Hokkaido Institute of Environ Sciences

34
Hokkaido Institute of Environ Sciences Hokkaido Institute of Environ Sciences Materials Cycle Section Research on the material cycle (N or C cycle and so on), acid rain and environmental control concerning waste management. Organization Drector ---Vice Director General Affairs Department General Affairs Section Planning and Coordination Section Environmental Protection Department Air Environment Section Water Environment Section Pollution Control Section Chemical Pollution Section I Chemical Pollution Section II Environmental Studies Department Materials Cycle Section Regional Environmental Section Environmental Engineering Section Nature Conservation Department Natural Environments Conservation Section Vegetation Section Wildlife Section Eastern Hokkaido Wildlife Research Station Southern Hokkaido Wildlife Research Station

Transcript of Hokkaido Institute of Environ Sciences

Hokkaido Institute of Environ SciencesHokkaido Institute of Environ Sciences

This Hotel

HIES

Materials Cycle SectionResearch on the material cycle (N or C cycle and so on), acid rain and environmental control concerning waste management.

OrganizationDrector ---Vice Director

General Affairs DepartmentGeneral Affairs SectionPlanning and Coordination Section

Environmental Protection DepartmentAir Environment SectionWater Environment SectionPollution Control SectionChemical Pollution Section IChemical Pollution Section II

Environmental Studies DepartmentMaterials Cycle SectionRegional Environmental Section Environmental Engineering Section

Nature Conservation DepartmentNatural Environments Conservation SectionVegetation SectionWildlife SectionEastern Hokkaido Wildlife Research StationSouthern Hokkaido Wildlife Research Station

Administrator
テキストボックス
International Workshop on Environmental Contamination by Hazardous Substances

Monitoring Site●Rishiri

Teshio

●Moshiri

●Ochishi▲Mashu

Snowcover sampling(60-70site)

Sapporo●

Flux Monitoring of Atmospheric Components Flux Monitoring of Atmospheric Components in Northern Forest areain Northern Forest area

Izumi Noguchi1),Tatsuya Fukazawa 2),Kentaro Takagi2),Kentaro Hayashi3),Yasumi Fujinuma4), Nobuko Saegusa5)

1)Hokkaido Inst. of Environ. Sci.,2)Hokkaido Univ.,3)National Inst. for Agro-Environ.,4)Tottori Univ.,5)National Inst. for Environ. Studies

GasAerosol

Snowfall

Cloud

ⅢⅣ

Rime

Cloud (Fog, Mist)

Rainfall

Dew

Snowcover

Fog, Mist

Frost

Ⅰ:Dry depositionⅡ:Wet deposition (Wash out)Ⅲ:Wet deposition (Rain out)Ⅳ:Occult depositionⅤ:Cloud deposition

Deposition process

Gas and particle ion componentsEmission

Cloud

SO42-

SO2

NO

NO2

NO3-HNO3

HONO

NH4+NH3

Na+

Ca2+

Mg2+

Cl-

K+

SO42- NO3

- NH4+

Na+

Ca2+

Mg2+ Cl-

K+

Rain drop, Snow flake

SO42-

NO3- NH4

+

Na+

Ca2+

Mg2+

Cl-K+

Sea salt

Soil

Plant

Animal

Agri.

Volcano

Fossil fuel

Human

Lightning

Rain-out

Wash-out

Gas Particle

Wet DepositionCloud DepositionDry Deposition

Biomass

Agri.: Agriculture (fertilizer, livestock, and so on.)

Na,Cl,Mg,Ca

K

ParticleC

loud

Na,Cl,Mg,Ca,K,SO4NO3,NH4

Gas

SO2NO2NH3O3

Na,Cl,Mg,CaK,SO4

NO3,NH4

Na,Cl,Mg,CaK,SO4

NO3,NH4

Na,Cl,Mg,CaK, SO4

NO3,NH4

Na,Cl,Mg,Ca,K,SO4NO3,NH4

SO2, O3NH3 ,HCl

HONOHNO3

H2SO4HNO3,

NH4

HNO3NH3HCl

Dry D

epositionW

et Deposition

SecondaryParticle

Transport & Reaction

Emission of Hokkaido

Kosa Yellow color

NormalBlack color

8Strong sand storm

by Airmass flowMODIS, March 21, 2002

To SapporoIn March 2002, large Kosa phenomenon.First observation in Eastern Hokkaido.

