Hálózati és Szolgáltatási Architektúrák

71
Hálózati és Szolgáltatási Architektúrák https://www.vik.bme.hu/kepzes/targyak/VITMM130/ Architectures of Networks and Services Mérnök informatikus szak, MSc képzés Hálózatok és szolgáltatások szakirány Dr. Cinkler Tibor cinkler()tmit.bme.hu Egyetemi Docens BME TMIT Dr. Vidács Attila Egyetemi Docens BME TMIT 12./13 Alkalom 2009. Május 3., Hétfı, IB.138, 8:30-10:00 http://opti.tmit.bme.hu/~cinkler/HSzA/ http://hsnlab.tmit.bme.hu/~vidacs/education/vitmm131/2009/vitmm131-2009.htm TMIT: Távközlési és Médiainformatikai Tanszék

Transcript of Hálózati és Szolgáltatási Architektúrák

Page 1: Hálózati és Szolgáltatási Architektúrák

Hálózati és Szolgáltatási Architektúrákhttps://www.vik.bme.hu/kepzes/targyak/VITMM130/

Architectures of Networks and Services

Mérnök informatikus szak, MSc képzésHálózatok és szolgáltatások szakirány

Dr. Cinkler Tibor

cinkler()tmit.bme.hu

Egyetemi Docens

BME TMIT

Dr. Vidács Attila

Egyetemi Docens

BME TMIT

12./13 Alkalom

2009. Május 3., Hétfı, IB.138, 8:30-10:00

http://opti.tmit.bme.hu/~cinkler/HSzA/

http://hsnlab.tmit.bme.hu/~vidacs/education/vitmm131/2009/vitmm131-2009.htm

TMIT: Távközlési és Médiainformatikai Tanszék

Page 2: Hálózati és Szolgáltatási Architektúrák

162

Amiról ma szó lesz� Ami még kimaradt:

� Vezeték nélküli és mobil hozzáférés (WiFi, WiMAX)� Mobil generációk architektúrái, GSM, GPRS, EDGE, UMTS,

HSPA (HSDPA, HSUPA, HSPA+), LTE, ... (3GPP)� Generic Access Networks (GAN)

� GAN Controller (GANC)� Fix es mobil konvergencia (FMC), DECT – GSM/UMTS (GIP/IWP), WiFi – GSM/UMTS

� Központosított és elosztott architektúrák (peer-to-peer)� Mesh, ad-hoc és szenzor hálózatok:

� Fizikai réteg: Bluetooth, IEEE 802.11b (WLAN); PicoRadio, WINS, AMPS

� Közeghozzáférés (MAC), Mediation Device (MD) protokollok� Hálózati réteg, útvonalválasztás (routing)� Különbozı architektúrák elınyei, hátrányai

� Ambiens/pervasive/ubiquitous hálózati környezet� IMS: jövı óra (Varga Pali)

Page 3: Hálózati és Szolgáltatási Architektúrák

163

1. WiFi, WiMAX

� 1.a: WIFi� Wireless Fidelity

� WLAN

� IEEE 802.11x

� 1.b: WiMAX� Worldwide Interoperability for Microwave Access

� WirelessMAN

� IEEE 802.16

Page 4: Hálózati és Szolgáltatási Architektúrák

164

3. Generáció

Mobilitás

Átviteli sebesség [Mbps]

WLAN

G

S

M

0,1 1 2 54……..

Jármő

Séta

FixBluetooth

Mozgási sebesség és adatsebesség

Forrás. Imre Sándor, Alcatel-Lucent Seminar 2008

Page 5: Hálózati és Szolgáltatási Architektúrák

165

Wireless Standards

IEEE 802.15.3

UWB, Bluetooth

Wi-Media,

BTSIG, MBOA

WAN

MAN

LAN

PAN ETSI

HiperPAN

IEEE 802.11

Wi-Fi Alliance

ETSI-BRAN

HiperLAN2

IEEE 802.16d

WiMAX

ETSI HiperMAN &

HIPERACCESS

IEEE 802.20

IEEE 802.16e

3GPP (GPRS/UMTS)

3GPP2 (1X--/CDMA2000)

GSMA, OMA

SensorsIEEE 802.15.4

(Zigbee Alliance)

RFID

(AutoID Center)

IEEE 802.21,IEEE 802.18 802.19

RANIEEE 802.22

Forrás: Imre Sándor, Alcatel-Lucent Seminar 2008

Page 6: Hálózati és Szolgáltatási Architektúrák

166

Elosztó hálózat (DS)

