonic platform for integration into planar ion traps designed for trapped-ion control in a 400 to 1100 nm wavelength range.

29

Page 31: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

10:30 am–12:00 pm Ballroom ISession TuC2 Integrated nanophotonics Session Chair Weidong Zhou, University of Texas at Arlington, USA

10:30 am–11:00 am (Invited)TuC2.1 optical antennas; LEd’s Faster Than Lasers, Eli Yablonovitch, University of

California, Berkeley

The US National Science Foundation–Science & Technology Center for Energy EfficientElectronics Science (E3S) is searching for low energy communication devices to replace thetransistor. 104 reduction in electronics power consumption is possible. This talk will try to answer:What’s standing in the way?

11:00 am–11:30 am (Invited)TuC2.2 nanoscale Light Emitters and Their dynamics for Chip-Scale Integration,

Y. Fainman, S. H. Pan, Q. Gu, A. El Amili and F. Vallini, University of California, San Diego, La Jolla, CA, USA

This paper discusses nanoscale engineered metal-dielectric-semiconductor resonant gain geometriesconfined in all three dimensions used to create a new type of nanolasers and light emitters. Whenthese emitters are driven in a pulsed regime, dynamic hysteresis is observed and characterized.

11:30 am–12:00 pm (Invited)TuC2.3 ultra-Small Capacitance and ultral-Low Energy Integrated nanophotonics by

Photonic Crystals Toward optical Computing, Masaya Notomi, NTT

Photonic crystal technologies enable miniaturized OE/EO converters with extremely smallcapacitance. We demonstrate our recent achievement of these devices for very efficient OE/EOconversions in a chip. Furthermore, we discuss their potential to optoelectronic computing in a chipwith ultrasmall latency.

10:30 am–12:00 pm Ballroom IISession Tud2 optically Switched data Center network architectures and

optical Switching Systems I Session Chair George T. Kanellos, Aristotle University of Thessaloniki, Greece

10:30 am–11:00 am (Invited)Tud2.1 optical network architectures and Technologies for datacenters, Lena Wosinska,

Rui Lin, Yuxin Cheng and Jiajia Chen, KTH Royal Institute of Technology, Kista, Sweden

The paper highlights the challenges related to the increasing importance of datacenter services,leading to dramatically growing datacenter traffic. The advantages of using photonic technology inintra-datacenter networks are discussed and a cross-layer view for network architecture design ispresented.

30

Page 32: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

11:00 am–11:30 am (Invited)Tud2.2 Harnessing Path diversity for Laser Control in data Center optical networks,

Yigit Demir, Intel, Hillsboro, OR, USA, Nikolaos Terzenidis, Aristotle University ofThessaloniki, Thessaloniki, Greece, Haiyang Han, Northwestern University, Evanston, IL,USA, Dimitris Syrivelis, Center for Research and Technology – Hellas (CERTH),Thessaloniki, Greece, George T. Kanellos, Aristotle University of Thessaloniki,Thessaloniki, Greece, Nikos Hardavellas, Northwestern University, Evanston, IL, USA,Nikolaos Pleros, Aristotle University of Thessaloniki, Thessaloniki, Greece, SrikanthKandula, Microsoft Research, Redmond, WA, USA and Fabian Bustamante, NorthwesternUniversity, Evanston, IL, USA

We present a datacenter optical network architecture for energy proportionality. The network turnsoff underutilized redundant paths to save energy by power-gating the optical transceivers. Thesystem monitors network traffic and adaptively turns on the optical transceivers when bandwidthdemands exceed a programmable threshold.

11:30 am–12:00 pm (Invited)Tud2.3 Scheduling and Control in Hybrid data Centers, Madeleine Glick and Houman

Rastegarfar, University of Arizona, Tucson, AZ, USA

We examine the scheduling issues in hybrid electrical/optical data center (DC) networks,considering several implementation requirements. For flexible and programmable resourceprovisioning, centralized software-defined network (SDN) control can be best complemented withdistributed, fast, and accurate flow classification based on machine learning (ML).

10:30 am–12:00 pm Ballroom IIISession TuE2 5G Perspectives from Industry and academia Session Chair Andreas Stohr, University Duisburg-Essen, Germany

10:30 am–11:15 am (Plenary)TuE2.1 The Revolutionary Evolution Towards 5G, Chih-Lin I, China Mobile Research Institute

11:15 am–12:00 pm (Plenary)TuE2.2 Fiber-Wireless Convergence for next Generation Heterogeneous Mobile data

Communications, Gee-Kung Chang, Mu Xu and Feng Lu, Georgia Institute ofTechnology, Atlanta, GA, USA

A leading-edge radio access network empowered by fiber-wireless integration is envisioned. Recentresearch progress is discussed in aspects of advanced waveforms, digital/analog radio-over-fiberinterface, coordinated multi-point transmissions, and all-band multi-tier networking, which are keyenabling technologies for the future 5G heterogeneous network.

31

Page 33: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

10:30 am–12:00 pm Ballroom IVSession TuF2 Sources of Entangled Photon Pairs Session Chair Alan Migdal, National Institute of Standards and Technology, USA

10:30 am–11:00 am (Invited)TuF2.1 Integrated Photon Sources for Quantum Information Science, Michael Fanto,

Air Force Research Lab

11:00 am–11:15 amTuF2.2 Multi-Wavelength Photon Pair Source assisted by a Silicon-on-Insulator Micro-Ring

Resonator, Bernhard Schrenk, Fabian Laudenbach, Paul Müllner, Winfried Boxleitner, Austrian Institute of Technology, Vienna, Austria, Daivid Fowler, CEA-LETI, Grenoble,France, Rainer Hainberger and Hannes Hübel, Austrian Institute of Technology, Vienna,Austria

An integrated photon pair source in the 1550nm wavelength region is demonstrated. Spontaneousfour-wave mixing is facilitated through a silicon-on-insulator micro-ring filter with 125GHz spacedresonances. Coincidences in pair emission are observed with a 95% visibility at spectral channelsequidistant to the pump wavelength.

11:15 am–11:45 am (Invited)TuF2.3 Generation, Characterization, and Manipulation of Fiber-Coupled Entangled

Photons, Kim F. Lee and Gregory S. Kanter, NuCrypt, LLC, Evanston, IL, USA

Systems for generating, manipulating, and measuring entangled photons are described. Quantumstate tomographies are recorded with the entangled photons distributed over fiber. A high speed, low loss quantum switch for 1550 nm photons is demonstrated which can manipulate photons forprocessing or multiplexing.

11:45 am–12:00 pmTuF2.4 In-Situ Calibration of Fiber-optics Entangled Photon distribution System,

Daniel E. Jones, Brian T. Kirby and Michael Brodsky, US Army Research Laboratory,Adelphi, MD, USA

A source of entangled photons is connected via optical fibers to two single photon detectors. Bysimultaneously measuring pump power dependencies of the detection probabilities at each detector,as well as the probability of coincidence counts, we reliably extract all relevant system parameters.

12:00 pm–1:30 pmLunch Break (on own)

32

Page 34: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

1:30 pm–3:00 pm Miramar atlantic ISession Tua3 Si Based Mid-IR Session Chair Jay Mathews, University of Dayton, USA

1:30 pm–2:00 pm (Invited)Tua3.1 n-Ge on Si for Mid-Infrared Plasmonic Sensors, Douglas J. Paul, Kevin Gallacher,

Ross W. Millar, University of Glasgow, Glasgow, United Kingdom, Valeria Giliberti,Eugenio Calandrini, Leonetta Baldassarre, Sapienza Universit di Roma, Rome, Italy,Marco P. Fischer, University of Konstanz, Konstanz, Germany, Jacopo Frigerio, AndreaBallabio, Politecnico di Milano, Como, Italy, Emilie Sakat, Giovanni Pellegrini,Politecnico di Milano, Milano, Italy, Daniele Brida, University of Konstanz, Konstanz,Germany, Giovanni Isella, Politecnico di Milano, Como, Italy, Michele Ortolani, SapienzaUniversit di Roma, Rome, Italy, and Paolo Biagioni, Politecnico di Milano, Milano, Italy

The detection and amplification of molecular absorption lines from a mustard gas simulant isdemonstrated using plasmonic antennas fabricated from n-Ge epitaxially grown on Si. Approachesto integrated sensors will be presented along with a review of n-Ge compared to other mid-infraredplasmonic materials.

2:00 pm–2:30 pm (Invited)Tua3.2 Hyperdoping Silicon Beyond Sulfur: Structural and Electronic Properties with Metal

dopants, Jeffrey M. Warrender, US Army ARDEC – Benet Labs, Watervliet, NY, USA, Jay Mathews, University of Dayton, Dayton, OH, USA, Quentin Hudspeth, Philippe K.Chow, US Army ARDEC – Benet Labs, Watervliet, NY, USA, Wenjie Yang, AustralianNational University, Canberra, Australia, Austin J. Akey, Harvard University, Cambridge,MA, USA and James S. Williams, Australian National University, Canberra, Australia

Hyperdoping silicon with transition metals offers the potential of subbandgap photodetection, butmetal impurities can be difficult to kinetically trap. Instabilities during solidification introduce largelength-scale defects. We present guidelines for avoiding these instabilities, and electronic propertiesfor layers that do not exhibit them.

2:30 pm–3:00 pm (Invited)Tua3.3 Figures of Merit for Hyperdoped IR Photodetectors, Jacob J. Krich, University of

Ottawa, Ottawa, ON, Canada

Hyperdoping – doping far above the solid solubility limit – can produce intermediate bands, whichprovide one route to potentially make highly effective IR photodetectors and solar cells. We willdiscuss device modeling and figures of merit for such intermediate band absorbers and devices.

