Higgs searches within and beyond the Standard...

35
Higgs searches within and beyond the Standard Model Laura Reina (FSU) APS Meeting, Denver, May 2009

Transcript of Higgs searches within and beyond the Standard...

Page 1: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Higgs searches within and beyond theStandard Model

Laura Reina (FSU)

APS Meeting, Denver, May 2009

Page 2: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

• The Tevatron and even more the Large Hadron Collider (LHC) will

test new ground and answer some of the fundamental open questions of

Particle Physics:

−→ Electroweak (EW) symmetry breaking: Higgs mechanism?

−→ New Physics (NP) in the TeV range?

• The reach of the Tevatron and the incredible physics potential of the

LHC rely on our ability to provide:

−→ very accurate predictions (signal/backgr, PDF, masses, couplings);

−→ broad selection of models (aiming for general properties).

• Precision becomes even more crucial for a future Linear Collider

(ILC,CLIC,. . .).

• Higgs-boson physics: what would the theoretical and experimental

precision be good for?

−→ test consistency of the Standard Model and its extensions;

−→ discover one (or more) potential Higgs boson(s);

−→ identify it (them): measure couplings, mass(es), quantum numbers.

Page 3: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

What are we looking for?

Page 4: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

• Spectrum of ideas to explain EWSB: based on weakly or strongly

coupled dynamics embedded into some more fundamental theory at a

scale Λ (probably ≃ TeV):

−→ Elementary Higgs: SM, 2HDM, SUSY (MSSM, NMSSM,. . .), . . .

−→ Composite Higgs: technicolor, little Higgs models, . . .

−→ Extra Dimensions: flat,warped, . . .

−→ Higgsless models

• SM Higgs boson, our learning ground:

−→ LSMHiggs = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2

complex SU(2) doublet, reduced to one real massive scalar field upon

EWSB via Higgs mechanism: 〈φ†〉 = (0 v√2), where v = (−µ2/λ)−1/2;

−→ scalar particle, neutral, CP even, m2H = −2µ2 = 2λv2;

−→ mass related to scale of new physics, but constrained by EW precision fits;

−→ minimally coupled to gauge bosons −→ MW = g v2, MZ =

g2 + g′2 v2;

−→ coupled to fermions via Yukawa interactions −→ mf = yfv2;

−→ three- and four-point self couplings: testing the potential.

Page 5: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

• Beyond SM we could have:

−→ more scalars and/or pseudoscalars particles over broad mass spectrum

(elementary? composite?);

−→ physical states mixture of original fields (→ FCNC, . . .);

−→ no scalar (!);

−→ several other particles (fermions and vector gauge bosons).

If coupled to SM particles:

−→ constraints from EW precision measurements should apply;

−→ still lots of room for unknown parameters to be adjusted: little

predictivity until discoveries won’t populate more the physical spectrum.

Upon discovery:

• measure mass (first crucial discriminator!);

• measure couplings to gauge bosons and fermions;

• test the potential: measure self couplings;

• hope to see more physics.

Page 6: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

What we know from past and currentsearches

Page 7: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

SM Higgs boson: light mass strongly favored

Increasing precision will provide an invaluable tool to test the consistency of

the SM and its extensions.

80.3

80.4

80.5

150 175 200

mH [GeV]114 300 1000

mt [GeV]

mW

[G

eV]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

March 2009 mW = 80.399 ± 0.025 GeV

mt = 173.1 ± 1.3 GeV

MH = 90+36−27 GeV

MH < 163 (191) GeV

plus exclusion limits (95% c.l.):

MH > 114.4 GeV (LEP)

MH 6= 160 − 170 GeV (Tevatron)

⊲ only SM unknown: Higgs-boson mass;

⊲ strong correlation between MW (sin θeffW ), mt and MH .

Page 8: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Experimental uncertainties, estimate

Present Tevatron LHC LC GigaZ

δ(MW )(MeV) 25 27 10-15 7-10 7

δ(mt) (GeV) 1.1 2.7 1.0 0.2 0.13

δ(MH)/MH (indirect) 30% 35% 20% 15% 8%

(U. Baur, LoopFest IV, August 2005)

Intrinsic theoretical uncertainties

−→ δMW ≈ 4 MeV: full O(α2) corrections computed.