1.a: 802.11 Infrastruktúra WLAN felépítése

AP AP

ESS

BSS-2 BSS-1

Forrás: Imre Sándor, Alcatel-Lucent Seminar 2008

Page 7: Hálózati és Szolgáltatási Architektúrák

167

IEEE 802.11 berendezések

StationPC station card

Access point

Forrás: Imre Sándor, Alcatel-Lucent Seminar 2008

Page 8: Hálózati és Szolgáltatási Architektúrák

168

Alap fizikai rétegek

Forrás: Imre Sándor, Alcatel-Lucent Seminar 2008

Page 9: Hálózati és Szolgáltatási Architektúrák

169

Frekvenciaugratás

Forrás: Imre Sándor, Alcatel-Lucent Seminar 2008

Page 10: Hálózati és Szolgáltatási Architektúrák

170

Mőködési frekvencia tartomány és a frekvencia csatornák száma

Alsó határ

[GHz]

Felsı határ Kijelölt frekvencia

tartomány

Ugrási frekvenciák

száma (minimum)*

Földrajzi

terület

2,402

2,402

2,473

2,480

2,480

2,495

2,400 - 2,4835

2,400 - 2,4835

2,471 - 2,497

79 (75)

79 (20)

23 (10)

Észak-Am.

Európa

Japán

Forrás: Imre Sándor, Alcatel-Lucent Seminar 2008

Page 11: Hálózati és Szolgáltatási Architektúrák

171

1.b: WiMAX-rólAmit hallani lehet a WiMAX-ról:

� „WiFi nagyban”

� Minden eddiginél nagyobb adatsebesség

� Nagy távolságok (~48 km) áthidalása

� Közvetlen rálátás nélkül is mőködik� Többutas terjedés ellen véd

� QoS-támogatás

� xDSL hálózatok alternatívája

� www.wimaxforum.org

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 12: Hálózati és Szolgáltatási Architektúrák

172

Nagyvárosi vezeték nélküli hálózat� WMAN – Wireless Metropolitan Area Network� WiMAX - Worldwide Interoperability for Microwave Access

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 13: Hálózati és Szolgáltatási Architektúrák

173

WMAN piaci igénye� Nagyváros

� Nehezen kábelezhetı területek (hegyvidék)

� Ritkán lakott területek

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 14: Hálózati és Szolgáltatási Architektúrák

174

MAN hozzáférési technológiák adatsebessége

Page 15: Hálózati és Szolgáltatási Architektúrák

175

Mobilitás� Szélessáv bárhol bármikor (ubiquitous)

� Nagy adatsebesség elérése nem rögzített végpontúelérés esetén

� Nomád

� Mobil

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 16: Hálózati és Szolgáltatási Architektúrák

176

Adtasebesség vezeték nélküli technológiákban és spektrális hatékonyság

~ 1,6 bps/Hz2 Mbps1,25 MHzUMTS

~ 1,9 bps/Hz384 kbps200 kHzEDGE

~ 5 bps/Hz70 Mbps *3; 6; 5; 10; 20; 25 MHz

1,75; 3,5; 7; 14; 28 MHz

WiMAX

802.16a

~ 2,7 bps/Hz54 Mbps20 MHzWiFi

802.11a/g

Spektrális

hatékonyság

Maximális

adatsebességCsatorna sávszélessége

*: 14 MHz esetén

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 17: Hálózati és Szolgáltatási Architektúrák

177

Áthidalható távolság növelése

3 km50- 300 mUMTS

20 km500-1000 mGSM

48 km50-300 mWiMAX - 802.16a

300-1000 m20-50 mWiFi - 802.11a/g

Közvetlen rálátássalZárt térben

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 18: Hálózati és Szolgáltatási Architektúrák

178

A WiMAX technológia pozicionálása

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 19: Hálózati és Szolgáltatási Architektúrák

179

WIMAX alkalmazási területek

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 20: Hálózati és Szolgáltatási Architektúrák

180

LOS – NLOS környezet� LOS (Line of Sight)

� Közvetlen rálátás

� Nincs zavaró hatás a Fresnel-zónában

� NLOS (Non Line of Sight)� Nincs közvetlen rálátás

� Reflektált, több jelút

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 21: Hálózati és Szolgáltatási Architektúrák

181

Tipikus cellaméretek és sebességek

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 22: Hálózati és Szolgáltatási Architektúrák

182

802.16 helye a 802.x családban

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 23: Hálózati és Szolgáltatási Architektúrák

183

Szabványok, verziók

IEEE ETSIHarmonizáció

HiperMAN

802.16-2001 (10-66 GHz)

802.16c-2002 (10-66 GHz) 802.16a-2003 (2-

11 GHz)

IEEE 802.16-2004

802.16d

További kiegészítések:

802.16e (mobil)

802.16f,g (management)

802.16h (szabad sáv)

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 24: Hálózati és Szolgáltatási Architektúrák

184

Szabványok, verziók fejlıdése

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 25: Hálózati és Szolgáltatási Architektúrák

185

Verziók� 802.16c

� Ezt az átdolgozást az IEEE 2002. decemberében fogadta el. Az átdolgozás a 10-66 GHz frekvenciasávban történı line-of-sight (LOS) szélessávú vezeték-nélküli kommunikáció rádiós interfészét definiálja. Az adatátviteli sebesség elvi határa 70 Mbit/s, melyen a felhasználóknak osztozniuk kell. Az áthidalható távolság elérheti az 50 km-t is.