Air mass Flow

by Akimoto et al., (1998)

Emission Inventories

http://www.iiasa.ac.at/rains/meetings/ACCENT_GEIA/presentations/old/EMISSIONChinaTonooka.ppt

SO2 NOx

NMVOC NH3

Wet deposition in JapanAnnual deposition

(mmol m-2 yr-1) Region C. Prc. (mm yr-1)

nss-SO42- NO3

- NH4+

Sites

n

JS-NReRuU

761 931 974

10.1 16.6 20.3

8.812.011.8

13.716.820.6

131

JS-MReRuU

1778 1938 1494

26.3 41.0 51.4

27.829.927.3

28.537.854.4

7103

JS-WReRuU

1348 1806 1576

19.0 30.6 23.0

21.622.325.6

22.428.123.9

113

POReRuU

2083 1838 1247

23.1 25.9 27.5

18.126.229.3

18.331.635.0

69

12

SI RuU

1449 1346

23.8 27.0

19.720.7

30.526.2

47

ECReRuU

1791 1857 1676

25.5 33.7 36.1

23.918.824.2

31.334.036.1

223

SW Re 3370 37.5 28.4 32.2 6

JapanReRuU

2211 1725 1365

27.3 30.6 30.0

24.024.425.5

26.132.133.4

232929

EC SI

PO -W

JS

SW

-N

-M

Region: JS-N: Northern part of the Japan Sea area, JS-M: Central part of the Japan Sea area, JS-W: Western part of the Japan Sea area, PO: The Pacific Ocean area, SI: The Seto Inland Sea area, EC: The East China Sea area, and SW: Southwestern Islands Sea area. C.; Re: Remote site, Ru: Rural site, and U: Urban site.

Contributions of emission on precipitation components in Hokkaido

利尻の降水成分

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2001 2002 2003 2004 2005 2006

沈着

量(m

mol m

-2 y

-1)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

pH

札幌の降水成分

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2001 2002 2003 2004 2005 2006

沈着

量(m

mol m

-2 y

-1)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

pH

硫酸イオン沈着量 硝酸イオン沈着量 pH

Increasing of Sulfate & Nitrate, decreasing pH

0

5

10

15

20

25

30

1990

1992

1994

1996

1998

2000

2002

2004

2006

Year

Em

issi

ons,

Mt

SO2

NOx

(国家环境保护总局,2007;Tian et al., 2005)

Increasing trend of air pollution emission in China

13

Rishiri Sapporo

Dep

ositi

on (m

mol

m-2

y-1)

Dep

ositi

on (m

mol

m-2

y-1)

Sulfate Nitrate

Transported OzoneContributions of China and Japan are large.However, contributions of Europe and North America cannot be ignored.

Simulation results(5/8/2007)(by NIES/Kyushu Univ.)

China

Hokkaido

Transported Ozone

by Akimoto et al. (2007)

利尻のオゾン濃度

y = 0.0695x - 44.854

R2 = 0.0423

0

10

20

30

40

50

60

70

2000年

4月

2001年

4月

2002年

4月

2003年

4月

2004年

4月

2005年

4月

2006年

4月

2007年

4月

ppb

Ishii et al.(2005)

□:Increasing of injury forest

Surface OzoneEffect on Vegitation( >40ppb)

Effect on Human Health( >60ppb)

Surface ozone is shown increase trend.

Trend in Rishiri Island

Rate: 5 ppb/6 years Rishiri & Teshio area

Mashu

AreaShakotanpeninsula

Injury of Larix forest was increase in ozone high concentration area.

Stratosphere

TroposphereEmission

Transportation & Reaction

Emission

Deposition

Long-range transportation

Overview of LRTAP

Teshio Site

CC-LaG:Carbon Cycle and Larch Growth experimentSite: Teshio Experimental Forest, Horonobe, Hokkaido, Japan Location: 45deg 03' N, 142deg 06' E

Elevation: ca.70m, a.s.l.