(M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, PRD 69:053006,2004)

−→ estimated: ∆mt/mt ∼ 0.2∆σ/σ + 0.03 (LHC)

(R. Frederix and F. Maltoni, JHEP 0901:047,2009 )

Page 9: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

SM Higgs: does a light Higgs constrain new physics?

100

200

300

400

500

600

1 10 102

Hig

gs m

ass

(GeV

)

Λ (TeV)

Vacuum Stability

Triviality

Electroweak

10%

1%

Λ→ scale of new physics

amount of fine tuning =

2Λ2

M2H

nmax∑

n=0

cn(λi) logn(Λ/MH)

←− nmax = 1

(C. Kolda and H. Murayama, JHEP 0007:035,2000)

Light Higgs consistent with low Λ: new physics at the TeV scale.

Page 10: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Beyond SM: new physics at the TeV scale can be a better fit

Ex. 1: MSSM

(M. Carena et al.)160 165 170 175 180 185

mt [GeV]

80.20

80.30

80.40

80.50

80.60

80.70

MW

[GeV

]

SM

MSSM

MH = 114 GeV

MH = 400 GeV

light SUSY

heavy SUSY

SMMSSM

both models

Heinemeyer, Hollik, Stockinger, Weber, Weiglein ’07

experimental errors: LEP2/Tevatron (today)

68% CL

95% CL

⊲ a light scalar Higgs boson, along with a heavier scalar, a pseudoscalar and a

charged scalar;

⊲ similar although less constrained pattern in any 2HDM;

⊲ MSSM main uncertainty: unknown masses of SUSY particles.

Page 11: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Beyond SM: new physics at the TeV scale can be a better fit

Ex. 2: “Fat Higgs” models

800

600

400

200

0

mas

s (G

eV)

h0SM

H±N0

H0

A0

h0

H±N0H0A0

h0H±H0

SM

N0A0

λ=3tanβ=2ms=400GeVm0=400GeV

λ=2tanβ=2ms=200GeVm0=200GeV

λ=2tanβ=1ms=200GeVm0=200GeV

I II III

−0.2

0

0.2

T

−0.4 0−0.2−0.4

68%

99%

S

0.6

0.2

0.4

0.4 0.6

ms=200 GeV, tanβ=2

210

525

350

sm =400 GeV, tanβ=2

sm =200 GeV, tanβ=1

263

360

SM Higgs

mh0=235

(Harnik, Kribs, Larson, and Murayama, PRD 70 (2004) 015002)

⊲ supersymmetric theory of a composite Higgs boson;

⊲ moderately heavy lighter scalar Higgs boson, along with a heavier scalar, a

pseudoscalar and a charged scalar;

⊲ consistent with EW precision measurements without fine tuning.

Page 12: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Tevatron: great potential for a light SM-like Higgs boson

σ(pp_→H+X) [pb]

√s = 2 TeV

Mt = 175 GeV

CTEQ4Mgg→H

qq→Hqqqq

_’→HW

qq_→HZ

gg,qq_→Htt

_

gg,qq_→Hbb

_

MH [GeV]

10-4

10-3

10-2

10-1

1

10

10 2

80 100 120 140 160 180 200

Several channels used:

gg → H, qq → q′q′H,

qq′ →WH, qq, gg → ttH

with

H → bb, τ+τ−, W+W−, γγ

BR(H)

bb_

τ+τ−

cc_

gg

WW

ZZ

tt-

γγ Zγ

MH [GeV]50 100 200 500 1000

10-3

10-2

10-1

1

(M. Spira, Fortsch.Phys. 46 (1998) 203)

1

10

100 110 120 130 140 150 160 170 180 190 200

1

10

mH(GeV/c2)