33

Page 35: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

1:30 pm–3:00 pm atlantic IISession TuB3 Emerging uV-Visible Photonic Platforms and applications Session Chair Andrea Armani, University of Southern California, USA

1:30 pm–2:00 pm (Invited)TuB3.1 Full Spectrum Visible Integrated Photonics in Scaled Microelectronic CMoS,

Amir H. Atabaki, Gavin N. West, Karan K. Mehta, Daniel Kramnik and Rajeev J. Ram,Massachusetts Institute of Technology, Cambridge, MA, USA

In this work, we demonstrate an integrated electronic-photonic platform in a standard 65 nmmicroelectronic CMOS 300 mm foundry. Alongside electronics, we monolithically integrate siliconavalanche photodiodes and optical waveguides that operate from violet to NIR through a mask-lesspost-CMOS-compatible fabrication process.

2:00 pm–2:30 pm (Invited)TuB3.2 Silicon nitride Photonic Integrated Circuits for Multi-Color optical Engine with

application in Microscopy and Flow Cytometry, Florian Merget, Aachen University,Aachen, Germany

We are developing a silicon nitride photonic integrated circuit to replace dichroic mirrors, acousto-optic tunable filters and fiber switches inside a multi-color laser engine aimed towards fluorescentmicroscopy and flow cytometry. Both the application space and design aspects will be discussed.

2:30 pm–2:45 pmTuB3.3 Integrated al2o3 Waveguide for ultraviolet Spectroscopy, Xiaochuan Xu, Omega

Optics Inc., Austin, TX, USA, Elham Heidari, Lijun Huang, University of Texas at Austin,Austin, TX, USA, Naimei Tang, Omega Optics Inc., Austin, TX, USA and Ray T. Chen,Omega Optics Inc., Austin, TX, USA and University of Texas at Austin, Austin, TX, USA

Integrated photonic waveguides on Al2O3/SiO2 platform are proposed to cover the 220 ~ 320nmwavelength-range, which is of paramount significance in protein and nuclei acid quantification. The proposed system requires 500x less volume of solutions compared to conventional NanoDrop.

2:45 pm–3:00 pmTuB3.4 alumina Waveguides for Full-Spectrum Integrated Photonics, Gavin N. West,

Karan K. Mehta, Rajeev J. Ram, Massachusetts Institute of Technology, Cambridge, MA,USA

We demonstrate fully confined waveguides in the ultraviolet spectrum, and present amorphousaluminum oxide as a viable waveguide platform for broad-spectrum integrated photonics withtransmission from the infrared to the ultraviolet. Fabrication of aluminum oxide photonic structuresand experimental results are discussed.

34

Page 36: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

1:30 pm–3:00 pm Ballroom ISession TuC3 nanophotonics for High-Speed Session Chair Shaya Fainman, University of California, San Diego, USA

1:30 pm–2:00 pm (Invited)TuC3.1 Photonic Integrated Chips for Low-Power, High-Bandwidth Communications, Tin

Komljenovic, Chong Zhang, Shangjian Zhang, John E. Bowers, University of California,Santa Barbara, CA, USA

We demonstrate a fully integrated photonic network-on-chip (NoC) circuit comprising of more than400 components realized in heterogeneous silicon photonic process offering 2.56 Tbps transmissioncapacity.

2:00 pm–2:20 pm (Invited)TuC3.3 Collective Behaviors in arrays of Coupled Metallic nanolasers, Mercedeh

Khajavikhan, UCF

2:20 pm–2:40 pm (Invited)TuC3.4 InGan nanowire Integrated nanophotonics, Zetian Mi, University of Michigan, Ann

Arbor, MI, USA and McGill University, Montreal, Quebec, Canada, Yong-Ho Ra, RoksanaRashid, Renjie Wang and Ishiang Shih, McGill University, Montreal, Quebec, Canada

We propose to develop a GaN nanowire based platform on Si substrate for integrated nanophotonics.We have demonstrated the epitaxy of InGaN nanostructures with controlled shape, composition, andmorphology, which will serve as the building block for the emerging GaN integrated nanophotonics.

1:30 pm–3:00 pm Ballroom IISession Tud3 optically Switched data Center network architectures and

optical Switching Systems II Session Chair Maria Anagnosti, Infinera

1:30 pm–2:00 pm (Invited)Tud3.1 Board Level Interconnection with WdM Routing Functionality, George Kanellos,

Theoni Alexoudi, Charoula Mitsolidou, Stelios Pitris, Aristotle University of Thessa,Thessaloniki, Greece, Tobias Lamprecht, Vario-Optics, Switzerland, Roger Dangel, HerwigHahn, Bert J. Offrein, IBM, Switzerland, Peter De Heyn, Joris Van Campenhout, IMEC,Belgium, Hannes Ramon, Joris Lambrecht, Johan Bauwelinck, Xin Yin, UGent, Belgium,Fabrice Raineri, Dorian Sanchez, CNRS, France, Ruiyong Zhang, FCI, Germany, MarcoSampietro, Andrea Melloni, Emanuele Guglielmi, Politechnico Di Milano, Italy, GuidoChiaretti, STMicroelectronics, Italy and Nikos Pleros, Aristotle University of Thessa,Thessaloniki, Greece

In the present communication, we review recent advances of the European project ICT-STREAMSplatform that employs AWGR-based WDM routing concepts with key- silicon photonicstechnologies and polymer based electro-optical circuit boards, towards enabling on-boardwavelength routing architecture for multiple chip-to-chip interconnection.

35

Page 37: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

2:00 pm–2:30 pm (Invited)Tud3.2 TBd, Reza Nejabati, Uni Bristol

2:30 pm–3:00 pm (Invited)Tud3.3 Combining optics and Sdn to Enable True Hybrid Integration of Electronic and

Photonic Switching Solutions, Gonzalo de Villota, Wang Miao, TU/e, Eindhoven, The Netherlands, Yaniv Ben-Itzhak, IBM Research Lab, Haifa, Israel, Cosmin Caba, DTU Fotonik, Lyngby, Denmark, Liran Schour, IBM Research Lab, Haifa, Israel, Shay Vargaftik, IBM Research Lab, Haifa, Israel and Technion, Israel Institute of Technology, Haifa, Israel, Karel van de Plassche, Nicola Calabretta and Oded Raz,TU/e, Eindhoven, The Netherlands

We demonstrate how combining optical and electronic switches with a Software Defined Networkcontrol plane paves the way to the introduction of optical switching solutions in data centers. Twodifferent architectures: C-Share and OpSquare are discussed and analyzed using simulation,emulation and experiment.

1:30 pm–3:00 pm Ballroom IIISession TuE3 High data Rate Wireless Session Chair Nathan Gomes, University of Kent, England

1:30 pm–2:00 pm (Invited)TuE3.1 Backhaul Communications at 10’s of Gbps data-Rate, Hamid Hemmati, Facebook Inc.,

Menlo Park, CA, USA

Nearly half the world population has either none or poor access to the Internet. The data-rate toprovide Internet service to this population is over 100 Tbps. Cost effective technology advancementsat a variety of communications bands and for all telecom scenarios are required.

2:00 pm–2:30 pm (Invited)TuE3.2 High-speed Short-Range optical Wireless Communications, Ke Wang, RMIt

2:30 pm–3:00 pm TuE3.3 High data Rate 6 Gbit/s Steerable Multibeam 60 GHz antennas for 5G Hot-Spot use

Cases, Matthias Steeg and Andreas Stöhr, University of Duisburg-Essen, Duisburg,Germany

We present a steerable 60 GHz band multibeam antenna for high-capacity 5G hot-spot-scenarios.The developed SIW-LWA-antenna provides about 40° beam steering and a 14 dBi H-planedirectivity. Wireless transmission to multiple users and maximum user data rates up to 6 Gbit/s aredemonstrated.

36

Page 38: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

1:30 pm–3:00 pm Ballroom IVSession TuF3 Long distance Quantum Communication Session Chair Prem Kumar, Northwestern University, USA

1:30 pm–2:00 pm (Invited)TuF3.1 novel Technologies for Quantum Key distribution networks, Zhiliang L. Yuan,

G. L. Roberts, J. F. Dynes, B. Fröhlich, M. Lucamarini, A. W. Sharpe, W. W.-S. Tam, A. Plews and A. J. Shields, Toshiba Research Europe Limited, Cambridge, UnitedKingdom

Quantum key distribution (QKD) has matured rapidly towards practical use in communicationinfrastructures due to its unique ability of transmitting information-theoretically secure digital keys.Here, we report key advances in QKD that allow modulator-free transmitter, application intoexisting fiber infrastructures and cryogen-free long-distance operation.

2:00 pm–2:15 pmTuF3.2 Experimental Evaluation of the Impairments on a QKd System in a 20-Channel

WdM Co-Existence Scheme, Fotini Karinou, Lucian Comandar, Hans H. Brunner, David Hillerkuss, Fred Fung, Stefano Bettelli, Spiros Mikroulis, Dawei Wang, Qian Yi, Maxim Kuschnerov, Changsong Xie, Andreas Poppe and Momtchil Peev, HuaweiTechnologies Duesseldorf GmbH, Munich, Germany

We experimentally investigate the excess noise induced on a CV-QKD system in a WDMenvironment consisting of 4×100 Gb/s PDM-QPSK and 16×10 Gb/s OOK classical telecom signals.The influence of the receiver’s noise, the Raman scattering and the four-wave mixing process areevaluated.

2:15 pm–2:30 pmTuF3.3 Sub-Wavelength Stabilization of Long, deployed optical Fibers for Quantum

networks, Matthew E. Grein, Mark L. Stevens, Nicholas D. Hardy and P. Ben Dixon,Massachusetts Institute of Technology, Lexington, MA, USA

We implemented an active feedback scheme to stabilize an ~84 km deployed optical fiber betweenLincoln Laboratory and MIT Campus. The residual fluctuations of less than 193 attoseconds RMSenable quantum networking and quantum secure communications.

