High Performance, Low Cost PIN, APD Receivers in Fiber ... Hui Nie.pdf · High Performance, Low...

download High Performance, Low Cost PIN, APD Receivers in Fiber ... Hui Nie.pdf · High Performance, Low Cost PIN, APD Receivers in Fiber Optical Networks and FTTx Applications Hui Nie 4/23

If you can't read please download the document

Transcript of High Performance, Low Cost PIN, APD Receivers in Fiber ... Hui Nie.pdf · High Performance, Low...

  • WOCC-2005

    High Performance, Low Cost PIN, APD Receivers in Fiber Optical Networks and FTTx Applications

    Hui Nie4/23/2005

  • WOCC-2005

    Receiver Applications

    Long-Haul Backbone

    MetropolitanBackbone

    Metropolitan Access

    EnterpriseAccess

    Back Bone Core Nodes LR and VLR Interface Cards

    Metro Transport Line Cards

    Metro Access Line

    Cards (ADMs)

    Transceivers

    Transponders

    OXCs

    FTTx Applications/Demands also heating up!

  • WOCC-2005

    Photodetectors and Optical Receivers

    IntroductionPhotodetectors Technologies

    OverviewsPIN PhotodiodesAvalanche Photodiodes (APDs)APD Design Trade-offs

    Photoreceivers TechnologiesOverviewsHigh Performance MSA Compliant Receivers & ROSAs

    PIN, APD ROSA in FTTx Applications

  • WOCC-2005

    Photodiodes Technologies

    Overview

    PINs

    APDs

    Etch-Regrowth Planar SACM APDs

    Buried-Mesa APDs w/ Regrowth Guard RingResonant-Cavity APD w/ Thin Multiplication Layer

    Wafer-Fused SHIP APD

    InGaAlAs/InAlAs Superlattice APDWaveguide APD

    Transit Time Bandwidth

    RC Time Bandwidth

    Surface-Illuminated PINsWaveguide PINsTraveling-Wave PINs

  • WOCC-2005

    Photoreceiver Sensitivities v.s. Bit-Rate

    Bit Rate (Gbit/s)0.1 1 2.5 10 20 40

    Sens

    itivi

    ty @

    BER

    =10-

    9 (d

    Bm

    )

    -50

    -40

    -30

    -20

    -10 PIN OEICPIN HybridEDFA PreampAPD HybridQuantum Limit

  • WOCC-2005

    -50

    -40

    -30

    -20

    -10

    0

    0 20 40 60 80 100 120 140

    Transmission Length (km)

    Rec

    eive

    d Po

    wer

    (dB

    m)

    1.3m 1.5m

    0.25dB/km

    0.3 dB/km

    0.4 dB/km0.6 dB/km EDFA+PIN

    APD+Amp. (+EDC)

    PIN+Amp.

    10 Gb/s Receivers Sys.

    Dispersionlimit

    Receiver Systems & Applications (10Gb/s Systems)

  • WOCC-2005

    Industry Standard Top-illuminated Planar PIN

    InP Substrate n++InP Buffer layer n -

    InGaAs Absorption

    Cap Layer Zn Diffused p+

    p+ Metal Contact

    Bonding pad

    SiNx

    AR coating

    Dielectric coating

  • WOCC-2005

    High-Speed Surface-illuminated Mesa PINs

    Light Input

    SiNx Coating

    InP:Fe Substrate

    n InP

    p InP

    i InGaAsPMGI

    n-Metal

    Metal ReflectorAlloyed p-Metal

    Air-BridgedMetal

    InGaAs/InP Graded Double Heterostructure p-i-n Superlattice Interface Grading Small Mesa Size

  • WOCC-2005

    Waveguide Photodetectors (WGPDs)

    Side-IlluminationOptimize Bandwidth and QE IndependentlyMultimode Ridge WaveguideMicro-Lenses Fiber Coupling, Small Spot SizeExternal QE>70%Bandwidth>100GHCan be integrated OEIC Photoreceiver

    p+ InPp+ InGaAsPi InGaAs -0.2 mn+ InGaAsPn+ InPpolyimide

  • WOCC-2005

    Traveling-Wave Photodetectors (TWPDs)