95%

CL

Lim

it/S

M

Tevatron Run II Preliminary, L=0.9-4.2 fb-1

ExpectedObserved±1σ Expected±2σ Expected

LEP Exclusion TevatronExclusion

SMMarch 5, 2009

Page 13: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

. . . and first constraints on MSSM parameters from Higgs physics

(GeV) Am80 100 120 140

βta

n

20

40

60

80

100 DØMSSM Higgs bosons = h, H, Aφ), b b→(φbb

Exc

lud

ed a

t L

EP

No mixingMax. mixing

(GeV) Am80 100 120 140

βta

n

20

40

60

80

100

mA (GeV/c2)

tan

β

CDF Run II Preliminary (1.9/fb)

mh max scenario, µ = -200 GeV

Higgs width included

expected limit1σ band2σ bandobserved limit

95% C.L. upper limits

0

20

40

60

80

100

120

140

160

180

200

100 120 140 160 180 200

(D∅, PRL 95 (2005) 151801) (CDF, Note 9284, 2008)

gMSSM

bbh0,H0 =(− sinα, cosα)

cosβgbbH and gMSSM

bbA0 = tanβ gbbH

where gbbH = mb/v ≃ 0.02 (Standard Model) and tanβ = v1/v2 (MSSM).

Page 14: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

The LHC: unveiling the nature of EWSB

Page 15: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

LHC: entire SM Higgs mass range accessible

σ(pp→H+X) [pb]√s = 14 TeV

Mt = 175 GeV

CTEQ4Mgg→H

qq→Hqqqq

_’→HW

qq_→HZ

gg,qq_→Htt

_

gg,qq_→Hbb

_

MH [GeV]0 200 400 600 800 1000

10-4

10-3

10-2

10-1

1

10

10 2 Many channels have been studied:

Below 130-140 GeV:

gg → H , H → γγ, WW, ZZ

qq → qqH , H → γγ, WW, ZZ, ττ

qq, gg → ttH , H → γγ, bb, ττ

qq′ →WH , H → γγ, bb

BR(H)

bb_

τ+τ−

cc_

gg

WW

ZZ

tt-

γγ Zγ

MH [GeV]50 100 200 500 1000

10-3

10-2

10-1

1

Above 130-140 GeV:

gg → H , H →WW, ZZ

qq → qqH , H → γγ, WW, ZZ

qq, gg → ttH , H → γγ, WW

qq′ →WH , H →WW

(M. Spira, Fortsch.Phys. 46 (1998) 203)

Page 16: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

LHC: discovery reach for a SM Higgs boson

1

10

10 2

100 120 140 160 180 200

mH (GeV)

Sig

nal s

igni

fica

nce

H → γ γ ttH (H → bb) H → ZZ(*) → 4 l H → WW(*) → lνlν qqH → qq WW(*)

qqH → qq ττ

Total significance

∫ L dt = 30 fb-1

(no K-factors)

ATLAS

1

10

10 2

102

103

mH (GeV) S

igna

l sig

nifi

canc

e

H → γ γ + WH, ttH (H → γ γ ) ttH (H → bb) H → ZZ(*) → 4 l

H → ZZ → llνν H → WW → lνjj

H → WW(*) → lνlν

Total significance

5 σ

∫ L dt = 100 fb-1

(no K-factors)

ATLAS

⊲ Low mass region difficult at low luminosity: need to explore as many channels

as possible. Indications from the Tevatron most valuable!

⊲ high luminosity reach needs to be updated;

⊲ identifying the SM Higgs boson requires high luminosity, above 100 fb−1: very

few studies exist above 300 fb−1 (per detector).

Page 17: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

LHC: discovery reach in the MSSM parameter space

Low luminosity, CMS only High luminosity, ATLAS+CMS

Page 18: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

SM Higgs boson: mass, width, spin and more

• Color and charge are given by the measurement of a given

(production+decay) channel.

• The Higgs boson mass will be measured with 0.1% accuracy in

H → ZZ∗→ 4l±, complemented by H → γγ in the low mass region. Above

MH ≃ 400 GeV precision deteriorates to ≃ 1% (lower rates).

• The Higgs boson width can be measured in H → ZZ∗→ 4l± above

MH ≃ 200 GeV. The best accuracy of ≃ 5% is reached for MH ≃ 400 GeV.

• The Higgs boson spin could be measured through angular correlations

between fermions in H → V V → 4f : need for really high statistics.