2:30 pm–3:00 pm (Invited)TuF3.4 optimized architectures for Long distance Quantum Communication, Linshu Li,

Sreraman Muralidharan, Chang-Ling Zou, Victor V. Albert, Yale University, New Haven,CT, USA, Jungsang Kim, Duke University, Durham, NC, USA, Norbert Lütkenhaus,University of Waterloo, Waterloo, ON, Canada, Mikhail D. Lukin, Harvard University,Cambridge, MA, USA, S. Girvin and Liang Jiang, Yale University, New Haven, CT, USA

Efficient long distance quantum communication with quantum repeaters is discussed. We show thatquantum repeater protocols can be classified into three generations, each performs optimally indifferent parameter regimes. The application of cat codes as a single-mode encoding to one-wayquantum repeaters is analyzed.

37

Page 39: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:00 pm–3:30 pm Grand Ballroom FoyerCoffee Break

3:30 pm–5:00 pm Miramar atlantic ISession Tua4 novel Si Based Integrated Photonics Session Chair Alexei Chelnokov, CEA Leti, France

3:30 pm–4:00 pm (Invited)Tua4.1 Electro-optic and Second-order nonlinear Effects in Thin Film Lithium niobate on

Silicon, Ashutosh Rao, University of Central Florida, Orlando, FL, USA, Aniket Patil,Partow Technologies LLC, Orlando, FL, USA, Marcin Malinowski, Jeff Chiles, SaeedKhan, Amirmahdi Honardoost, Seyfollah Toroghi, Guillermo Camacho-González,University of Central Florida, Orlando, FL, USA, Payam Rabiei, Partow TechnologiesLLC, Orlando, FL, USA and Sasan Fathpour, University of Central Florida, Orlando, FL,USA

Our recent progress on wafer-bonded thin-film lithium niobate on silicon electro-optic modulatorsoperating up to 50 GHz, and thin-film nonlinear optical waveguide frequency converters, based ontwo approaches – periodic poling and poling-free grating-assisted quasi-phase matching – will bereviewed.

4:00 pm–4:30 pm (Invited)Tua4.2 Mid Infrared Frequency Combs with Integrated nonlinear optics, Nima Nader,

NIST, D. L. Maser, NIST/University of Colorado, Boulder, CO, USA, F. C. Cruz, NIST, CO,USA, C. Fredrick, NIST/University of Colorado, Boulder, CO, USA, D. Westly, NIST, MD,USA, R. P. Mirin, J. M. Shainline, NIST, CO, USA and S. A. Diddams, NIST/University ofColorado, Boulder, CO, USA

User-defined, spectral engineering of mid-IR frequency combs is presented in silicon waveguides.The generated light is suitable for dual-comb spectroscopy with negligible added intensity noise andflat spectral bandwidth. A dual-comb setup is constructed and used for gas spectroscopy at 5 umthrough coherent dual-comb.

4:30–5:00 pm (Invited)Tua4.3 all-optical Switch Based on 4-Wave Mixing in Si Waveguides, Imad Agha, Yun Zhao

and Jay Mathews, University of Dayton, Dayton, OH, USA

Four-wave mixing has been proposed as means for low-noise, low-power all-optical control of lighton chip. In our recent work, we have experimentally demonstrated a transistor-like all-optical logicgate in a silicon waveguide. This gate is optimal when operated in the SWIR and mid-IR regimes.

38

Page 40: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:30 pm–5:00 pm Ballroom ISession TuC4 nanophotonic devices Session Chair Weidong Zhou, University of Texas at Arlington, USA

3:30 pm–3:50 pm (Invited)TuC4.1 optical antennas: LEds Faster Than Lasers, Ming C. Wu, University of California,

Berkeley, CA, USA

With optical antennas, spontaneous light emission becomes faster than stimulated emission, but theenhancement is limited by optical losses through the “anomalous skin effect”. Maintaining 50%efficiency, 10x speedup beyond stimulated emission should be possible. The antenna-LED willreplace the laser for on-chip optical communication.

3:50–4:10 pm (Invited)TuC4.2 III-nitride Integrated Photonics Platform for the ultraviolet and Visible Spectral

Range, Yuji Zhao, Arizona State University, Tempe, AZ, USA

III-nitride integrated photonics platform would enable a wide range of applications in biochemicalsensing, quantum information, and optical communications. In this talk, I will present our recentstudies on the fundamental nonlinear optical properties of GaN, which will lead to low loss GaNwaveguide.

4:10–4:30 pm (Invited)TuC4.3 Modulation Bandwidth of a double Tunneling-Injection Quantum dot Laser:

The upper Limit and Limiting Factors, Levon V. Asryan, Virginia Polytechnic Instituteand State University, Blacksburg, VA, USA

The modulation response in double tunneling-injection quantum dot lasers is analyzed. The highestpossible modulation bandwidth and the effect of noninstantaneous pumping of quantum dots on thebandwidth are discussed.

4:30 pm–4:50 pm (Invited)TuC4.4 nanoscale Lasers: Requirements for dense Integration and Impact on Interconnect

Bit Energy, Dennis Deppe, University of Central Florida, Orlando, FL, USA

39

Page 41: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:30 pm–5:00 pm Ballroom IISession Tud4 optically Switched data Center network architectures and

optical Switching Systems III Session Chair Foteini Karinou, Huawei, USA

3:30 pm–4:00 pm (Invited)Tud4.1 Slotted optical datacenter network with Sub-Wavelength Resource allocation,

Paraskevas Bakopoulos, Konstantinos Tokas, Christos Spatharakis and HerculesAvramopoulos, National Technical University of Athens, Athens, Greece

Optical switching is gaining traction for scaling datacenter networks, apace with soaring trafficdemand. We experimentally evaluate a slotted optical network architecture capable of dynamicallyallocating network resources with sub-wavelength granularity. Network operation is demonstratedwith multiple communication scenarios, using 200μs duration optical bursts.

4:00 pm–4:30 pm (Invited)Tud4.2 Traffic Engineering in data Centers with CloudBoSS: Cloud Burst optical Slot

Switching, Yvan Pointurier, Nokia Bell Labs, Nozay, France

We review and demonstrate CloudBOSS, an intra-data center architecture based on optical packetswitching, and its key optical building blocks. CloudBOSS, when coupled with an SDN-enabledcontrol plane, can provide on-demand strict performance guarantees (e.g., end-to-end capacity orbounded latency).

4:30 pm–4:45 pmTud4.3 Quad Channel Blocker array Based on a Commodity Liquid Crystal display,

Bernhard Schrenk, Austrian Institute of Technology, Vienna, Austria, ParaskevasBakopoulos, National Technical University of Athens, Athens, Greece and Hannes Hübel,Austrian Institute of Technology, Vienna, Austria

We demonstrate channel selection and power leveling based on an off-the-shelf liquid crystaldisplay, addressing datacenter cost targets. An extinction ratio >10dB is reported for a 16 nmspectral region. Evaluation in a 4×1 switch configuration confirms colorless channel blocking inpresence of side-channels.

40

Page 42: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:30 pm–5:00 pm Ballroom IIISession TuE4 Beyond 5G Session Chair Raul Munoz, Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Spain

3:30 pm–4:00 pm (Invited)TuE4.1 Millimeter- and Terahertz-Wave Radio-over-Fiber for 5G and Beyond, Pham Tien

Dat, Atsushi Kanno, Toshimasa Umezawa, Naokatsu Yamamoto, National Institute ofInformation and Communication Technology, Tokyo, Japan and Tetsuya Kawanishi,National Institute of Information and Communication Technology, Tokyo, Japan andWaseda University, Tokyo, Japan

This paper reviews our recent research activities on millimeter-wave and terahertz-wave radio-over-fiber systems for future mobile networks. Photonic technology for signal generation, transmission,and up-conversion is utilized to realize radio-on-radio-over-fiber; signal processing-aided multiplesignal transmission; high-capacity seamless system; and simultaneous power- and radio-over-fibersystem.

4:00 pm–4:30 pm (Invited)TuE4.2 a 300GHz-Band Wireless Transceiver using Si-CMoS Integrated Circuits, Minoru

Fujishima, Hiroshima University, Higashi-Hiroshima, Japan

300-GHz band is promising for wireless communication since wide frequency band and lowatmospheric attenuation are available. In this presentation, the technologies of a recently-developed300-GHz-band transceiver chip set including 105Gbps transmitter and 32Gbps receiver arediscussed using CMOS integrated circuits.

4:30 pm–5:00 pm (Invited)TuE4.3 optical and Wireless Integrated Technologies for Mobile networks Towards Beyond

5G Era, Masatoshi Suzuki, Shota Ishimura, Kazuki Tanaka, Sinobu Nanba and KosukeNishimura, KDDI Research, Inc., Fujimino, Japan

The peak rate of coming 5G mobile services will be comparable to that of FTTH. In this paper, wewill discuss integrated optical and wireless technologies, such as RoF, for efficient use of bandwidthof future mobile back/front-haul networks towards beyond 5G era.

41

Page 43: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

3:30 pm–5:00 pm Ballroom IVSession TuF4 Structure of Quantum network nodes Session Chair Brian Smith, University of Oregon, USA

3:30 pm–4:00 pm (Invited)TuF4.1 Coupling Qubits to Photons using dual atomic Species for Quantum networking,

Trent Graham, Matthew Ebert, Yuan Sun and Mark Saffman, University of Wisconsin-Madison, Madison, WI, USA

We present a technique to implement a neutral atom quantum repeater node. We discuss how toprepare atom-photon entanglement, entangle atoms in adjacent repeater nodes, and entangle distantnodes.

4:00 pm–4:30 pm (Invited)TuF4.2 Towards a Quantum network Based on Trapped Ions in Cavity, Florian Ong, Klemens

Schüppert, Pierre Jobez, Florian Kranzl, Dario Fioretto, Markus Teller, Konstantin Friebe,Moonjoo Lee, Ben Ames, Tracy Northup, Universität Innsbruck, Innsbruck, Austria andRainer Blatt, Universität Innsbruck, Innsbruck, Austria and Institut für Quantenoptik undQuanteninformation der Österreichischen, Akademie der Wissenschaften, Innsbruck,Austria

We are constructing a three-node quantum network using trapped calcium ions in cavities in order totest future quantum network architectures. We report here the latest progress on two nodes.