    Electrical Waveguide Concomitant with Optical WaveguideMatch Between Electrical Wave and Optical Wave (50)Eliminate RC Time Tradeoff Higher Saturation PowerBandwidth=172 GHz, QE~40%Small Geometry w=1 m

    1 m

  • WOCC-2005

    Multiplication Process Enhance Performance

    Multiplication region

    Distance

    Tim

    e

    p+ n+i

    +

    Injected electron

    Electric field

    Secondaryhole

    Primary andSecondary electron

    x

    E(k)

    +

    +

    Gain process will slow down transit-time!

    Figure of Merit: Gain-Bandwidth Product

    High Electrical Field near avalanche breakdown!

  • WOCC-2005

    APD Photocurrent & Gain vs. Temperature

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    0 10 20 30 40 50 60 70Reverse Voltage, volt

    Curr

    ent,

    A

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    Gai

    n

    n40C n20C 0C 25C 50C 85C M_40C M_20C M0C M25C M50C M85C

  • WOCC-2005

    Receiver Sensitivity vs. APD Gain, TIA noise

    -36

    -34

    -32

    -30

    -28

    -26

    -24

    1 5 9 13 17 21 25 29APD Gain

    Rec

    eive

    r Sen

    sitiv

    ty (d

    Bm

    )

    Sen(120nA)Sen(250nA)Sen(350nA)Optimum-M

    Locus of Optimum APD gain

    APD Noise < TIA Noise APD Noise > TIA Noise

    How does APD Enhance Rx Sensitivity?

  • WOCC-2005

    Planar Separate Absorption, Multiplication (SAM) APD Structure

    n+ InP Buffer

    n- InGaAs abs. layer

    n- InGaAsP layer

    n+ InP Sub.

    n+ InP Multi.

    n- InP cap layer

    AR coating

    n-metal

    p-metal

    SiNx layer

    P+ Diffusion

    Guard Ring

  • WOCC-2005

    Planar SACM/SACGM APD

    InGaAs/InP Two-step MOCVDPlanar Structure Etch and Regrowth Charge and Multiplication RegionDiffusion controlled Multiplication Layer (single Diffusion or Well Etching-Diffusion) Xd ~ 0.2-0.4 mGB product = 122 GHzNoise Ratio k~0.45No Implant

    n-Metal AR SiO2

    p+ InP

    n- InP Multiplicationn InP ChargeGrading Layer

    n InGaAs

    n- InGaAs Absorption

    n- InP Buffern+ InP Substrate

    Xd

    Xj

    tInGaAs

    tmesatcharge

    tBuffer

  • WOCC-2005

    Resonant-Cavity InGaAs/InAlAS SACM APD

    Resonant-Cavity StructureHigh QE ~ 75%Mesa IsolatedSACM ConfigurationThin InAlAs Multiplication Region (200 nm)Lower Noise k ~ 0.18Bandwidth>20 GHzHigh Gain-Bandwidth Product

    Polyimide

    n+ InAlAs/InGaAs DBR

    h

    Probe Metal

    n+ InP Buffer Layer

    Semi-Insulating InP Substrate

    Metal RingContact

    Dielectric DBR

    InGaAs Cap Ring Contact

    APD Active Region

    n+ InAlAs

    200 nm InAlAs Multiplication

    60 nm InGaAs Abs. Layer

    p+ InAlAs

    150 nm p-InAlAs Charge

    50 nm InAlAs Spacer

    50 nm InAlAs Spacer

  • WOCC-2005

    Wafer-Fused SHIP APDSilicon HeterointerfacePhotodetector (SHIP)

    Wafer-Fused SiMultiplication Region

    Mesa Isolated (20-30 m)