� 802.16a� Az IEEE 2003 januárjában fogadta el ezt az átdolgozást. A 2-11 GHz frekvenciatartomány MAC és PHY rétegét definiálja. Az alacsonyabb frekvenciatartomány lehetıvé teszi a non-line-of-sight (NLOS) kommunikációt is. 20 MHz-es csatornánként 100 Mbit/s adatátviteli sebességet tesz lehetıvé. Tipikusan 6-8 km-es cellasugarat használ.

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 26: Hálózati és Szolgáltatási Architektúrák

186

Verziók� 802.16b

� Ez az átdolgozás az 5-6 GHz körüli szabad, engedélyhez nem kötött alkalmazásokat foglalja magában.

� 802.16d� Az IEEE 2004 júniusában fogadta el, és 802.16-2004 néven került publikálásra. Ez az átdolgozás az addigi 802.16 szabványok „összeolvadásából” jött létre, azokat hivatott helyettesíteni. A következı szabványokat helyettesíti hivatalosan: 802.16-2001, 802.16c-2002, és 802.16a-2003. A szakirodalomban általában, ha a 802.16 megjelölést betőnélkül használják, erre a változatra utalnak.

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 27: Hálózati és Szolgáltatási Architektúrák

187

Verziók 802.16e� Míg a 801.16-2004 fix vezeték nélküli hozzáférést támogat, a 802.16e lefedi a fix, a nomád és a teljesen mobil vezeték nélküli hozzáférést.

� Az „e” kiegészítésre általában, mint „mobil-kiegészítés”-re hivatkoznak, ám a mobilitás támogatása csak az egyik jellemzıje a 802.16e-nek.

� A másik, hogy jelentıs kiegészítéseket tartalmaz az OFDMA fizikai réteghez. A 802.16e OFDMA fizikai rétegét Scalable OFDMA-nak (SOFDMA) nevezik. A SOFDMA azonban számos elınnyel bír fix hozzáférés esetén is, ezért ez a draft nem csak felhasználói mobilitás esetén fontos. Továbbábiztonság terén is tartalmaz újításokat.

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 28: Hálózati és Szolgáltatási Architektúrák

188

Verziók� 802.16f

� A 802.16f tervezetét az IEEE 2004 augusztusában fogadta el. A projekt célja a 802.16 szabványhoz kapcsolódó„Management Information Base” (MIB) definiálása, a menedzselhetı objektumok meghatározása, és szabványos menedzsment-módszerek kidolgozása. Ezzel a különbözıgyártók eszközei menedzsment szinten is kompatíbilissáválhatnak.

� 802.16g� Az IEEE 2004 augusztusában fogadta el a kiegészítés tervezetét a menedzsment-síkhoz tartozó eljárásokkal és szolgáltatásokkal kapcsolatban. A projekt célja szabványos menedzsment algoritmusok és menedzsmenthez kapcsolódóinterfészek kidolgozása a 802.16e által kiegészített szabványhoz. A kiegészítés kitér erıforrás-, mobilitás-valamint spektrum-menedzsmentre. A munka a 802.16f-fel szoros együttmőködésben folyik.

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 29: Hálózati és Szolgáltatási Architektúrák

189

802.16 verziók

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 30: Hálózati és Szolgáltatási Architektúrák

190

Frekvenciasávok� Engedélyköteles:

� 2,500-2,690 GHz (MMDS) - csak USA

� 3,410-3,600 GHz (ETSI) – csak EU

� Engedélymentes:� 5,725-5,850 GHz (U-NII)

� Egyelıre katonai célokra használt

� Dinamikus frekvenciaválasztás (DFS) kötelezı

� Automatikus teljesítményszabályozás (TPC) ajánlott

Szolgáltatás minısége

garantálható

QoS nem garantált

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 31: Hálózati és Szolgáltatási Architektúrák

191

Csatornakódolás, linkadaptáció

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 32: Hálózati és Szolgáltatási Architektúrák

192

WiFi – WiMAX összehasonlítás

Forrás: Horváth Zoltán, Alcatel-Lucent Seminar 2008

Page 33: Hálózati és Szolgáltatási Architektúrák

193

2. UMTS, HSPA, LTE, 3GPP,...� UMTS: Universal Mobile Telecommunications System � HSPA: High Speed Packet Access

� High Speed Downlink Packet Access (HSDPA)� High Speed Uplink Packet Access (HSUPA)� Evolved High Speed Packet Access (HSPA+) MIMO-val

� data rates up to 42 Mbit/s in the downlink and 11 Mbit/s in the uplink (per 5MHz carrier)

� multiple input, multiple output (MIMO) � Dual-Cell HSPA (DC-HSPA)� Multi-Carrier HSPA (MC-HSPA)

� LTE (Long Term Evolution) 3rd Generation Partnership Project (3GPP) Release 8 � LTE/SAE� Access:

� E-UTRAN: Evolved UMTS Terrestrial Radio Access Network a.k.a. LTE� Core:

� EPC (Evolved Packet Core) a.k.a. SAE (System Architecture Evolution)

Page 34: Hálózati és Szolgáltatási Architektúrák

194

3GPP Release 8� While 3GPP Release 8 has yet to be ratified as a standard, much of the standard will be

oriented around upgrading UMTS to 4G mobile communications technology, which is essentially a mobile broadband system with enhanced multimedia services built on top.