4:30 pm–5:00 pm (Invited)TuF4.3 autonomous Quantum Error Correction by dissipation, Christine Muschik, University

of Innsbruck, Innsbruck, Austria, Florentin Reiter, Harvard University, Cambridge, MA,USA, Anders Sørensen, Niels Bohr Institute, Copenhagen, Denmark and Peter Zoller,University of Innsbruck, Innsbruck, Austria

We present a quantum error correction scheme that harnesses dissipation to stabilize a trapped ionqubit. Always-on couplings to an engineered environment protect the qubit against spin- or phaseflips. The scheme operates fully autonomously without the need to perform measurements orfeedback operations.

42

Page 44: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

WEdnESday, 12 JuLy 2017

8:00 am–8:30 am Grand Ballroom FoyerContinental Breakfast

8:30 am–10:00 am Miramar atlantic ISession Wa1 Mid-IR devices Session Chair Imad Agha, University of Dayton, USA

8:30 am–8:45 amWa1.1 InP-based Multiple Type-II Quantum-Well Integrated Waveguide p-i-n Photodiodes

for Mid-Infrared detection, Bassem Tossoun, Ye Wang, University of Virginia,Charlottesville, VA, USA, Sadhvikas Addamane, Ganesh Balakrishnan, University ofVirginia, Albuquerque, NM, Archie L. Holmes, Jr. and Andreas Beling, University ofVirginia, Charlottesville, VA, USA

We present an InP-based p-i-n photodiode with multiple InGaAs/GaAsSb type-II quantum wells for2μm detection. The fabricated photodiode shows a responsivity of 0.24 A/W at 2μm, with darkcurrent as low as 1μA at -2V, and 3dB-bandwidth of 2 GHz under 1.55μm optical illumination.

8:45 am–9:00 amWa1.2 High Resolution Silicon-on-Insulator Mid-Infrared Spectrometers operating at

3.3 μm, Anton Vasiliev, Muhammad Muneeb, Roel Baets and Günther Roelkens, GhentUniversity–IMEC, Ghent, Belgium

The characterization of silicon-on-insulator arrayed waveguide grating wavelength (de)multiplexersoperating at 3.3 μm is reported. The filters have a channel spacing between 200 GHz and 50 GHzand feature low insertion loss (2-3dB), low crosstalk level (20 dB) and low waveguide loss (2.6dB/cm).

9:00 am–9:30 am (Invited)Wa1.3 InGaas/InasSb Ternary SLS MWIR Photodetectors, Joshua Duran, Gamini

Ariyawansa, Charles Reyner, Air Force Research Laboratory: Sensors Directorate,Wright-Patterson AFB, OH, USA, Elizabeth Steenbergen, Air Force Research Laboratory:Space Vehicles Directorate, Kirtland AFB, NM, USA and John Scheihing, Air ForceResearch Laboratory: Sensors Directorate, Wright-Patterson AFB, OH, USA

We present conceptual designs and experimental results for InGaAs/InAsSb mid-wavelengthinfrared photodetectors. Utilizing two ternary materials as the superlattice constituents enablesgreater flexibility for strain balancing than the more thoroughly studied InAs/GaSb andInAs/InAsSb material systems, translating to a wider design trade space.

43

Page 45: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

9:30 am–10:00 am (Invited)Wa1.4 on-Chip Quantum State Generation by Means of Integrated Frequency Combs,

Stefania Sciara, INRS-EMT, Varennes, Québec, Canada and University of Palermo,Palermo, Italy, Michael Kues, INRS-EMT, Varennes, Québec, Canada and University ofGlasgow, Glasgow, Scotland, Christian Reimer, Piotr Roztocki, INRS-EMT, Varennes,Québec, Canada, Benjamin Wetzel, INRS-EMT, Varennes, Québec, Canada and Universityof Sussex, Brighton, England, Yaron Bromberg, The Hebrew University of Jerusalem,Jerusalem, Israel, Brent E. Little, Xi’an Institute of Optics and Precision Mechanics ofCAS, Xi’an, China, Sai T. Chu, City University of Hong Kong, Hong Kong, China, DavidJ. Moss, Swinburne University of Technology, Hawthorn, VIC, Australia, Lucia Caspani,University of Strathclyde, Glasgow, Scotland and Roberto Morandotti, INRS-EMT,Varennes, Québec, Canada

We show that integrated optical frequency combs can be used as versatile sources for opticalquantum states. These include the generation of multiplexed heralded single-photons, and the firston-chip realization of cross-polarized photon-pairs, multiple two-photon entangled states, and multi-photon entangled quantum states.

10:00 am–10:15 amWa1.5 Mid-Infrared Silicon Photonic devices and Sensors, Swapnajit Chakravarty, Omega

Optics Inc., Austin, TX, USA, Hai Yan, Yi Zou, University of Texas at Austin, Austin, TX,USA, and Ray T. Chen, Omega Optics Inc., Austin, TX, USA and University of Texas atAustin, Austin, TX, USA

Mid-infrared silicon photonic integrated components, namely grating couplers, strip and slotwaveguides, slotted and unslotted photonic crystal waveguides, photonic crystal microcavities are experimentally demonstrated in silicon-on-sapphire. Application in trace gas sensing isexperimentally demonstrated. Progress towards monolithic integration of lasers and detectors are discussed.

10:15 am–10:30 amWa1.6 1.9–3.3 µm Type-I Quantum-Well Cascade diode Lasers, Leon Shterengas, Takashi

Hosoda, Gela Kipshidze, Tao Feng, Meng Wang and Gregory Belenky, Stony BrookUniversity, Stony Brook, NY, USA

Cascade pumping of type-I QWs increase power and efficiency of GaSb-based diode lasersoperating in spectral region from 1.9 to 3.3 µm. Multimode lasers demonstrate watt level output andsingle spatial mode and ditributed feedback lasers generate tens of mW of output power.

44

Page 46: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

8:30 am–10:00 am atlantic IISession WB1 novel Photonic devices and applications Session Chair Stefan Preble, Rochester Institute of Technology, USA

8:30 am–9:00 am (Invited)WB1.1 nanomaterial-Enhanced optical Microcavity-Based Lasers, Andrea M. Armani,

Xiaoqin Shen, Vinh Diep, Dongyu Chen, University of Southern California, Los Angeles,CA, USA, Vladan Jankovic, Northrop Grumman, Redondo Beach, CA, USA, BrockHudnut, Soheil Soltani, Andre Kovach and Hyungwoo Choi, University of SouthernCalifornia, Los Angeles, CA, USA

Integrated optical cavities have demonstrated ultra-low threshold lasers based on numerous types ofgain media, such as rare earth elements, doped directly into the cavity. In this presentation, I willdiscuss using nonlinear optical small molecules as an alternative route.

9:00 am–9:30 am (Invited)WB1.2 deep Learning with Coherent nanophotonic Circuits, Yichen Shen, Nicholas C. Harris,

Scott Skirlo, Dirk Englund and Marin Soljačić, Massachusetts Institute ofTechnology,Cambridge, MA, USA

Artificial Neural Networks have dramatically improved performance for many machine learningtasks. We demonstrate a fully optical neural network that enables a computational speedenhancement of at least two orders of magnitude and three orders of magnitude in power efficiencyover state-of-the-art electronics.

8:30 am–10:00 am Ballroom ISession WC1 Plenary – Integrated Photonics Session Chair Michael Gerhold, US Army Research Laboratory, USA

8:30 am–9:15 am (Plenary)WC1.1 nanophotonic Computing: Scalable and Energy-Efficient Computing with attojoule

nanophotonics, S. J. Ben Yoo, University of California, Davis, Davis, CA, USA

We will discuss architectures, technologies, and 3D system integration aspects of nanophotoniccomputing. Attojoule nanophotonics co-integrated with nanoelectronics and nanomems can formfuture logic, memory, and interconnects. Bio-inspired event-driven and hierarchical many-to-manyinterconnection help realize a scalable and extremely-low energy computing system.

9:15 am–9:45 am (Invited)WC1.2 Current and Future Trend of Energy/Bit for High Speed uncool optical Links

(50 Gb/s and 75°C), Milton Feng, Nick Holonyak, Jr., Junyi Qiu and C. Y. Wang, University of Illinois at Urbana-Champaign, Urbana, IL, USA

VCSEL bandwidth is limited by slow nanosecond e-h recombination lifetime of ~ 30 GHz (60Gb/s).The transistor laser (TL) has picosecond recombination lifetime; thus, it will have modulationbandwidth higher to achieve 300 Gb/s error free transmission and low energy/bit toward 10 fJ/bit.

45

Page 47: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

9:45 am–10:05 am (Invited)WC1.3 Plasmonic nanophotonic Modulators, Muhammad Z. Alam, Caltech, Pasadena, CA,

USA, H. W. Lee, Baylor University, Waco, TX, USA, Y-W. Huang, Harvard University,Cambridge, MA, USA, R.A. Pala, Caltech, Pasadena, CA, USA, K. Thyagarajan, PARC,Palo Alto, CA, USA, G. K. Shirmanesh, R. Sokhoyan and H. A. Atwater, Caltech,Pasadena, CA, USA

Developing a compact, low power and high speed electro-optic modulator is crucial for overcomingthe performance bottleneck of electronics. We review progress in chip based silicon compatibleplasmonic modulator design, and discuss recent designs which have switching energy close to 1 fJ/bit.

8:30 am–10:00 am Ballroom IIISession WE1 Test & Measurement for 5G Session Chair Andreas Umbach, Finisar, Germany

8:30 am–9:00 am (Invited)WE1.1 optical and RF Metrology for 5G, David A. Humphreys, Irshaad Fatadin, National

Physical Laboratory, Teddington, United Kingdom, Mark Bieler, Paul Struszewski,Physikalisch-Technische, Braunschweig, Germany and Martin Hudlička, Czech MetrologyInstitute, Brno, Czech Republic

Specification standards will soon be available for 5G mobile RF communications. What optical andelectrical metrology is needed or available to support the development of the supporting opticalcommunication systems? Device measurement, digital oscilloscope impairments and improvingsystem resolution are discussed.