Area:13.7 ha (Young larch plantation )

Mean annual precipitation: 1000mm

Tower(30m)

2007

Photo by NIES

Bulk Wet-only

Subject Components Height Method Sampling cycleGas SO2, HNO3, HONO, HCl, NH3

Aerosol SO42-,NO3

-,Cl-,NH4+,Na+,K+,Mg2+,Ca2+

Gas NO2, NO, O3 Auto Half-hourly

pH, EC,SO42-,NO3

-,Cl-,NH4+,Na+,K+,Mg2+,Ca2+ Wet-only Weekly

pH, EC,SO42-

,NO3-,Cl

-,NH4

+,Na

+,K

+,Mg

2+,Ca

2+ Bulk Monthly

30m&10m

AnnularDenuder

Weekly

Precipiotation Ground

Monitoring system

D1: annual denuder coated by NaFD2: annual denuder coated by Na2CO3D3: annual denuder coated by Na2CO3D4: annual denuder coated by citric acid

F1: Teflon filter for aerosol (>2.5μm)F2: Teflon filter for aerosol (PM2.5) F3: Cellulose filter impregnated K2CO3F4: Cellulose filter impregnated H3PO4

Fig. Annular Denuder system

Impactor10 m

30 m

Impactor

Objective and Subject

Main Subject of Monitoring1. SOx : SO2 (g), SO4

2-(p), SO42-(w)

2. NOy : NO, NO2, HNO3, HONO, NO3-, NO3

-

3. NHx : NH3, NH4+, NH4

+

4. O3

ObjectiveThe site aims at measurements of CO2 flux of woodland ecosystem in deciduous

larch forest. Simultaneously, the effects on carbon flux of air pollutants was observed by Hokkaido Institute of Environ Sciences.

Therefore, we have carried out the following researches;(1)Establishment of Monitoring Method for Air pollutants (2)Estimation Dry and Wet deposition(3)Interaction with Atmosphere- Forest, Atmosphere- Soil and Atmosphere-Snowcover.

Research Themes1. Development of HONO Measuring Method2. Establishment of simple and low cost measuring method3. Deposition components and Efflux components4. Interaction of HONO with Atmosphere - Forest5. Application of the Dry deposition Measurements 6. NHx Flux7. Seasonal variation of O3

concentration and AOT 40

NO3- NH4

+

Dry deposition

Gas

NO3-NO3- NH 4

+NH 4+ HNO3 HONO NH3HNO3 HONO NH3 NONO NO2NO2

Particle

3 43 4NO - NH +NO - NH +

Wet depositionPrecipitation

HONOHONO NH3NH3 N2O 3 43 4NO - NH +NO - NH +

The flux measurement method in this site was used the gradient method. Therefore, the flux values are shown as net values. It means differences between influx and efflux.

Flux = K×⊿C / ⊿ZK: Diffusion coefficient⊿C: Difference of concentration⊿Z: Difference of height

Sapporo

020406080

100120140

02/09/01

02/11/01

03/01/01

03/03/01

03/05/01

03/07/01

03/09/01

03/11/01

04/01/01

04/03/01

04/05/01

04/07/01

04/09/01

04/11/01

05/01/01

05/03/01

05/05/01

05/07/01

05/09/01

05/11/01

06/01/01

06/03/01

06/05/01

06/07/01

06/09/01

06/11/01

07/01/01

07/03/01

Conc.,

nm

ol m

-3

Annular denuder Filterpack

Moshiri

012345678

02/09/01

02/11/01

03/01/01

03/03/01

03/05/01

03/07/01

03/09/01

03/11/01

04/01/01

04/03/01

04/05/01

04/07/01

04/09/01

04/11/01

05/01/01

05/03/01

05/05/01

05/07/01

05/09/01

05/11/01

06/01/01

06/03/01

06/05/01

06/07/01

06/09/01

06/11/01

07/01/01

07/03/01

Conc.,

nm

ol m

-3

Rishiri

0

1

2

3

4

02/09/01

02/11/01

03/01/01

03/03/01

03/05/01

03/07/01

03/09/01

03/11/01

04/01/01

04/03/01

04/05/01

04/07/01

04/09/01

04/11/01

05/01/01

05/03/01

05/05/01

05/07/01

05/09/01

05/11/01

06/01/01

06/03/01

06/05/01

06/07/01

06/09/01

06/11/01

07/01/01

07/03/01

Conc.,

nm

ol m

-3

Teshio

0

1

2

3

4

5

6

02/09/01

02/11/01

03/01/01

03/03/01

03/05/01

03/07/01

03/09/01

03/11/01

04/01/01

04/03/01

04/05/01

04/07/01

04/09/01

04/11/01

05/01/01

05/03/01

05/05/01

05/07/01

05/09/01

05/11/01

06/01/01

06/03/01

06/05/01

06/07/01

06/09/01

06/11/01

07/01/01

07/03/01

Sampling finish date

Conc.,

nm

ol m

-3

30m 10m

HONO

y = 1.085x + 2.2774

R2 = 0.9018

0

30

60

90

120

150

0 50 100 150

Filter-Pack (nmol m-3)

Annual

Denude

r (n

mol m

-3)

Figure1 Comparison of developing method (Filter pack) and Annular denuder method for HONO measurement.