� The standard includes:� Peak download rates of 326.4 Mbit/s for 4x4 antennas, 172.8 Mbit/s for 2x2 antennas for every 20 MHz

of spectrum. [2]� Peak upload rates of 86.4 Mbit/s for every 20 MHz of spectrum.[2]� 5 different terminal classes have been defined from a voice centric class up to a high end terminal that

supports the peak data rates. All terminal will be able to process 20 MHz bandwidth. � At least 200 active users in every 5 MHz cell. (i.e., 200 active data clients) � Sub-5ms latency for small IP packets � Increased spectrum flexibility, with spectrum slices as small as 1.5 MHz (and as large as 20 MHz)

supported (W-CDMA requires 5 MHz slices, leading to some problems with roll-outs of the technology in countries where 5 MHz is a commonly allocated amount of spectrum, and is frequently already in use with legacy standards such as 2G GSM and cdmaOne.) Limiting sizes to 5 MHz also limited the amount of bandwidth per handset

� Optimal cell size of 5 km, 30 km sizes with reasonable performance, and up to 100 km cell sizes supported with acceptable performance

� Co-existence with legacy standards (users can transparently start a call or transfer of data in an area using an LTE standard, and, should coverage be unavailable, continue the operation without any action on their part using GSM/GPRS or W-CDMA-based UMTS or even 3GPP2 networks such as cdmaOneor CDMA2000)

� Supports MBSFN (Multicast Broadcast Single Frequency Network). This feature can deliver services such as Mobile TV using the LTE infrastructure, and is a competitor for DVB-H-based TV broadcast.

� PU2RC as a practical solution for MU-MIMO has been adopted to use in 3GPP LTE standard. The detailed procedure for the general MU-MIMO operation is handed to the next release, e.g, LTE-Advanced, where further discussions will be held.

� A large amount of the work is aimed at simplifying the architecture of the system, as it transits from the existing UMTS circuit + packet switching combined network, to an all-IP flat architecture system.

Page 35: Hálózati és Szolgáltatási Architektúrák

195

Today’s mobile broadband –HSPA coverage

>185 commercial networks in more than 80 countries

Source: GSA – Global mobile Suppliers Association: March 7, 2008

Source: György Miklós, Ericsson, 2009

Page 36: Hálózati és Szolgáltatási Architektúrák

196

Mobile broadband set to overtake fixed ~ 2010

Mobile Broadband includes: CDMA2000 EV-DO, HSPA, LTE, Mobile WiMAX, OtherFixed broadband includes: DSL, FTTx, Cable modem, Enterprise leased lines and Wireless Broadband

Broadband subscription forecast

Source: Ovum RHK, Strategy Analytics & Internal Ericsson

0

300

600

900

1200

1500

1800

2100

2005 2006 2007 2008 2009 2010 2011 2012

Subscriptions (M

illions)

Mobile

Fixed

HSPA 70%

Source: György Miklós, Ericsson, 2009

Page 37: Hálózati és Szolgáltatási Architektúrák

197

Next step: SAE/LTE

1.4 MHz 20 MHz

Reduced Cost- Flat architecture – fewer nodes- Packet Switched only- Self configuration

Flexible use of spectrum- Flexible bandwidth- FDD & TDD capability

Excellent user performance- Higher data rates:

100Mbps downlink, 60Mbps uplink- Lower latency

~10ms RTT- Well integrated with 2G/3G

� LTE: Long Term Evolution (radio access)

� EPS: Evolved Packet System (full 3GPP system incl. LTE)� Also SAE/LTE (System Architecture Evolution)

Source: György Miklós, Ericsson, 2009

Page 38: Hálózati és Szolgáltatási Architektúrák

198

Core Network

What is EPS?