9:00 am–9:30 am (Invited)WE1.2 5G Technologies, Their Impact on optical networking and new approaches to Test,

Alan Anderson, Keysight Technologies, Edinburgh, United Kingdom

The move to higher radio frequencies, a new generation of high-bandwidth optical connectivity anda diverse set of use cases make 5G systems very different from previous cellular standards. We willexplore the challenges of testing these new systems.

9:30 am–10:00 am (Invited)WE1.3 optical Fiber network-Connected distributed MM-Wave Radar System, Tetsuya

Kawanishi, Waseda University, Tokyo, Japan and National Institute of Information andCommunications Technology, Tokyo, Japan, Atsushi Kanno, Naokatsu Yamamoto,National Institute of Information and Communications Technology, Tokyo, Japan, NarutoYonemoto, Electronic Navigation Research Institute, Tokyo, Japan, Nobuhiko Shibagakiand Ken-ichi Kashima, Hitachi Kokusai Electric, Koganei, Japan

This presentation reviews radar systems with many antenna units connected by optical networks,which distribute waveforms of wideband frequency modulated millimeter-wave signals, where therange resolution can be a few centimeters.

46

Page 48: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

8:30 am–10:00 am Ballroom IVSession WF1 Quantum network Theory Session Chair William Munro, NTT Basic Research Labs, Japan

8:30 am–9:00 am (Invited)WF1.1 Quantum Walk Searches, Mark Hillery, Hunter College of CUNY, New York, NY, USA

Quantum walks, quantum versions of random walks, can find structural anomalies in graphs with aquantum speedup. Examples of such anomalies are distinguished vertices, extra edges, and otherstructures that break the symmetry of the graph.

9:00 am–9:30 am (Invited)WF1.2 Quantum Internetworking, Rod Van Meter, Keio University

10:00 am–10:30 am Grand Ballroom FoyerCoffee Break

10:30 am–12:00 pm Ballroom ISession WC2 High-Speed devices Session Chair Ali Adibi, Georgia Institute of Technology, USA

10:30 am–10:50 am (Invited)WC2.1 optical Modulation in Hybrid Integrated nanophotonic Platforms, Ali Adibi, Georgia

Tech

10:50 am–11:10 am (Invited)WC2.2 Reducing optical Confinement Losses for Fast, Efficient nanophotonic Modulators,

Gordon A. Keeler, Salvatore Campione, Michael G. Wood, Darwin K. Serkland, S. Parameswaran, Jon Ihlefeld, Ting S. Luk, Joel R. Wendt and Kent M. Geib, SandiaNational Laboratories, Albuquerque, NM, USA

We demonstrate high-speed operation of ultracompact electroabsorption modulators based onepsilon-near-zero confinement in indium oxide (In2O3) using field-effect carrier density tuning.Additionally, we discuss strategies to enhance modulator performance and reduce confinement-related losses by introducing high-mobility conducting oxides such as cadmium oxide (CdO).

47

Page 49: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

11:10 am–11:30 am (Invited)WC2.3 Temperature dependence of a Sub-Wavelength Compact Graphene Plasmon-Slot

Modulator, Zhizhen Ma, Sikandar Khan, Mohammad Tahersima and Volker J. Sorger, George Washington University, Washington, DC, USA

We investigate a plasmonic electro-optic modulator with an extinction ratio exceeding 1 dB/μm byengineering the optical mode to be in-plane with the graphene layer, and show how lowering theoperating temperature enables steeper switching.

11:30 am–11:50 am (Invited)WC2.4 Engineering vdW Heterostructure for ultrafast optoelectronics, Sufei Shi, Rensselaer

Polytechnic Institute, Troy, NY, USA

Two-dimensional materials has attracted much research attention. Due to strong light-matterinteraction, they are promising candidates for photodetectors beyond scaling limit. In particular, van der Waals (vdW) heterostructure provides unprecedented opportunities in material engineering.We will explore the possibility of exploting vdW heterostructure for ultrafast.

10:30 am–12:00 pm Ballroom IISession Wd2 Photonic Integrated Circuits for advanced Functionalities in

optical Switching I Session Chair Fabrice Raineri, CNRS

4:45 pm–5:15 pm (Invited)Wd2.2 High-Capacity InP-Based Photonic Integrated Circuits for data Center Interconnect

applications, Maria Anagnosti, Vikrant Lal, Joseph Summers, Amir Hosseini, ScottCorzine, Peter Evans, Naksum Kim, Mingzhi Lu, Corey Tsai, Gloria Hoefler, Tim Butrie, Matthew Mitchell, Mehrdad Ziari, Dave Welch and Fred Kish, Infinera,Sunnyvale, CA, USA

This paper presents an overview of state-of-the-art InP-Based photonic integrated circuits (PICs) fordata center interconnect applications, including multi-channel monolithic InP-PIC devices operatingat multi-Tb/s capacities using coherent modulation. PICs that offer high density design aredemonstrated integrating up to 14-channels enabling multi-Tb/s capacity.

5:15 pm–5:45 pm (Invited)Wd2.3 Performance assessment of VCSEL-Based Systems for next-Generation datacenter

Switching architectures, Fotini Karinou, Cristian Prodaniuc and Nebojsa Stojanovic,Huawei Technologies, Munich, Germany

We discuss the transmission over short-reach networks employing VCSELs for rack-to-rack opticalinterconnects in datacenters. The penalties imposed are compensated by DSP at the receiver. Weanalyze the DSP complexity and we infer on its impact on the BER performance of the system.

48

Page 50: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

5:45 pm–6:00 pmWd2.4 Terahertz Microjets and Graphene: Technologies towards ultrafast all-optical

Modulation Mark H. Bergen, Brandon Born, Simon Geoffroy-Gagnon and JonathanHolzman, University of British Columbia, Kelowna, BC, Canada

Key technologies for ultrafast all-optical THz modulation are introduced. A graphene monolayer isapplied for modulation, on a picosecond timescale, and a dielectric sphere is applied to form a high-intensity THz microjet within the graphene monolayer.

10:30 am–12:00 pm Ballroom IIISession WE2 Photonic/RF Components & FSo for 5G Session Chair Leif Johanson, Freedom Photonics, USA

10:30 am–11:00 amWE2.1 a 16-Gb/s Millimeter-Wave CMoS Transmitter with Integrated optical Receiver for

5G Baseband-over-Fiber Systems, Haikun Jia, Guang Zhu, Yipeng Wang, Hong KongUniversity of Science and Technology, Hong Kong, China, Zhihua Wang, TsinghuaUniversity, Beijing, China and Patrick Yue, Hong Kong University of Science andTechnology, Hong Kong, China

This paper presents a 65-nm CMOS baseband-over-fiber system-on-a-chip that integrates a 28–32GHz transmitter with a 16-Gb/s optical receiver. The SoC directly up-convert broadband opticalsignals to the lower mm-wave band, with an efficiency of 8.6 pJ/bit, for providing backhaulconnectivity in 5G base-stations.

11:00 am–11:15 amWE2.2 High-Speed Modeling of Thin-Film Lithium-niobate-on-Silicon Electrooptic

Modulators, Amirmahdi Honardoost, Ashutosh Rao and Sasan Fathpour, University ofCentral Florida, Orlando, FL, USA

A model is developed for frequency-dependent response of compact high-speed thin-film lithium-niobate-on-silicon electrooptic modulators. The model predicts potential for > 100 GHz modulationbandwidth.

11:15 am–11:30 amWE2.3 Tandem dual-Electrode Mach Zehnder Modulators Generating W-Band Signals for

an oCdMa Radio-over-Fiber System, Morad Eghbal and Mehdi Shadaram, Universityof Texas at San Antonio, San Antonio, TX, USA

We propose a W-band optical code division multiple access radio-over-fiber system generated bytandem dual-electrode Mach Zehnder modulators. The simulation results are presented. 7-segmentM-sequence codes are used for optical encoding. The capacity is increased while the cost andcomplexity are reduced.

49

Page 51: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

11:30 am–12:00 pm (Invited)WE2.4 next Generation data Center Interconnection networks, Mohsen Kavehrad,

Pennsylvania State University, University Park, PA USA

Paper aims to replace data center networks based on fiber optic cabling with networks based on free-space optical transceivers that would create more flexible networks than the state of the art, given that the cabling interconnect, imposes an priori structure on existing network designs.

10:30 am–12:00 pm Ballroom IVSession WF2 Breakdown Session Session Chair Michael Brodsky, Air Force Research Labs, USA

End oF PRoGRaM

50

Page 52: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Photography: Attendance at, orparticipation in, this conferenceconstitutes consent to the use anddistribution by IEEE of the attendee’simage or voice for informational,publicity, promotional and/orreporting purposes in print orelectronic communications media. Noflash photography will be used.

Photographs and video recording byparticipants and other attendeesduring any portion of the conferenceis not allowed without special priorwritten permission of the IEEE.