    Backside Illumination

    Bandwidth= 13 GHz

    GainxBandwidth= 315 GHz

    Reliability Issue

    Au/Zn Contact

    PMGI

    p+ InGaAsn- InGaAs

    p-type Implant

    Bonding Interface

    n-type Si Substrate

  • WOCC-2005

    Buried Mesa APD with Regrown Guard-Ring

    Mesa Etch and Regrowth Isolation Layer (Patented)No Diffused Junctions and Multiple Implanted GRsRegrowth p-InP Guard Ring + Implanted Guard RingBandwidth< 4GHz for OC-48 Applications (2.5 GHz)GB Product=37 GHzSensitivity= -33 dBmExcess Noise Factor=0.4

    P+-InP

    n-InP Mulutplication

    InGaAsP

    i-InGaAs

    n-InP

    Regrownp-InP

    Proton ImplantIsolation

  • WOCC-2005

    Planar InGaAlAs/InAlAs MQW APD

    Ti Implanted Guard-RingAR Coating

    p-contact

    Sn Bump

    n+ InAlAs Cap

    InGaAlAs/InAlAsSuperlattice

    p+ InPField Buffer

    P- InGaAsp+ InPSI-InP Substrate

    Zn DiffusedRegion

    SI InP SubstrateInverted Mesa JunctionTi Implanted Guard-Ring to Decrease p-concentration of Field-Buffer Layer Dark Current Increase Due to Implantation SiNX Passivationp+ Zn Diffusion IsolationContact Metal DepositionFlip-Chip BondingCd=0.15pF, Cp=0.06pFRL=25 to achieve Bandwidth=15.2GHzId=0.36A@ M=10GB Product = 120GHz

  • WOCC-2005

    Waveguide APD

    Multimode Waveguide StructureMesa Etch and SiNx PassivationInAlAs/InAlGaAs MWQ Multiplication Layer ~0.25 mInGaAs Abs. Layer ~ 0.3 mTop and Bottom InAlGaAs Cladding Layer ~ 0.8 mBandwidth= 20 GHzGB Product= 160 GHzLarge Dark Current

    1 A @ 90% VBEdge Coupled w/ Lensed Fiber (3 m Spot Size)

    20 m

    p+ InAlGaAs

    n-MetalInAlGaAs

    InAlAs/InAlGaAs MQW

    n+ InAlGaAs

    InP Substrate

    SiNx

    6 mp-Metal

  • WOCC-2005

    Real-World APD Device Specifications

    Quantum Efficiency, ResponsivityGain characteristicsBandwidth @ M=10,12 when PIN is low (Sensitivity)Bandwidth @ M< 4 when PIN is high (Overload)Primary Dark CurrentExcess Noise FactorCapacitanceBreakdown Voltage

  • WOCC-2005

    Performance of APD comes with price!

    Trade-off 1: Bandwidth~ Responsivity InGaAs Absorption Layer Thickness

    Trade-off 2: RC Bandwidth ~ Transit Time BandwidthInGaAs, InP layer thicknessDevice geometry

    Trade-off 3: BW@ M~10 ~ BW@ M~3Multiplication layer dopingDiffusion junction depth control (Ehet control)

    Trade-off 4: Breakdown Voltage ~ Thickness, DopingInGaAs, InP layer thicknessMultiplication layer doping

  • WOCC-2005

    APD Design- Balance between Trade-offsAPD Bandwidth vs. Gain

    1

    10

    1 10 100

    Gain

    3 dB

    Ban

    dwid

    th (G

    Hz)

  • WOCC-2005

    TriQuint APD Chips

    Over than 15 years of design and volume manufacturing APDs used

    in commercial communication systems (AT&T Bell Labs -> Lucent ->

    Agere -> TriQuint -> CyOptics?)