Page 19: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

LHC: can measure most SM Higgs couplings at 10-30%

gg→ HWBFttHWH

● ττ ● bb● ZZ ● WW● γγ

MH (GeV)

∆σH/σ

H (

%)

0

5

10

15

20

25

30

35

40

110 120 130 140 150 160 170 180

Consider all “accessible” channels:

• Below 130-140 GeV

gg → H , H → γγ, WW, ZZ

qq → qqH , H → γγ, WW, ZZ, ττ

qq, gg → ttH , H → γγ, bb, ττ

qq′ →WH , H → γγ, bb

• Above 130-140 GeV

gg → H , H →WW, ZZ

qq → qqH , H → γγ, WW, ZZ

qq, gg → ttH , H → γγ, WW

qq′ →WH , H →WW

Observing a given production+decay (p+d) channel gives a relation:

(σp(H)Br(H → dd))exp =σth

p (H)

Γthp

ΓdΓp

ΓH

(D. Zeppenfeld, PRD 62 (2000) 013009; A. Belyaev et al., JHEP 0208 (2002) 041)

Page 20: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Associate to each channel (σp(H)×Br(H → dd))

Z(p)d =

ΓpΓd

Γ

{

Γp ≃ g2Hpp = y2

p → production

Γd ≃ g2Hdd = y2

d → decay

From LHC measurements, with given simulated accuracies and theoretical

systematic errors (GF: 20%, WBF: 4%, ttH: 15%, WH: 7%):

• Determine in a model independent way ratios of couplings at the

10− 20% level, for example:

yb

yτ←−

Γb

Γτ=

Z(t)b

Z(t)τ

yt

yg←−

Γt

Γg=

Z(t)τ Z

(WBF)γ

Z(WBF)τ Z

(g)γ

orZ

(t)W

Z(g)W

crucial to have many decay channels for the same production channel.

• determine individual couplings at the 10-30% level, assuming:

ΓH ≃ Γb + Γτ + ΓW + ΓZ + Γg + Γγ , ΓW

ΓZ= ΓW

ΓZ

SMand Γb

Γτ= Γb

Γτ

SM

Page 21: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Along these lines, exploring higher luminosity:

0

0.1

0.2

0.3

120 140 160 180

ΓW/ΓZ (indirect)ΓW/ΓZ (direct)

ATLAS + CMS∫ L dt = 300 fb-1 and ∫ L dt = 3000 fb-1

mH (GeV)

∆(Γ W

/ΓZ)/

(ΓW

/ΓZ)

0

0.2

0.4

0.6

0.8

100 150 200

ΓW/Γt (indirect)ΓW/Γt (indirect)ΓW/Γb (indirect)ΓW/Γτ (direct)

ATLAS + CMS∫ L dt = 300 fb-1 and ∫ L dt = 3000 fb-1

mH (GeV)

∆(Γ V

/Γf)/

(ΓV/Γ

f)(F. Gianotti, M. Mangano, and T. Virdee, hep-ph/02040887)

where the “indirect” ratios are obtained under some assumptions:

ΓW

ΓZ=

Z(g)γ

Z(g)Z

,ΓW

Γt=

Z(WH)γ

Z(g)γ

orZ

(WH)W

Z(g)W

(assuming gg → H is t-dominated)

ΓW

Γb=

Z(t)γ

Z(t)b

(assuming H → γγ is W -dominated)

Page 22: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Toward a more model independent determination of Higgscouplings and width

Consider both a χ2(x) and a likelihood function L(x) over a parameter space (x)

made of all partial widths plus Γinv, Γγ(new), and Γg(new).

[GeV]Hm110 120 130 140 150 160 170 180 190

(pre

dic

ted

(new

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1HΓ / inv.Γ

(W,t)γΓ(new) / γΓ

(t)gΓ(new) / gΓ

2 Experiments

-1 L dt=2*30 fb∫

[GeV]Hm110 120 130 140 150 160 170 180 190

(pre

dic

ted

(new

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1HΓ / inv.Γ

(W,t)γΓ(new) / γΓ

(t)gΓ(new) / gΓ

2 Experiments

-1 L dt=2*300 fb∫-1WBF: 2*100 fb

(M. Duhrssen et al., PRD 70 (2004) 113009)

with the only assumption that: g2(H, V ) < 1.05 · g2(H, V, SM) (V = W, Z)

Page 23: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

[GeV]Hm110 120 130 140 150 160 170 180 190

(H,X

)2

g(H

,X)

2 g∆

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(H,Z)2g

(H,W)2g

)τ(H,2g

(H,b)2g

(H,t)2g

without Syst. uncertainty

2 Experiments-1

L dt=2*30 fb∫

[GeV]Hm110 120 130 140 150 160 170 180 190

(H,X

)2

g(H

,X)

2 g∆

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(H,Z)2g

(H,W)2g

)τ(H,2g

(H,b)2g

(H,t)2g

without Syst. uncertainty

2 Experiments-1

L dt=2*300 fb∫-1WBF: 2*100 fb

(M. Duhrssen et al., PRD 70 (2004) 113009)

⊲ Most coupling within 10-40% at high luminosity (for light MH);

⊲ notice the impact of systematic uncertainties;

⊲ of course, adding assumptions considerably lower the errors.