51

Page 53: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Aalto, Timo ..............................................MD2.4Addamane, Sadhvikas ..............................WA1.1Adibi, Ali ..................................................WC2.1Agha, Imad ..............................................TuA4.3Aharanovich, Igor ....................................TuB2.2Akey, Austin J. ........................................TuA3.2Alam, Muhammad Zulfiker ......................WC1.3Albert, Victor V. ........................................TuF3.4Alexoudi, Theoni ....................................TuD3.1Alexoudi, Theonitsa ................................MD2.4Al-Kabi, Sattar ..........................................MA2.1Alloatti, L. ................................................MC1.3Ames, Ben ................................................TuF4.2Anagnosti, Maria ......................................WD2.2Anderson, Alan..........................................WE1.2Arakawa, Yasuhiko....................................MB1.1Ariyawansa, Gamini..................................WA1.3Armani, Andrea M. ..................................WB1.1Asryan, Levon V. ......................................TuC4.3Assimakopoulos, Philippos ......................ME3.3Atabaki, A. ................................................MC1.3Atabaki, Amir H. ......................................TuB3.1Atwater, H. A. ..........................................WC1.3Aubin, Joris ..............................................MA3.1Augel, Lion ..............................................MA2.2Avramopoulos, Hercules ............ME4.1, TuD4.1Baets, Roel ................................................WA1.2Bakopoulos, Paraskevas ............TuD4.1, TuD4.3Balakrishnan, Ganesh..................TuB1.1, WA1.1Baldassarre, Leonetta ..............................TuA3.1Ballabio, Andrea ......................................TuA3.1Bassett, Lee ..............................................MB4.3Bauwelinck, Johan ..................................TuD3.1Belenky, Gregory ......................................WA1.6Beling, Andreas ........................................WA1.1Ben-Itzhak, Yaniv ....................................TuD3.3Bergen, Mark H. ......................................WD2.4Bergou, Janos ............................................TuF1.1Berhane, Amanuel M. ..............................TuB2.2Bernier, Eric ..............................................MD4.2Berrier, Audrey..........................................MA2.2Bertrand, Mathieu ....................................MA3.1Bettelli, Stefano ........................................TuF3.2Biagioni, Paolo ........................................TuA3.1Bieler, Mark ..............................................WE1.1Blatt, Rainer ..............................................TuF4.2Born, Brandon ..........................................WD2.4

Boucaud, Philippe ....................................MB4.2Bowers, John E.........................................TuC3.1Boxleitner, Winfried..................................TuF2.2Bragg, Nigel ..............................................ME2.2Bramhavar, Suraj ......................................TuB2.3Brener, Igal ..............................................TuB1.1Brida, Daniele ..........................................TuA3.1Brimont, Christelle ....................................MB4.2Brodsky, Michael ............MF2.2, MF2.3, TuF2.4Bromberg, Yaron ......................................WA1.4Brueck, Steven R. J. ................................TuB1.1Brunner, Hans ..........................................TuF3.2Buca, Dan..................................................MA2.3Buckley, Sonia M. ....................................MC4.2Bustamante, Fabian ..................................TuD2.2Butrie, Tim................................................WD2.2Caba, Cosmin ..........................................TuD3.3Calabretta, Nicola ....................................TuD3.3Calandrini, Eugenio..................................TuA3.1Calvo, Vincent ..........................................MA3.1Camacho-González, Guillermo F. ............TuA4.1Campione, Salvatore ................................WC2.2Capellini, Giovanni ..................................MA3.2Casellas, Ramon ........................................ME1.2Caspani, Lucia ..........................................WA1.4Cavaliere, Fabio ........................................ME4.3Chakravarty, Swapnajit ............................WA1.5Chanclou, Philippe ....................................ME3.3Chang, Gee-Kung ....................................TuE2.2Chang, Guo-En ........................................TuA1.3Chastang, Stephanie A. ............................MA1.2Chattaraj, Swarnabha ................................TuF1.4Checoury, Xavier ......................................MB4.2Chelnokov, Alexei ....................................MA3.1Chen, Dongyu ..........................................WB1.1Chen, Hongda ..............................................MP7Chen, Jiajia ..............................................TuD2.1Chen, Jianping ..........................................MD3.2Chen, Q. M. ..............................................MA4.1Chen, Ray T. ..................MC1.2, TuB3.3, WA1.5Cheng, Chuantong ......................................MP7Cheng, Yuxin ............................................TuD2.1Cherchi, Matteo ........................................MD2.4Chiaretti, Guido........................................TuD3.1Chiaverini, John........................................TuB2.3Chiles, Jeff ..................................MC4.2, TuA4.1Cho, Seung-Hyun ......................................ME3.2

AUTHOR INDEX

52

Page 54: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Choi, Hyungwoo ......................................WB1.1Choi, Sang H. ..........................................TuA2.2Chow, Philippe K. ..........................MP1, TuA3.2Chu, Sai T. ................................................WA1.4Chung, Hwan Seok....................................ME3.2Claflin, Bruce B. ......................................MA1.2Colston, Gerard ........................................TuA2.1Coltrin, Michael E. ..................................TuB1.1Comandar, Lucian ....................................TuF3.2Consani, Cristina ..........................................MP2Corzine, Scott ..........................................WD2.2Cox, Kevin C. ..........................................TuF1.3Craft, H. Spalding ....................................MB3.3Cruz, F. C. ................................................TuA4.2Dalmau, Rafael..........................................MB3.3Dangel, Roger ..........................................TuD3.1Dat, Pham Tien ........................................TuE4.1Davis, Alexander ......................................MF4.1De Cesari, Sebastiano ..............................MA4.3De Heyn, Peter ........................................TuD3.1de Micheli, Marc ......................................MB4.2Dekkers, Matthijn ......................................ME4.1Demir, Yigit ..............................................TuD2.2Deppe, Dennis ........................................TuC4.4Dhar, Shounak ..........................................MC1.2Diddams, S. A...........................................TuA4.2Diep, Vinh ................................................WB1.1Dixon, P. Ben ............................................TuF3.3Doo, Keong-Hwan ....................................ME3.2Dou, Wei ..................................................MA2.1Du, Wei ....................................................MA2.1Duboz, Jean Yves ......................................MB4.2Duran, Joshua ............................................WA1.3Duzik, Adam J. ........................................TuA2.2Dynes, J. F. ..............................................TuF3.1Ebert, Matthew..........................................TuF4.1Eghbal, Morad ..........................................WE2.3Eichenfield, Matt ......................................MB1.3El Amili, A. ..............................................TuC2.2El Kurdi, Moustafa....................................MB4.2Elbers, Jörg-Peter ......................................ME3.3Eliyahu, Danny..........................................MB2.2Englund, Dirk..............................TuB2.2, WB1.2Evans, Peter ..............................................WD2.2Fàbrega, Josep Maria ................................ME1.2Fainman, Y. ..............................................TuC2.2Falcucci, Matteo ........................................ME4.1Fan, Shanhui..............................................MC1.1Fanto, Michael ..........................................TuF2.1Fatadin, Irshaad ........................................WE1.1

Fathpour, Sasan ..........................TuA4.1, WE2.2Feng, Milton..............................................WC1.2Feng, Tao ..................................................WA1.6Figiel, Jeffrey J. ........................................TuB1.1Fioretto, Dario A. ......................................TuF4.2Fischer, Arthur J. ......................................TuB1.1Fischer, Inga Anita ....................................MA2.2Fischer, Marco P. ......................................TuA3.1Forestieri, Enrico ......................................ME4.3Fowler, Daivid ..........................................TuF2.2Frankel, Michael........................................ME2.2Franson, James D. ....................................TuF1.2Fredrick, C. ..............................................TuA4.2Fresi, Francesco ........................................ME4.3Friebe, Konstantin ....................................TuF4.2Frigerio, Jacopo........................................TuA3.1Fröhlich, B. ..............................................TuF3.1Fujisawa, Takeshi ....................................TuA1.1Fujishima, Minoru ....................................TuE4.2Fung, Fred ................................................TuF3.2Gallacher, Kevin ......................................TuA3.1Garraway, Barry M. ..................................MF2.4Gassenq, Alban ........................................MA3.1Gayral, Bruno............................................MB4.2Geib, Kent M. ..........................................WC2.2Geoffroy-Gagnon, Simon ........................WD2.4Georgas, M. ..............................................MC1.3Ghetmiri, Seyed ........................................MA2.1Giliberti, Valeria ......................................TuA3.1Girvin, S. M. ............................................TuF3.4Gladysiewicz, M.......................................TuA1.2Gladysiewicz, Marta ....................................MP3Glick, Madeleine ......................................TuD2.3Gomes, Nathan J. ......................................ME3.3Goodwill, Dominic J. ................................MD4.2Gounaridis, Lefteris ..................................ME4.1Graham, Trent ..........................................TuF4.1Grant, Perry ..............................................MA2.1Grein, Matthew E. ....................................TuF3.3Grille, Thomas ..............................................MP2Gromovyi, Maksym ..................................MB4.2Grosso, Gabriele ......................................TuB2.2Groumas, Panos ........................................ME4.1Grzybowski, Gordon J. ............................MA1.2Gu, Q. ......................................................TuC2.2Guelbenzu, Gonzalo ................................TuD3.3Guglielmi, Emanuele................................TuD3.1Guillet, Thierry..........................................MB4.2Guilloy, Kevin ..........................................MA3.1Guo, Zhanzhi ............................................MD3.2

53

Page 55: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Hahn, Herwig ..........................................TuD3.1Hainberger, Rainer ....................................TuF2.2Hammar, Mattias ..........................................MP8Han, Haiyang............................................TuD2.2Han, Jung..................................................TuB1.2Han, Y. ......................................................MA4.1Han, Yi ................................................MP4, MP5Hardavellas, Nikos ..................................TuD2.2Hardy, Nicholas D.....................................TuF3.3Harjanne, Mikko ......................................MD2.4Harris, Nicholas C.....................................WB1.2Hartmann, Jean-Michel ............................MA3.1Heidari, Elham..........................................TuB3.3Heideman, Rene G.....................................ME4.1Hemmati, Hamid ......................................TuE3.1Hillerkuss, David ......................................TuF3.2Hillery, Mark ............................................WF1.1Hoefler, Gloria ........................................WD2.2Holmes, Jr., Archie L.................................WA1.1Holonyak, Jr., Nick ..................................WC1.2Holzman, Jonathan F.................................WD2.4Honardoost, Amirmahdi..............TuA4.1, WE2.2Hosoda, Takashi ........................................WA1.6Hosseini, Amir ..........................................WD2.2Huang, Beiju ................................................MP7Huang, Lijun ............................................TuB3.3Huang, Y-W...............................................WC1.3Hübel, Hannes ............................TuD4.3, TuF2.2Hudlička, Martin ......................................WE1.1Hudnut, Brock ..........................................WB1.1Hudspeth, Quentin ..........................MP1, TuA3.2Humphreys, David A.................................WE1.1I, Chih-Lin ................................................TuE2.1Ihlefeld, Jon ..............................................WC2.2Ilchenko, Vladimir S. ................................MB2.2Inoue, K.....................................................MD2.2Isella, Giovanni ........................................TuA3.1Ishihara, T. ................................................MD2.2Ishimura, Shota ........................................TuE4.3Jachura, Michal..........................................MF4.1Jakoby, Bernhard ..........................................MP2Janaszek, Bartosz..........................................MP6Jankovic, Vladan ......................................WB1.1Jeong, Kwang-Yong ................................TuB2.2Jia, Haikun ................................................WE2.1Jiang, Hongxing ........................................MB4.1Jiang, Liang ..............................................TuF3.4Jobez, Pierre..............................................TuF4.2Johanson, Leif ..........................................ME4.2Jones, Daniel E. ........................................TuF2.4