    High quality, high yield and low cost MOCVD epi

    Reliability proven with > 5000 hrs aging and >15 years of field use

    High-speed automated wafer level electrical and optical probing

    systems

    Receiver performance demonstrated with high performance APD

    chips

  • WOCC-2005

    Failure Rates vs. Activation Energy

    Failure Rate vs. Ea

    0.1

    1

    10

    100

    1000

    0.4 0.5 0.6 0.7 0.8 0.9 1Activation Energy, eV

    Proj

    ecte

    d Fa

    ilure

    Rat

    e,

    FIT

    MOCVD APD

    With the estimated Ea of 0.96 eV, these devices have very small FIT (< 1 FIT).

    With >5000 hrsaccelerated aging test, activation energy is extracted.

  • WOCC-2005

    TriQuint Receiver Product Family

    Traditional butterfly package receiver

    MSA small-form-factor surface-mounted Receiver

    Ceramic packaged ROSA

    TO-can based ROSA

  • WOCC-2005

    APD & PIN MSA Receivers

    Key AdvantagesMSA Small Form Factor

    Surface Mount

    High Sensitivity & Overload

    R195A typical 26 dBm, -3dBm

    R195P typical 19 dBm, +1 dBm

    Small Group Delay Variations

    Good Linearity

    700mV Output Voltage Swing

    Excellent OSNR Performance

  • WOCC-2005

    MSA APD Receivers

    -26 dBm, M=10 9.953 Gb/s, 1550 nm, 2E31 1 PRBS

    Eye

    -3 dBm, M=3

    BER

    TriQuint R195A BER vs. Temperature @ 9.95Gb/s

    0.08 6

    0.1 8 6

    0.2 8 6

    0.3 8 6

    0.4 8 6

    0.5 8 6

    -32 -30 -28 -26 -24 -22 -20Power (dBm)

    BER

    T= 0 C

    T= 25 C

    T= 50 C

    T= 70 C

    10-12

    10-4

    10-8

    10-6

    10-10

    < 1.0 dB Penalty from 25C to 70C

  • WOCC-2005

    10G APD Receiver OSNR Performance

    Tx

    9.95328 Gb/sM

    Attn.EDFA

    Attn.M

    R195ARxBERT

    OSABPF

    LM(Vth Adjust)

    R195A BER at 18dBm OSNR (Vth optimized)

    0 .0 8 6

    0 .1 8 6

    0 .2 8 6

    0 .3 8 6

    0 .4 8 6

    0 .5 8 6

    -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

    Power (dBm)

    BER

    unit 1, opt. -20dBmunit 2, opt. -20dBmunit 3, opt. -20dBmunit 4, opt. -20dBmunit 5, opt. -20dBm

    10-12

    10-4

    10-8

    10-6

    10-10

  • WOCC-2005

    BER vs. Vpd over Temperature

    * For each temperature the optical power was adjusted to obtain a BER in the range of 4e-11 to 9e-11.

    TriQuint R195A BER vs. Vapd, 9.95Gb/s, T=0, 25, 50, 70 OC

    0.08 6

    0.1 8 6

    0.2 8 6

    0.3 8 6

    0.4 8 6

    0.5 8 6

    20 21 22 23 24 25 26 27 28 29 30 31 32Vapd (V)

    BER

    T= 0 C

    T= 25 C

    T= 50 C

    T= 70 C10-12

    10-4

    10-8

    10-6

    10-10

  • WOCC-2005

    Next Generation MSA Receiver & ROSA

    -28 dBm, M=9 9.953 Gb/s, 1550 nm, 2E31 1 PRBS

    Eye

    +1 dBm, M=3

    BER

    -32 -30 -28 -26 -24 -22 -20

    Power (dBm)

    BER

    10-12

    10-4

    10-8

    10-6

    10-10

  • 7/4/2005 32WOCC-2005

    Fiber Transmission Experiments

    100 km

    (a)

    (b)

    0 km

    Eye diagrams back-to-back, and after 100 km transmission. (a) Optical. (b) Electrical.