−→ New study by Lafaye, Plehn, Rauch, Zerwas, and Duhrssen (arXiv:0904:3866)

Page 24: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Looking for footprints of new physics:

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

SM+Singlet

δ

χ2

5 10 15 20

−0.

50.

00.

51.

0 2HDM−I

tanβ

δ

5 10 15 20

−0.

50.

00.

51.

0 2HDM−II

tanβ

δ

5 10 15 20−

0.5

0.0

0.5

1.0 Flipped 2HDM

tanβ

δ

5 10 15 20

−0.

50.

00.

51.

0 Lepton−specific 2HDM

tanβ

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 3HDM−D

cos2θ

ω

Consider all extended Higgs sectors

− involving SU(2)L doublets and

singlets;

− with natural flavor conservation;

− without CP violation.

15 models have different footprints!

δ −→ decoupling parameter

(δ = 0: SM)

(V. Barger, H. Logan, G. Shaughnessy,

arXiv:0902.0170)

Page 25: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

ILC: ultimate precision

• Higgs boson mass within δMH = 50 MeV;

• Model independent determination of Higgs boson couplings

• All Higgs boson couplings known within few percents (but top Yukawa

coupling!)

• Measure 3H coupling with high luminosity (ab−1): first direct test of Higgs

boson potential, impossible at the LHC.

Ex.: SM Higgs boson,√

s=500 GeV, 1 ab−1

Coupling: Hbb Hτ+τ− Hcc HWW HZZ Htt HHH

(MH =120 GeV) 2.2% 3.3% 3.7% 1.2% 1.2% 25% 17%

(MH =140 GeV) 2.2% 4.8% 10% 2.0% 1.3% 23%

Theory 1.4% 2.3% 23% 2.3% 2.3% 5%

• Higgs boson quantum numbers, spin, . . .

Page 26: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

How good are our theoreticalpredictions?

Page 27: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

SM Higgs-boson production: theoretical precision at a glance.

QCD predictions for total hadronic cross sections of Higgs-boson production

processes are under good theoretical control:

NLO, gg; qq ! tthNLO, qq ! Zh; �(pp! h+X) [pb℄NLO, qq0 !WhNLO, qq ! qqhNNLO, gg ! h

LHC, ps = 14TeV;Mh=2 < � < 2MhMh [GeV℄ 200190180170160150140130120

10001001010:1

NNLO,0 b tagged, (0:1; 0:7)Mh0 b tagged, (0:2; 1)�02 bs tagged, (0:5; 2)�01 b tagged, (0:2; 1)�0NNLO, b�b! h�(pp! h+X) [pb℄

NLO, gg; qq ! bbhLHC, ps = 14TeV; �0 = mb +Mh=2

Mh [GeV℄ 2001901801701601501401301201010:10:01

Caution: in these plots uncertainties only include µR/µF scale dependence,

PDF’s uncertainties are not included.

Page 28: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Ex. 1: gg → H, the main production mode

Harlander,Kilgore (03); Anastasiou,Melnikov,Petriello (03)

Ravindran,Smith,van Neerven (04)

1

10

100 120 140 160 180 200 220 240 260 280 300

σ(pp→H+X) [pb]

MH [GeV]

LONLONNLO

√ s = 14 TeV

• dominant production mode in association with H → γγ or H →WW or

H → ZZ;

• dominated by soft dynamics: effective ggH vertex can be used (3 → 2-loop);

• perturbative convergence LO → NLO (70%) → NNLO (30%):

residual 15% theoretical uncertainty.

Page 29: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Inclusive cross section, resum effects of soft radiation:

large qTqT >MH−→

perturbative expansion in αs(µ)

small qTqT ≪MH−→

need to resum large ln(M2H/q2

T )

Bozzi,Catani,De Florian,Grazzini (04-08)

Update: Going from MRST2002 to MSTW2008 greatly affects the Tevatron/LHCcross section: from 9%/30% (MH = 115 GeV) to -9%/+9% (MH = 200/300 GeV) !