Jungnickel, Volker ....................................ME3.3Juodawlkis, Paul W...................................TuB2.3Kandula, Srikanth ....................................TuD2.2Kanellos, George ......................................TuD3.1Kanellos, George T...................................TuD2.2Kanno, Atsushi ............................TuE4.1, WE1.3Kanter, Gregory S. ....................................TuF2.3Karinou, Fotini ............................TuF3.2, WD2.3Karpinski, Michal ......................................MF4.1Kashima, Ken-ichi ....................................WE1.3Katopodis, Vasilis ......................................ME4.1Kavehrad, Mohsen ....................................WE2.4Kawaguchi, Hitoshi ..................................MD2.1Kawanishi, Tetsuya......................TuE4.1, WE1.3Keeler, Gordon A. ....................................WC2.2Keil, Norbert..............................................ME4.1Khajavikhan, Mercedeh............................TuC3.3Khan, Saeed..............................................TuA4.1Khan, Sikandar..........................................WC2.3Kharas, Dave ..........................................TuB2.3Kiefer, Arnold M.......................................MA1.2Kim, Jungsang ..........................................TuF3.4Kim, Kwangok ..........................................ME3.2Kim, Naksum............................................WD2.2Kim, Seoug-Hwan ....................................ME3.2Kipshidze, Gela ........................................WA1.6Kirby, Brian T. ................MF2.2, MF2.3, TuF2.4Kish, Fred ................................................WD2.2Kleinert, Moritz ........................................ME4.1Koleske, Daniel D. ..................................TuB1.1Komljenovic, Tin......................................TuC3.1Kouloumentas, Christos ............................ME4.1Kovach, Andre ..........................................WB1.1Kramnik, Daniel ......................................TuB3.1Kranzl, Florian ..........................................TuF4.2Krich, Jacob J. ..........................................TuA3.3Kudrawiec, R. ..............................................MP3Kudrawiec, Robert ..................................TuA1.2Kues, Michael ..........................................WA1.4Kumar, Prem..............................................MF4.2Kunz, Paul D.............................................TuF1.3Kuschnerov, Maxim..................................TuF3.2Lal, Vikrant ..............................................WD2.2Lambrecht, Joris ......................................TuD3.1Lamprecht, Tobias ....................................TuD3.1Laudenbach, Fabian ..................................TuF2.2Lee, Benjamin G. ......................................MD4.1Lee, H. W. ................................................WC1.3Lee, Han Hyub ..........................................ME3.2Lee, Jong Hyun..........................................ME3.2

54

Page 56: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Lee, Jun Ki ................................................ME3.2Lee, Kim F.................................................TuF2.3Lee, Moonjoo............................................TuF4.2Leung, Benjamin ......................................TuB1.1Li, Baohua ................................................MA2.1Li, Changyi ..............................................TuB1.1Li, Linshu..................................................TuF3.4Li, Qing ....................................................MB2.1Li, Yaoyao..............................MA4.1, MP4, MP5Liang, Wei ................................................MB2.2Lienhard, Benjamin ..................................TuB2.2Lin, Jingyu ................................................MB4.1Lin, Rui ....................................................TuD2.1Lin, S. ........................................................MC1.3Little, Brent E. ..........................................WA1.4Liu, J. J. ....................................................MA4.1Liu, Jifeng ................................................MA1.3Liu, Juanjuan ................................................MP4Liu, Sheng ................................................TuB1.1Liu, Shih-Chia ..............................................MP8Liu, Xianhe ..............................................TuB1.3Liu, Yonghao ................................................MP8Loh, William ............................................TuB2.3Loncar, Marko ..........................................MB2.3Lougovski, Pavel ......................................MF3.2Lu, Feng....................................................TuE2.2Lu, Liangjun..............................................MD3.2Lu, Mingzhi ..............................................WD2.2Lu, Ping ....................................................TuB1.1Lu, Siyuan ................................................TuF1.4Lu, Tsung-Ju ............................................TuB2.2Lu, Xiyuan ................................................MB2.1Lucamarini, M...........................................TuF3.1Luk, Ting S. ................................TuB1.1, WC2.2Lukens, Joseph M. ....................................MF3.2Lukin, Mikhail D. ....................................TuF3.4Lütkenhaus, Norbert ................................TuF3.4Ma, Zhenqiang..............................................MP8Ma, Zhizhen ..............................................WC2.3Mączko, H. S. ..........................................TuA1.2Madhukar, Anupam ..................................TuF1.4Maleki, Lute ..............................................MB2.2Malinovsky, Vladimir S. ..............MF2.2, MF2.3Malinowski, Marcin ................................TuA4.1Marchenko, Denys ....................................ME4.1Margetis, Joe ............................................MA2.1Martínez, Ricardo ......................................ME1.2Maser, D. L...............................................TuA4.2Mathews, Jay..............................TuA3.2, TuA4.3Matsko, Andrey B. ....................................MB2.2

McCaughan, Adam N. ..............................MC4.2Mehrvar, Hamid ........................................MD4.2Mehta, Karan K. ............MB3.1, TuB3.1, TuB3.4Mehta, N. ..................................................MC1.3Melloni, Andrea........................................TuD3.1Meloni, Gianluca ......................................ME4.3Merget, Florian ........................................TuB3.2Meyer, David H.........................................TuF1.3Mi, Zetian ..................................TuB1.3, TuC3.4Miao, Wang ..............................................TuD3.3Migdal, Alan ..............................................MF4.3Mikroulis, Spiros ......................................TuF3.2Millar, Ross W. ........................................TuA3.1Miller, David A. B. ..................................TuC1.1Milord, Laurent ........................................MA3.1Mirin, R. P. ..............................................TuA4.2Mirin, Richard P. ......................................MC4.2Mitchell, Matthew ....................................WD2.2Mitsolidou, Charoula ..............................TuD3.1Moazeni, S. ..............................................MC1.3Moody, Baxter ..........................................MB3.3Moon, Hyowon ........................................TuB2.2Moralis-Pegios, Miltiadis..........................MD2.4Morandotti, Roberto ..................................WA1.4Moridi, Mohssen ..........................................MP2Mortazavi, Mansour ..................................MA2.1Moss, David J. ..........................................WA1.4Mourgias-Alexandris, George ..................MD2.4Moutanabbir, Oussama ............................MA4.2Müllner, Paul ............................................TuF2.2Münch, Daniel ..........................................ME3.3Muneeb, Muhammad ................................WA1.2Muñoz, Raul ............................................ME1.2Munro, William John ................................MF1.1Muralidharan, Sreraman ..........................TuF3.4Murata, Hiroshi ........................................TuE1.2Muschik, Christine....................................TuF4.3Myronov, Maksym......................MA4.3, TuA2.1Nadal, Laia ................................................ME1.2Nader, Nima ............................................TuA4.2Nakamura, Shigeru ..................................MD3.1Nakamura, Tekashi ..................................TuE1.1Nam, Sae Woo ..........................................MC4.2Nanba, Sinobu ..........................................TuE4.3Nejabati, Reza ..........................................TuD3.2Nikoobakht, Babak....................................MB1.2Nishimura, Kosuke ..................................TuE4.3Northup, Tracy E.......................................TuF4.2Notomi, Masaya ..........................MD2.2, TuC2.3Nozaki, K. ................................................MD2.2

55

Page 57: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Oehme, Michael ........................................MA2.2Offrein, Bert J...........................................TuD3.1Ong, Florian ..............................................TuF4.2Orcutt, J. ....................................................MC1.3Ortolani, Michele ....................................TuA3.1Otaka, Akihiro ..........................................ME3.1Pala, R. A. ................................................WC1.3Pan, David ................................................MC1.2Pan, S. H. ..................................................TuC2.2Parameswaran, S. ......................................WC2.2Patil, Aniket..............................................TuA4.1Pauc, Nicolas ............................................MA3.1Paul, Douglas J. ........................................TuA3.1Pavanello, F. ..............................................MC1.3Peev, Momtchil ........................................TuF3.2Pellegrini, Giovanni ................................TuA3.1Pernice, Wofram ......................................TuB2.1Peters, Nicholas ........................................MF2.1Peters, Nicholas A. ....................................MF3.2Pezzoli, Fabio............................................MA4.3Pham, Thach..............................................MA2.1Pitris, Stelios ............................................TuD3.1Pleros, Nikolaos ......................................TuD2.2Pleros, Nikos ..............................MD2.4, TuD3.1Plews, A. ..................................................TuF3.1Pointurier, Yvan........................................TuD4.2Popovic, Milos ..........................................MC1.3Poppe, Andreas ........................................TuF3.2Potì, Luca ..................................................ME4.3Prati, Giancarlo..........................................ME4.3Preble, Stefan ............................................MB3.2Prodaniuc, Cristian ..................................WD2.3Qiu, Junyi ..................................................WC1.2Ra, Yong-Ho ............................................TuC3.4Rabiei, Payam ..........................................TuA4.1Raineri, Fabrice ..........................MD2.3, TuD3.1Ram, R.......................................................MC1.3Ram, Rajeev J. ..............MB3.1, TuB3.1, TuB3.4Ramon, Hannes ........................................TuD3.1Ranacher, Christian ......................................MP2Rao, Ashutosh ............................TuA4.1, WE2.2Rashid, Roksana ......................................TuC3.4Rastegarfar, Houman................................TuD2.3Ravi Kumar, Nithin ......................................MP2Raymer, Michael........................................MF3.3Raz, Oded ................................................TuD3.3Reboud, Vincent........................................MA3.1Reimer, Christian ......................................WA1.4Reiter, Florentin ........................................TuF4.3Rennesson, Stephanie................................MB4.2