  • 7/4/2005 33WOCC-2005

    Path Penalty after 100 km Fiber

    Receiver Sensitivity vs. APD Vpd (B/B, 100Km)

    -30-29.5

    -29-28.5

    -28-27.5

    -27-26.5

    -26-25.5

    -25-24.5

    -24

    24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 30.5 31 31.5 32

    APD Bias (Volt)

    Rec

    eive

    r Sen

    sitiv

    ty (d

    Bm

    )

    00.2

    0.40.60.8

    11.21.4

    1.61.82

    2.22.4

    Path

    Pen

    alty

    100

    km F

    iber

    (dB

    )

    B2B

    100Km

  • WOCC-2005

    PIN & APD ROSAs

    Low cost, high performanceXMD compatible3.3V TIADetector on carrier

    TIATIA

    APD flip-chip On carrier

    APD flip-chip On carrier

  • WOCC-2005

    100k

    1M

    10M

    100M

    1G

    622MB-PON

    G/GE-PON

    ADSL

    2000 20011998

    Speed(bit/s)

    final

    final

    IEEE802.3

    FSAN

    FSAN,ITU-T

    2003

    155MB-PON

    100M-MC

    GbE-MC

    10M-MC

    SS)SS)

    STMPON

    Under d

    evelop

    ment

    Com

    mer

    cial

    prod

    uct

    G-PONGigabit-PONFSANGE-PON:GigaEthernet-PONIEEE802.3

    FSAN

    Advancement in AccessAdvancement in Access

    Under r

    esearc

    h

    WDM-PON

  • WOCC-2005

    PON (Passive Optical Network)A single, shared optical fiber serving 32 customers.

    Passive because no active electronics in access network, except for the end points.

    Med-SmallOffice

    Residential

    Circuit/PacketSwitch

    Optical LineTerminal (OLT)

    EthernetN x POTS

    OpticalNetworkTerminal

    (ONT)

    ONT

    ONTCentralOffice

    Splitter

    FTTP Architecture

    1550 nm broadcast

    1490nm data

    1310 nm data

  • WOCC-2005

    Market: North America: 1-2M home for 2005Verizon: About 150k Subscribers, 1M home passed. Plan to add 2M home by 2005SBC: Field trial on 2004, and plan add 300K home on 2005

    Japan: 2-3M homes for 2005NTT: Plan spend $48B for 30M subscribers by 2010, add 1-2M subscribers on 2005Yahoo BB: Strong competitor with 2M subscribers in 2005 plan

    Korea: Plan to add 10M subscribers by 2007, but no detail plan yetChina: Still on earlier stage of deployment, a lot of trialsEurope: About 400K Subscribers, not high level growth can see in the near future

    Equipment:Optical Network Terminal (ONT):

    1310 DFB or 1310nm FP for upstream 1490nm PD 1550nm analog detector for receiver

    Optical Line Terminal (OLT):1490nm DFB for downstream data transmissionAPD for receiving

    Cost, cost and cost while not sacrificing performance!

    FTTP Market

    1310nm FP, DFB or1490nm DFB

    1.25G APD or PIN

  • WOCC-2005

    EPON & GPON Requirements

    EPON & GPON Different RequirementsPIN mostly in ONT sideAPD mostly used in OLT sideAPD will be more common due to split ratio increases

    1000BASE-PX10 1000BASE-PX20 G.984.2Distance 10 Km 10 Km 20 Km

    Attn Range 5-20dB@ upstream

    5-20dB@ upstream

    Class A: 5-20dBClass B: 10-25dBClass C: 15-30dB

    OutputPower

    ONT: -1 ~ +4 dBmOLT: -3 ~ +2 dBm

    ONT: -1 ~ +4 dBmOLT: +2 ~ +7 dBm

    ONT: -2 ~ +3 dBm @ ClassBOLT: +1 ~ +6 dBm @ ClassB

    ReceivePower

    ONT: -24 ~ -3 dBmOLT: -24 ~ +1 dBm

    ONT: -24 ~ -3 dBmOLT: -27 ~ -6 dBm

    ONT: -25 ~ -4 dBm @ ClassBOLT: -28 ~ -7 dBm @ ClassB

    EPON(IEEE 803.2ah)

    GPON(ITU-T)