Fig. 2 Variation of HONO concentrations.

Result 1Development of HONO Measuring Method

A parallel survey results showed that HONOconcentrations obtained using the annular denuder method, which is generally used for the measurement of HONO, and the filter-pack method were in good agreement. Thus, the filter-pack method is useful for the monitoring of air pollutants including HONO.In addition, HONO concentrations are high

in winter in urban area. However, HONO concentrations are high in summer in ruralarea.

Fig. 2 Filter pack method.

Result 2Simple and low cost method

•Concentrations of NHx(NH4++NH3) by Filter-pack

method (FP) are agree with by Annular Denuder method (AD).• Concentrations of NH3 by FP are higher than by AD.→effects of artifact→Concentrations of NH3 should be measured with more accuracy. →using by Passive sampler (PS).

I0: Teflon doughnut filter (Coarse particle )F0:Teflon filter (PM-10 )F1: Nylon filter (HNO3, HONO, SO2, NH3)F2: K2CO3 impregnated filter (SO2, HONO, HCl)F2’: K2CO3 impregnated filter (interference of HONO from NO2 )F3: H3PO4 impregnated filter ( NH3)

I0(Impactor)

To Pump

F0

Air Air

F1 F2 F2’ F3

Fig. 3 The Ogawa Passive sampler.

Fig. 1 Concentration of NH3and NHx (NH4++ NH3).

NH4++NH3

0

50

100

150

200

250

300A

pr-03

Jul-

03

Oct

-03

Jan-04

Apr

-04

Jul-

04

Oct

-04

Jan-05

Apr

-05

Jul-

05

Oct

-05

Jan-06

Apr

-06

Jul-

06

Oct

-06

Jan-07

nm

ol m

-3

FP Denuder

NH3

020406080

100120140160180

Apr-

03

Jul-

03

Oct-

03

Jan-04

Apr-

04

Jul-

04

Oct-

04

Jan-05

Apr-

05

Jul-

05

Oct-

05

Jan-06

Apr-

06

Jul-

06

Oct-

06

Jan-07

nm

ol m

-3

FP AD PS

SO2(g) and SO42-(p)

-3000-2000-1000

010002000

2005/6/1

2005/8/1

2005/10/1

2005/12/1

2006/2/1

2006/4/1

2006/6/1

2006/8/1

2006/10/1

2006/12/1

2007/2/1

2007/4/1

2007/6/1

Flu

x, μ

mol m

-2

Particle Gas

NH3(g) and NH4+(p)

-4000

-2000

0

2000

4000

2005/6/1

2005/8/1

2005/10/1

2005/12/1

2006/2/1

2006/4/1

2006/6/1

2006/8/1

2006/10/1

2006/12/1

2007/2/1

2007/4/1

2007/6/1

Flu

x, μ

mol m

-2

Particle Gas

Result 3Deposition components and Efflux components

•NH3,HONO and particulate components have a trend of efflux (Noguchi et al., 2006a; 2007b).•Particulate components would be affected by “Gas to Particle conversion”.•Wet +Dry depositions have influx trends except NHx components.•The flux of NHx should be consider with organic nitrogen compounds.

Fig. Effects of “Gas to particle conversion”

-25

-20

-15

-10

-5

0

5

10

15

20

25

Annual F

lux

(m

mol 

m-2 y

-1)

Gas Particle Wet

HNO3 NO2 NO NO3-

HONO NH4+

NH3SO42-

SO2 Eff

lux

Influx

SO42-

NO3-

NH4+

Result 4 Interaction of HONO with Atmosphere - Forest

Teshio -HONO(2005.6-2006.3)

0.00

1.002.00

3.00

4.005.00

6.0005/06/0

2

05/07/0

2

05/08/0

2

05/09/0

2

05/10/0

2

05/11/0

2

05/12/0

2

06/01/0

2

06/02/0

2

06/03/0

2

06/04/0

2

nmol m

-3

10m 30m

Teshio -HONO(2005.6-2006.3)

-0.03

-0.02

-0.01

0.00

0.01

0.02

05/0

6/02

05/0

7/02

05/0

8/02

05/0

9/02

05/1

0/02

05/1

1/02

05/1

2/02

06/0

1/02

06/0

2/02

06/0

3/02

06/0

4/02

nm

ol m

-2

HONO NOx/2

Conc.