�EPS (Evolved Packet System) brings into 3GPP Rel-8:� LTE/E-UTRAN – new generation of RAN, packet domain only

� Non-3GPP access with mobility support

� EPC (Evolved Packet Core) – optimized core network

Non-3GPP

CS networks

”IP networks”

3G

2G

Circuit Core

IMS domain

EPCLTE

User mgmt

Source: György Miklós, Ericsson, 2009

Page 39: Hálózati és Szolgáltatási Architektúrák

199

Architecture for LTEFunctional changes compared to the current UMTS Architecture

GGSN

SGSN

RNC

Node B eNodeB

RNC functions moved to eNodeB.• No central radio controller node• OFDM radio, no soft handover• Operator demand to simplify

Mobility Management EntityMME(not user plane functions)

Control plane/user plane split for better scalability• MME control plane only• Typically centralized and pooled

PGW

SGW

PDN GateWay

Serving GateWay

PGW/SGW • Deployed according to traffic demand• Only 2 user plane nodes (non-roaming case)

Source: György Miklós, Ericsson, 2009

Gateway GPRS Support Node (GGSN)

Serving GPRS Support Node (SGSN)

Radio Network Controller (RNC)

Public Data Network (PDN)

Page 40: Hálózati és Szolgáltatási Architektúrák

200

Traffic Lab in SAE (EPC) standardization

2006 2007 20082004 2005

Stage 1

Stage 2

Stage 3

AIPN

TR 23.882

TS 22.258

AIPN TR 22.978

TS 22.278

TS 23.401

TS 23.402

TR 24.801

TR 29.803

TR 29.804

Technical studies

Specifications

Approval (>80% complete)

Final specifications

Functional freeze

Traffic Lab involvement (~70 contributions)

3GPP delegate from Traffic Lab (20 meetings)

Source: György Miklós, Ericsson, 2009

Page 41: Hálózati és Szolgáltatási Architektúrák

201

Competing Radio Technologies

HSPAWCDMA eHSPAGSM

LTE

CDMARev C

EV-DOCDMA

WiMAX

Source: György Miklós, Ericsson, 2009

Page 42: Hálózati és Szolgáltatási Architektúrák

202

Operator 4G status� Verizon

� Announce to select the LTE as 4G technology� Deployment in 2009, commercial in 2010. � Ericsson announced as main vendor

� TeliaSonera� Commercial launch in 2010 in Stockholm area� Ericsson announced as main vendor

� DoCoMo� One of the initiators of LTE� Aggressively working on LTE deployment

� T-Mobile� Focus on LTE in Europe� Key driving operator of the LTE/SAE trial

� Vodafone� Member of NGMN, supporter of LTE/SAE but with less agressive timplan

� NGMN� Founder members are: T-mobile Int., Vodafone Group, KPN, Orange, Sprint,

China Mobile, and NTT DoCoMo� Recommendations for cost-effective wireless broadband services

Source: György Miklós, Ericsson, 2009

Page 43: Hálózati és Szolgáltatási Architektúrák

203

Ericsson LTE productsEnd-to-end solution

Mobile platforms for terminals

Base stations(Dual and triple mode for 2G/3G/LTE)

SGSN-MME(Dual and triple modefor 2G/3G/LTE)

GGSN/PDN GW

Source: György Miklós, Ericsson, 2009

Page 44: Hálózati és Szolgáltatási Architektúrák

204

3. Konvergencia� Omnes viae Romam ducunt

(latin)

� Minden út Rómába vezet (magyar)

- A távközlés, informatika és média technológiai bázisának közeledése egymáshoz

- Konvergens hálózati megoldások

- Konvergens szolgáltatás

- A fix és mobil szolgáltatások közeledése egymáshoz (FMC)

- Konvergencia a mobil technológiák között

Page 45: Hálózati és Szolgáltatási Architektúrák

205

4. Ad-hoc és szenzor hálózatok

� 4.a Ad-Hoc

� 4.b Sensor

Page 46: Hálózati és Szolgáltatási Architektúrák

206

4.a: Ad-Hoc Networks� MANET: Mobile Ad hoc NETworks� Össze-vissza mozgó állomások (dynamic topology)� Mégis megbízható hálózatot alkossanak!� Katonai, „4G” alkalmazások

� IETF: http://www.ietf.org/html.charters/manet-charter.html� 9 RFCs, 6 Internet-Drafts� Neighbourhood discovery� Routing

� Ad Hoc On Demand Distance Vector (AODV) Routing (RFC 3561)� Optimized Link State Routing Protocol (RFC 3626)� The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4 (RFC 4728)

� Etc

� Delay-tolerant networking (DTN)

� disruption-tolerant networking

Page 47: Hálózati és Szolgáltatási Architektúrák

207

4.b Sensor Networks� http://w3.tmit.bme.hu/~vidacs/education/vimm9082/vimm

9082_hun.htm

� WSN: Wireless Sensor Network

� Requirements and Characteristics:� Tipikusan nagyon kis átvitt adatmennyiség.

� néhány bit/nap

� Inkább kisebb átviteli sebesség és nagyobb késleltetés az� alacsonyabb árért és

� hoszabb élettartamért cserébe.� Pl: Egy (vagy több) év üzemid: 750 mAh AAA elemmel

� Univerzális (globális), licensz nélküli üzemeltethetıség.� Nagyban limitálja a lehetséges frekvenciasávot és modulációt

Page 48: Hálózati és Szolgáltatási Architektúrák

208

http://arri.uta.edu/acs/networks/WirelessSensorNetChap04.pdf

Page 49: Hálózati és Szolgáltatási Architektúrák

209

http://arri.uta.edu/acs/networks/WirelessSensorNetChap04.pdf

Page 50: Hálózati és Szolgáltatási Architektúrák

210

Power Supply

Áramellátás: • MEMS rezgései• Napelem• vegyi:

• Szárazelem• Akku• Hidrogén cella

• stb.