Reuterskiöld-Hedlund, Carl..........................MP8Reyner, Charles ........................................WA1.3Reynolds, Peter ..........................................MF1.2Roberts, G. L.............................................TuF3.1Roelkens, Günther ....................................WA1.2Roeloffzen, Chris G...................................ME4.1Roland, Iannis ..........................................MB4.2Rothman, Johan ........................................MA3.1Roztocki, Piotr ..........................................WA1.4Sabella, Roberto ........................................ME1.1Sadaf, Sharif ............................................TuB1.3Saffman, Mark ..........................................TuF4.1Sage, Jeremy M. ......................................TuB2.3Saitoh, Kunimasa ....................................TuA1.1Sakat, Emilie ............................................TuA3.1Sampietro, Marco ....................................TuD3.1Sanchez, Dorian ......................................TuD3.1Santra, Siddhartha ........................MF2.2, MF2.3Sarmiento, Tomas......................................MC4.3Sauvage, Sebastien ....................................MB4.2Savchenkov, Anatoliy A. ..........................MB2.2Scarabell, Diego ......................................TuB2.2Scheihing, John ........................................WA1.3Schlesser, Raoul ........................................MB3.3Schour, Liran ............................................TuD3.3Schrenk, Bernhard ......................TuD4.3, TuF2.2Schroeder, Tim..........................................TuB2.2Schulze, Jörg ............................................MA2.2Schüppert, Klemens ..................................TuF4.2Sciara, Stefania..........................................WA1.4Secondini, Marco ......................................ME4.3Selles, Julien..............................................MB4.2Semond, Fabrice........................................MB4.2Seok, Tae Joon ..........................................MD4.3Serkland, Darwin K. ................................WC2.2Shadaram, Mehdi ......................................WE2.3Shainline, J. ..............................................MC1.3Shainline, J. M. ........................................TuA4.2Shainline, Jeffrey M. ................................MC4.2Sharpe, A. W. ............................................TuF3.1Shen, Xiaoqin............................................WB1.1Shen, Yichen ............................................WB1.2Shi, Sufei ..................................................WC2.4Shibagaki, Nobuhiko ................................WE1.3Shields, A. J. ............................................TuF3.1Shih, Ishiang ............................................TuC3.4Shimada, Tatsuya ......................................ME3.1Shinya, A...................................................MD2.2Shirmanesh, G. K. ....................................WC1.3Shterengas, Leon ......................................WA1.6

56

Page 58: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Sigg, Hans ................................................MA3.1Skirlo, Scott ..............................................WB1.2Smith, Brian John ......................................MF4.1Soeller, Christoph ......................................MF4.1Sokhoyan, R. ............................................WC1.3Soljačić, Marin ..........................................WB1.2Solmeyer, Neal E. ....................................TuF1.3Soltani, Soheil ..........................................WB1.1Song, Y. X. ................................................MA4.1Song, Yuxin ........................................MP4, MP5Sorace-Agaskar, Cheryl............................TuB2.3Soref, Richard ..........................................MA2.1Sørensen, Anders ......................................TuF4.3Sorger, Volker J. ........................................WC2.3Spatharakis, Christos................................TuD4.1Srinivasan, Kartik......................................MB2.1Steeg, Matthias ........................................TuE3.3Steenbergen, Elizabeth ..............................WA1.3Stevens, Mark L. ......................................TuF3.3Stöhr, Andreas ..........................................TuE3.3Stojanovic, Nebojsa ..................................WD2.3Stojanovic, V. ............................................MC1.3Stojanovic, Vladimir ................................TuC1.2Struszewski, Paul ......................................WE1.1Summers, Joseph ....................................WD2.2Sun, C. ......................................................MC1.3Sun, Greg ..................................................MA2.1Sun, Yuan ..................................................TuF4.1Suzuki, Masatoshi ....................................TuE4.3Svaluto Moreolo, Michela ........................ME1.2Syrivelis, Dimitris ....................................TuD2.2Szczepanski, Pawel ......................................MP6Tabataba-Vakili, Farsane ..........................MB4.2Tahersima, Mohammad ............................WC2.3Tajima, Akio..............................................MD3.1Takeshita, Hitoshi......................................MD3.1Tam, W. W.-S. ..........................................TuF3.1Tanaka, Kazuki ........................................TuE4.3Tang, Naimei ............................................TuB3.3Tarasiuk, Halina ........................................ME2.3Teller, Markus ..........................................TuF4.2Terada, Jun ................................................ME3.1Terzenidis, Nikolaos ................................TuD2.2Thai, Quang Minh ....................................MA3.1Thiel, Valerian............................................MF4.1Thyagarajan, K. ........................................WC1.3Timens, Roelof Bernardus ........................ME4.1Tokas, Konstantinos ................................TuD4.1Tolle, John ................................................MA2.1Toroghi, Seyfollah ....................................TuA4.1

Tortschanoff, Andreas ..................................MP2Tossoun, Bassem ......................................WA1.1Tran, Huong ..............................................MA2.1Tran, Tuan T. ............................................MA1.1Tsai, Corey ..............................................WD2.2Tsai, Miao-Chan ......................................TuB1.1Tsao, Jeffrey Y. ........................................TuB1.1Tsokos, Christos ........................................ME4.1Tyszka-Zawadzka, Anna ..............................MP6Umezawa, Toshimasa ..............................TuE4.1Vallini, F. ..................................................TuC2.2Van Campenhout, Joris ............................TuD3.1van de Plassche, Karel..............................TuD3.3Van Meter, Rod..........................................WF1.2Vannucci, Antonello ..................................ME4.1Vargaftik, Shay ........................................TuD3.3Vasiliev, Anton ..........................................WA1.2Vilalta, Ricard............................................ME1.2Vitiello, Elisa ............................................MA4.3Vuckovic, Jelena........................................MC4.3Vyrsokinos, Konstantinos ........................MD2.4Wade, M. ..................................................MC1.3Wang, C. Y. ..............................................WC1.2Wang, Dawei ............................................TuF3.2Wang, George T. ......................................TuB1.1Wang, Ke ..................................................TuE3.2Wang, Meng ..............................................WA1.6Wang, Renjie ............................................TuC3.4Wang, S. M. ..............................................MA4.1Wang, Shumin ....................................MP4, MP5Wang, Ye ..................................................WA1.1Wang, Yipeng ............................................WE2.1Wang, Zheng ............................................MC1.2Wang, Zhihua ............................................WE2.1Warrender, Jeffrey ........................................MP1Warrender, Jeffrey M. ..............................TuA3.2Weiner, Anrew ..........................................MF3.1Welch, Dave..............................................WD2.2Wendt, Joel R. ..........................................WC2.2West, Gavin N. ..............MB3.1, TuB3.1, TuB3.4Westly, D. ................................................TuA4.2Westly, Daron A. ......................................MB2.1Wetzel, Benjamin ......................................WA1.4Williams, James S. ..................................TuA3.2Williams, Jim S. ........................................MA1.1Wind, Shalom ..........................................TuB2.2Wirths, Stephan ........................................TuA2.3Wood, Michael G. ....................................WC2.2Wosinska, Lena ........................................TuD2.1Wright, Jeremy B. ....................................TuB1.1

57

Page 59: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

Wright, Laura J. ........................................MF4.1Wu, Ming C. ............................................TuC4.1Xiao, Xiaoyin ..........................................TuB1.1Xie, Changsong ........................................TuF3.2Xu, Mu......................................................TuE2.2Xu, Xiaochuan..........................................TuB3.3Yablonovitch, Eli ......................................TuC2.1Yamamoto, Naokatsu ..................TuE4.1, WE1.3Yan, Hai ....................................................WA1.5Yanagimachi, Shigeyuki ..........................MD3.1Yang, Hongjun ..............................................MP8Yang, Wenjie ............................................TuA3.2Yi, Qian ....................................................TuF3.2Yin, Xin ....................................................TuD3.1Ying, Zhoufeng ........................................MC1.2Yonemoto, Naruto ....................................WE1.3Yoo, S. J. Ben............................................WC1.1Yu, Shui-Qing ..........................................MA2.1Yuan, Zhiliang L. ......................................TuF3.1Yue, Patrick ..............................................WE2.1Zabel, Thomas ..........................................MA3.1Zeng, Yijia ................................................MB4.2Zhang, Chong ..........................................TuC3.1

Zhang, Jiefei..............................................TuF1.4Zhang, Liyao ................................................MP5Zhang, Ruiyong........................................TuD3.1Zhang, Shangjian ....................................TuC3.1Zhang, Z. P. ..............................................MA4.1Zhang, Zan....................................................MP7Zhang, Zanyun ............................................MP7Zhang, Zhenpu ....................................MP4, MP5Zhao, Deyin ..................................................MP8Zhao, Songrui ..........................................TuB1.3Zhao, Yuji ................................................TuC4.2Zhao, Yun ................................................TuA4.3Zhao, Zheng ..............................................MC1.2Zhou, Linjie ..............................................MD3.2Zhou, Weidong..............................................MP8Zhou, Yiyin ..............................................MA2.1Zhu, Guang................................................WE2.1Zhu, Z. Y. S. ..............................................MA4.1Zhu, Zhongyunshen ............................MP4, MP5Ziari, Mehrdad ..........................................WD2.2Zoller, Peter ..............................................TuF4.3Zou, Chang-Ling ......................................TuF3.4Zou, Yi ......................................................WA1.5

58

Page 60: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

NOTES

59

Page 61: Holey Fibers & Photonic Crystals · 2017-11-27 · application experts to present the recent development of mid‐infrared (~ 2‐20 m) photonic materials and mid‐infrared device

NOTES

60