Deposition

Efflux of HONO is under 50% of NO2 deposition

・This results are agree with Hayashi and Noguchi (2006), Stemmler et al. (2006).・Diurnal variations of O3, NO, NO2, HNO3 should be analyzed not only HONO.

Stemmler et al. (2006) Nature 440, 195 – 198.

2NO2+H2O→HNO3+HONOH2O

HNO3

NO2 HONO

NO OH

Sun light

Concentrations of HONO in night time are higher than in daytime.

Oxidation

Result 5Application of the Dry deposition Measurements

• Developing the calculation program for dry deposition velocity using Inferential method..• Inferential method is useful for many species of land use not only for forest area.• However, this model should be improved for accuracy (ex. Application of Diurnal Model of

concentrations). • Thus, the calculation result is verified by the results of gradient method in Teshio site (net flux).

Calculation File for Dry deposition velocity Ver. 3http://www.hokkaido-ies.go.jp/seisakuka/acid_rain/kanseichinchaku/kanseichinchaku.htm

0

5

10

ppb

0.0

0.2

0.4

0.6

m s

-1

-50

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22Hour

nm

ol m

-2

h-1

Avg. 75% 25%

Diffusion coefficient

Difference of O3 conc.

O3 deposition

Fig. Diurnal variation

Inferential methodDeposition = C×VdC: Concentration in the air, Vd: Depositionvelocity

Result 6 NHx Flux

Emissions of NH3Snowless season: the stomata of the larches and Sasa,the decomposition of the cut Sasa materials and soil.Snow season: Soil and Snowpack.Annual emission of 4.8 ± 0.1 kg N ha-1 yr-1, exceeded the annual wet deposition of NHX-N .

by Hayashi et al. (2008) in prep.

Result 7Variation of O3 concentration and AOT 40

●Teshio GC-Lag site

by Ishii et al. (2005)□:Damaged Larch Forest

利尻のオゾン濃度

y = 0.0695x - 44.854

R2 = 0.0423

0

10

20

30

40

50

60

702000年

4月

2001年

4月

2002年

4月

2003年

4月

2004年

4月

2005年

4月

2006年

4月

2007年

4月

ppb

O3 Conc. in RishiriA

pr. 2

000

Apr

. 200

1

Apr

. 200

2

Apr

. 200

3

Apr

. 200

4

Apr

. 200

5

Apr

. 200

6

Apr

. 200

7

0

20

40

60

80

100

120

2005/8/20

2005/9/9

2005/9/29

2005/10/19

2005/11/8

2005/11/28

2005/12/18

2006/1/7

2006/1/27

2006/2/16

2006/3/8

2006/3/28

2006/4/17

2006/5/7

2006/5/27

2006/6/16

2006/7/6

2006/7/26

2006/8/15

2006/9/4

2006/9/24

2006/10/14

2006/11/3

O3濃

度(ppb)

Using for AOT40 calc.(Day time in Apr.-Sep. )

Missing(Estimation by valid data)

O3

conc

. (pp

b)

AOT40 in Teshio: 13.5ppm h (over WHO guideline)

WHO guideline: 10 ppm h

(for protection forest)

Science Bulletin(Only related to Hokkaido Institute of Environmental Sciences)

• K. Hayashi, K. Takagi, I. Noguchi, T. Fukazawa et al. (2008)Ammoniacal nitrogen emission from a young larch ecosystem afforested after clear-cutting of a pristine forest in northernmost Japan. Water, Air and Soil pollution, in print.

• I. Noguchi et al.(2008) Effects of time resolution on the dry deposition estimating of air pollutants. Proceeding of 49th Annual Meeting of Japan Society for Atmospheric Environment, 515.

• I. Noguchi et al.(2007c) Measuring Concentrations of Nitrous Acid Gas by the Filter-Pack Sampling Method. Journal of Japan Society for Atmospheric Environment, 42, 162-174.

• I. Noguchi et al. (2007b) Deposition and efflux of nitrogen components in Northern forest site. Proceeding of 48th Annual Meeting of Japan Society for Atmospheric Environment, 568.