Page 51: Hálózati és Szolgáltatási Architektúrák

211

Physical Layer� Szenzorhálózatokban a kommunikáció történhet

elektromágneses (RF, IR) vagy akkusztikus úton.� Létezı rádiófrekvenciás (RF) megoldások:

� Bluetooth� IEEE 802.11b

� Speciális WSN megoldások� PicoRadio� WINS� µAMPS

� Ideális sáv:� 2.4 GHz ISM sáv� kompromisszum az ár és energiafogyasztás, valamint� a méret és antenna-hatékonyság között.� Napi 4 perc mőködés ébredési idıvel együtt� ~50µW fogyasztás

Page 52: Hálózati és Szolgáltatási Architektúrák

212

How does it work?� Sensors

� Mér, ébred, elküld

� MD: Mediation Device� Győjt, továbbít

� Esetleg: sensorok bejárási sőrősége, sebessége, útvonala

www.purelink.ca

http://faculty.cua.edu/elsharkawy/WSN-MNG.htm

www.purelink.ca

http://faculty.cua.edu/elsharkawy/WSN-MNG.htm

Page 53: Hálózati és Szolgáltatási Architektúrák

213

What can it be used for?

� Állatok, jármővek figyelése, idıjárás, riasztás, elırejelzés, stb.

Page 54: Hálózati és Szolgáltatási Architektúrák

214

5.a Ambient/pervasive/ubiquitous/... hálózati környezet

� Ambient Networks is a network integration solution to the modern-day problems of switching from one network to the other in order to keep in contact with the outside world. This project aims to develop a network software-driven infrastructure that will run on top of all current or future network physical infrastructures to provide a way for devices to connect to each other, and through each other to the outside world.

� http://en.wikipedia.org/wiki/Ambient_network

� http://www.ambient-networks.org

Page 55: Hálózati és Szolgáltatási Architektúrák

215

Ambient Network Example: http://en.wikipedia.org/wiki/Ambient_network

� Alice has a PAN, a Personal Area Network on her body: she has a Bluetooth enabled PDA, mobile phone and laptop that she is carrying, and are all currently turned on, and forming a network. Her laptop also has the ability to connect using an available WLAN, and her mobile phone has the ability to connect through GPRS, though GPRS is slower and much more costly for Alice to use. She is nowon the move, and her laptop is downloading her emails using the GPRS connection on the mobile:� Laptop -> (Bluetooth) -> Mobile -> (GPRS) -> Mobile phone network

� While walking, she passes into an area covered by a free WLAN hotspot: Her PAN now immediately starts to initiate a connection with the hotspot. This is called "merging" of the networks (that of the hotspot and that of her PAN). Once this merging is complete, thedownloading of her email continues totally unaffected, but instead of using the expensive and slow GPRS connection, it is now using the newly established WLAN connection. If she now wants to browse the web with her PDA, the PDA will also use the WLAN connection of the laptop:� PDA-> (bluetooth) -> Laptop-> (WLAN) -> Hotspot

Page 56: Hálózati és Szolgáltatási Architektúrák

216

“Ambient Network” - Another definition� http://www.ercim.org/publication/Ercim_News/enw48/jacquet.html

� At home or outdoors, wireless networks are different. Mobile or ad hoc, Hiperlan or Bluetooth communications must be merged into an ambient network, transparent to the user.

� “ambient network” refers to the presence of a digital environment that is sensitive, adaptive, and responsive to the presence of people. An ambient network can thus be characterised by the following basic elements: ubiquity, transparency, and intelligence. For an ambient network to succeed it must address many challenges, and as a consequence, the relevant research covers several areas: � hardware must become adaptable, scalable and stream-efficient to

provide computational resources that are both energy-efficient and powerful for a variety of computational tasks

� software and protocols must become adaptable to provide flexibility and spontaneity, eg, by supporting smooth vertical hand-offs among communication technologies. Services and software objects must be named by intent, for example, ‘the nearest printer’, rather than by address.

Page 57: Hálózati és Szolgáltatási Architektúrák

217

Limits (Korlátok)� http://www.ercim.org/publication/Ercim_News/enw48/jacque

t.html� capacity is inversely proportional to range

� For example, the 100 kbps of a single GSM frequency can cover upto 10km, OK for a call for dinner. But the 10 Mbps needed for video transmission (IEEE802.11, Hiperlan) is limited to 100m.

� The causes of the limitation have long been known. In 1948 Shannon proved that the number of bits per Hertz was bounded by the logarithm of the ratio of signal to noise. This naturally limits the capacity of low-power portable devices compared with more highly powered versions. The very limitation of wireless capacity lies in the digital signal processing (DSP) ability, ie, the algorithms used to extract the data from the signal. Since surrounding buildings, walls and other obstacles significantly distort this signal, the DSP becomes crucial at high throughput when close to Shannon limit. The stronger the DSP, the more power it consumes.

� http://www.ambient-networks.org/phase1web/docs/Ambient_Networks%20_A_New_Concept_for_Mobile_Networking.pdf

Page 58: Hálózati és Szolgáltatási Architektúrák

218

5.b Pervasive Networks� dict.sztaki.hu: pervasive - átható� http://en.wikipedia.org/wiki/Pervasive_network

� Pervasive Networking(http://www.research.ibm.com/compsci/communications/projects/pervasive/index.html)

� Pervasive computing aims in increasing people's productivity and simplifing their everyday chores at work and at home (and even in between), anywhere and anytime, outdoors and indoors, by availing, whenever needed, the desired information to one's personal digital device.

� Our research group is focusing on the key communication-related enablers that will permit the pervasive computing objectives to materialize. These enablers span a wide range of topics including link layer and network layer issues, service discovery and creation, user interfaces, hidden and unconscious computing, etc. In particular, our research is centered (not exclusively nor in any particular order) around the following areas: � link: low cost, wireless link technologies, primarily Bluetooth, an open industry

specification for short range RF-based communications, to the development of which our group has heavily contributed

� network: networking-in-the-small: developing self-contained communication modules allowing a number of diverse personal computing devices to become members of spontaneously created, self-organized, pervasive computing communities

� user experience: develop technologies that would allow users to securely interact focusing only on the services they would like to exploit rather than how to find them, connect them, and access them.

Page 59: Hálózati és Szolgáltatási Architektúrák

219

5.c Ubiquitous networks

� dict.sztaki.hu: ubiquitous mindenütt jelenlevı� Nomina stultorum ubique locorum. (Latin közmondás: „az ostobák nevei mindenütt megtalálhatók”.)

� http://en.wikipedia.org/wiki/Pervasive_network� http://en.wikipedia.org/wiki/Ubiquitous� "Omnipresence" is the property of being present everywhere. According to eastern theism, God is present everywhere. Divine omnipresence is thus one of the divine attributes, although in western theism it has attracted less philosophical attention than such attributes as omnipotence, omniscience, or being eternal.

Page 60: Hálózati és Szolgáltatási Architektúrák

220

http://encyclopedia2.thefreedictionary.com/Pervasive+network

� ubiquitous computing - Computers everywhere. Making many computers available throughout the physical environment, while making them effectively invisible to the user.

� Ubiquitous computing is held by some to be the Third Wave of computing. � The First Wave was many people per computer,

� the Second Wave was one person per computer.

� The Third Wave will be many computers per person.

� Three key technical issues are:� power consumption

� user interface and

� wireless connectivity.

� Virtualisation?

Page 61: Hálózati és Szolgáltatási Architektúrák

221

Context Aware Networks

� http://en.wikipedia.org/wiki/Context_aware_network� http://en.wikipedia.org/wiki/Semantic_Web

� http://en.wikipedia.org/wiki/Grid_network

� http://en.wikipedia.org/wiki/Pervasive_network Pervasive= Ubiquitous

� http://en.wikipedia.org/wiki/Autonomic_network

� http://en.wikipedia.org/wiki/Application_aware_network

� http://en.wikipedia.org/wiki/Service_oriented_network

Page 62: Hálózati és Szolgáltatási Architektúrák

222

6. Virtualisation/Cloud/Utility/Grid Computing

� Distributed resources

� Hidden from the user

� As local own resources

� Beter utilisation

� Lower costs

a. Virtualisation

b. Cloud

c. Utility

d. Grid

Page 63: Hálózati és Szolgáltatási Architektúrák

223

6.a: http://en.wikipedia.org/wiki/Virtualization� In computing, virtualization is a broad term that refers to the abstraction of

computer resources.

� Resource virtualization, the virtualization of specific system resources, such as storage volumes, name spaces, and network resources

� Encapsulation, the hiding of resource complexity by the creation of a simplified interface

� Virtual memory, which allows uniform, contiguous addressing of physically separate and non-contiguous memory and disk areas

� Storage virtualization, the process of completely abstracting logical storage from physical storage � RAID - redundant array of independent disks � Disk partitioning, is the splitting of a single resource (usually large), such as disk

space or network bandwidth, into a number of smaller, more easily utilized resources of the same type

� Logical volume management, which combines many disks into one large pool and then divides it into logical disks.