• I. Noguchi et al.(2007a) Sampling methods for atmospheric ammonia and particulateammonium (Annular denuder system, Filter pack and Passive sampler. Proceeding of 48th

Annual Meeting of Japan Society for Atmospheric Environment, 244-245. • I. Noguchi et al.(2006b) Concentrations of nitrous acid gas and its relationships with other

pollution components at urban and background site in Hokkaido. Proceeding of 48th Annual Meeting of Japan Society for Atmospheric Environment, 2C1024.

• I. Noguchi et al.(2006a) Ammonia gas flux including efflux from ground surface and its seasonal variation. Proceeding of 48th Annual Meeting of Japan Society for Atmospheric Environment, 2C1036.

• K. Hayashi and I. Noguchi (2006)Indirect emission of nitrous acid from grasslands indirected by concentration gradients. Journal of Japan Society for Atmospheric Environment, 41, 279-287.

• I. Noguchi, K. Matsuda (2006) Program File Development for the Estimation of Dry Deposition Velocity. Regional Scientific Workshop on Air Pollution and Acid Deposition.

Recent study (1)Improvement of accuracy for the estimation of flux

Development of estimation method of flux

①Measurement methodExpensive & complication

→low cost & simple (AD→FP+PS)

②Estimation methodFor the low time resolution components (ex. weekly), its flux can be estimated with accuracy using diurnal variation model of the diffusion coefficient and the difference of concentration.

Weekly average+ Model

y = 1.005xr = 0.913

Weekly averagey = 1.562xr = 0.906

0

30

60

90

120

150

0 30 60 90 120

Weekly deposion by accumulated half

time deposition,μmol m-2 h-1

Weekl

y de

posi

tion b

y W

eeky

conc.

avera

ge,

μm

ol m

-2 h

-1

Weekly average only Weekly average + Model

O3

Fig. Effect on weekly deposition of diurnal Model.

Recent study (2)Estimation of nitrogen cycle and of material balance

Gas

Dry deposition

NO 3-NO 3- NH 4

+NH 4+ HNO

3HONO NH

3HNO

3HONO NH

3NONO NO 2NO 2

Particle

3 43 4NO - NH +NO - NH +

Wet deposition

Precipitation

HONOHONO NH 3NH 3N2O 3 43 4

NO - NH +NO - NH +

Recent theme

Behavior of O3 and NOy related to the deposition and efflux of HONO

Elucidating of the NH3 emission system (during the preliminary survey)

Estimation of effects of “Gas to Particle conversion”

Significant references concerning the nitrogen cycle in Teshio siteHigh sensitive of Larch forest to O3 due to lack of nitrogen. (Watanabe et al., 2006)Nitrogen saturation by the effect of bamboo grass cutting in Teshio site (Fukuzawa et al.,2006)Nitrogen cycle affects on carbon cycle(Oren et al., 2001)Nitrogen flux between atmosphere and forest or soil (Noguchi et al., 2007; Hayashi et al., 2008)

Future study (1)Influence of high concentration O3 on forest

Plan of study (1)Measurement of Chlorophyll in leaf of bamboo grass and Lurch.(2)Distribution of O3 concentration

(Effect of season, altitude,location and so on)

Concentrations of O3 are high during March – May.

In addition, O3 concentration are dominated altitude in inland area.

Significant references concerning the ozone in Teshio siteTransported tropospheric O3 and its increasing trend. (K. Sudo and H. Akimoto, 2007)Relationships with Forest damage and O3 concentration. (T. Ishii et al., 2005)High O3 concentration and high AOT40 index in Teshio. (JELA,2007)High sensitive of Larch forest to O3 due to lack of nitrogen. (Watanabe et al., 2006)

Fig. Relation with O3 concentration and altitude (Ebana and Noguchi, 2008)

y = 0.0255x + 24 .46

0

10

20

30

40

50

60

0 200 400 600 800 1000

標高 m

オゾ

ン濃

度 

pp

bv

O3

conc

entr

atio

n, p

pbv

Altitude, m

Flux Monitoring of Atmospheric Componentsin Teshio

Flux Monitoring

Tropospheric O3Nitrogen Cycle

Control of Forest

Monitoring of Carbon cycle

• HONO, NHx• Effects of Lightning• NO, N2O emission• Reaction of NO3

- in snowpack

• Detection of O3 influence• Distribution of O3• Interaction to snowpack• Reflection of UV at snow

surface

• Nitrogen control by bamboo grass control

Monitoring Site●Rishiri

Teshio

●Moshiri

●Ochishi▲Mashu

Snowcover sampling(60-70site)

Sapporo●

Thank you for your attention.Thank you for your attention.

Winter condition in Teshio