� Network virtualization, creation of a virtualized network addressing space within or across network subnets

� Channel bonding, the use multiple links combined to work as though they offered a single, higher-bandwidth link

� I/O virtualization e.g. vNICs, vHBAs� Memory virtualization Aggregates RAM resources from networked systems

into virtualized memory pool

Page 64: Hálózati és Szolgáltatási Architektúrák

224

6.a: Generalisation of Virtualisation

� GERV: Generalised End-to-end Resource Virtualisation

� Services: Peer-to-Peer AND GRID-like

� Virtualised & Distributed� Storage

� Processing Capability

� Services

Gervasis or Echidna

Page 65: Hálózati és Szolgáltatási Architektúrák

225

Virtualisation - relations

Physical

Resources:

transmission

capacities, costs,

delays, processing,

storage, cache...

Unified Virtualised

Resources:

transmission

capacities, costs,

delays, processing,

storage, cache...

Services:

Peer-to-peer, GRID,

Streaming MediaSP: Service Providers*

VNRO: Virtual Network and Resource Operators* **

VNRP: Virtual Network and Resource Providers**

End UsersServices:

Peer-to-peer, GRID,

Streaming Media

Unified Virtualised

Resources:

transmission

capacities, costs,

delays, processing,

storage, cache...

Physical

Resources:

transmission

capacities, costs,

delays, processing,

storage, cache...

Physical

Resources:

transmission

capacities, costs,

delays, processing,

storage, cache...

payment

provisioning

Lendingunusedresourcesto reduce thefinal payment

Unified Virtualised

Resources:

transmission

capacities, costs,

delays, processing,

storage, cache...

Services:

Peer-to-peer, GRID,

Streaming Media

* In some cases SP and VNRO can be the same company

** In some cases SP and VNRO can be the same company

Ctrl and Support

Management and Ctrl

Page 66: Hálózati és Szolgáltatási Architektúrák

226

Service bService b

Service Provider CService Provider C

Network Provider I Network Provider II

Service a

Service Provider A

Service b

Service Provider B

user1 user3 user4user2 user5 user6

Identity Management

Competing resources to be shared

Peer-to-Peer

GRID

VoIP

VPN/VON

Ethernet

GMPLS/ASTN

IP

SDH/SONET

OTN

Optimisation

Resource Trading

ResourceSharing

OPEX

CAPEX

OPEX

CAPEX

Game Theory

Choosing the Network and Adaptive Mapping of Resources

End-User’s view

Service provider’s view

Network provider’s view

Choosing the Service and the Service Provider

Security

Resilience

Control and Management

Mobility

Control and Management

Virtualisation for STREP VETERAN

Page 67: Hálózati és Szolgáltatási Architektúrák

227

Centralised and Distributed Services

Page 68: Hálózati és Szolgáltatási Architektúrák

228

6.b: Cloud Computing� en.wikipedia.org/wiki/Cloud_computing

� Cloud computing is a style of computing in which dynamically scalable and often virtualizedresources are provided as a service over the Internet.[1][2][3][4][not in citation given] Users need not have knowledge of, expertise in, or control over the technology infrastructure "in the cloud" that supports them.

� Storage (datacenters)

� Computing resources

http://en.wikipedia.org/wiki/File:Cloud_computing.svg

Page 69: Hálózati és Szolgáltatási Architektúrák

229

Roles in a Cloud� Provider (cloud computing provider or cloud computing service

provider)� User (Cloud computing users)� Vendor (Cloud computing vendors)

� Private or Public Cloud?

� Microsoft's Windows Azure Services Platform� Amazon Elastic Compute Cloud (Amazon EC2) is a web service that

provides resizable compute capacity in the cloud. � Yahoo! Pig, HAdoop;

� July 29, 2008 - HP, Intel and Yahoo! Create Global Cloud Computing Research Test Bed

� Google: Google-Apple Cloud Computer� IBM: IBM Blue Cloud (www-

03.ibm.com/press/us/en/pressrelease/26167.wss)� ...

� Labor vagy project munka?

Page 70: Hálózati és Szolgáltatási Architektúrák

230

6.c: Utility computing

� http://en.wikipedia.org/wiki/Utility_computing

� Utility computing is the packaging of computing resources, such as computation and storage, as a metered service similar to a traditional public utility (such as electricity, water, natural gas, or telephone network). This system has the advantage of a low or no initial cost to acquire hardware; instead, computational resources are essentially rented. Customers with very large computations or a sudden peak in demand can also avoid the delays that would result from physically acquiring and assembling a large number of computers.

Page 71: Hálózati és Szolgáltatási Architektúrák

231

6.d: GRID� en.wikipedia.org/wiki/Grid_computing� Grid computing (or the use of computational grids) is

the application of several computers to a single problem at the same time — usually to a scientific or technical problem that requires a great number of computer processing cycles or access to large amounts of data.

� GRID or Supercomputer?� Grid middleware is a specific software product, which

enables the sharing of heterogeneous resources, and virtual organizations. It is installed and integrated into the existing infrastructure of the involved company or companies, and provides a special layer placed among the heterogeneous infrastructure and the specific user applications. Major Grid middlewares are Globus Toolkit, gLite, and UNICORE.