De Florian,Grazzini (09)

Exclusive NNLO results: e.g. gg → H → γγ, WW, ZZ

Extension of (IR safe) subtraction method to NNLO:

−→ HNNLO (Catani,Grazzini)

−→ FEHiP (Anastasiou,Melnikov,Petriello)

Page 30: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Ex. 2: pp→ ttH, crucial to explore Higgs couplings.

0.2 0.5 1 2 4µ/µ0

200

400

600

800

1000

1200

1400

σ LO,N

LO (

fb)

σLO

σNLO

√s=14 TeVMh=120 GeV

µ0=mt+Mh/2

CTEQ5 PDF’s

100 120 140 160 180 200Mh (GeV)

0

200

400

600

800

1000

1200

1400

σ LO,N

LO (

fb)

σLO , µ=µ0

σNLO , µ=µ0

σLO , µ=2µ0

σNLO , µ=2µ0

√s=14 TeV

µ0=mt+Mh/2

CTEQ5 PDF’s

Dawson, Jackson, Orr, L.R., Wackeroth (01-03)

• Fully massive 2→ 3 calculation: testing the limit of FD’s approach

(pentagon diagrams with massive particles).

• Independent calculation: Beenakker et al., full agreement.

• Theoretical uncertainty reduced to about 15%

• Several crucial backgrounds: tt + j (NLO, Dittmaier,Uwer,Weinzierl), ttbb,

tt + 2j, V V + bb.

Page 31: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Ex. 3: pp→ bbH, hint of enhanced b-quark Yukawa coupling

MSSM, tan� = 40�0 = mb +Mh0=20:2�0 < � < �0NLO MCFM, gb! bh0NLO, gg; qq ! b(b)h0Tevatron, ps = 1:96 TeV

Mh0 [GeV℄

�NLO [pb℄

13012512011511010510010

1 MSSM, tan� = 40�0 = mb +MH0=20:2�0 < � < �0NLO MCFM, gb! bH0NLO, gg; qq ! b(b)H0LHC, ps = 14 TeV

MH0 [GeV℄

�NLO [pb℄

5004504003503002502001501000100101

MSSM, tan � = 40NNLO, 5FNS, bb! h0NLO, 5FNS, bb! h0NLO, 4FNS, gg; qq ! (bb)h0Tevatron, ps = 1:96 TeV

Mh0 [GeV℄

�NLO [pb℄

130125120115110105100100

101 MSSM, tan� = 40

NNLO, 5FNS, bb! H0NLO, 5FNS, bb! H0NLO, 4FNS, gg; qq ! (bb)H0LHC, ps = 14 TeVMH0 [GeV℄

�NLO [pb℄

400350300250200150100

10

Dawson, Jackson, L.R., Wackeroth (05)

Page 32: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Ex. 4: pp→ bbW/Z, crucial but not well-understood background.

−→ V −→ 4 partons (1-loop massless amplitudes) (Bern, Dixon, Kosower (97))

−→ pp, pp→ V bb (at NLO, 4FNS, mb = 0) (Campbell, Ellis (99))

−→ pp, pp→ V b + j (at NLO, 5FNS) (Campbell, Ellis, Maltoni,Willenbrock

(05,07))

−→ pp, pp→Wbb (at NLO, 4FNS, mb 6= 0) (Febres Cordero, L.R., Wackeroth

(06))

−→ pp, pp→ Zbb (at NLO, 4FNS, mb 6= 0) (Febres Cordero, L.R., Wackeroth (08))

−→ pp, pp→W + 1 b-jet (at NLO, 5FNS+4FNS with mb 6= 0) (Campbell,

Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (08))

Page 33: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

NLO: Recently completed calculations (since Les Houches 2005):all relevant to Higgs-boson physics!

Process (V ∈ {Z, W, γ}) Comments

pp → V +2 jets(b) Campbell,Ellis,Maltoni,Willenbrock (06)

pp → V bb Febres Cordero,Reina,Wackeroth (07-08)

pp → V V +jet Dittmaier,Kallweit,Uwer (WW+jet) (07)

Campbell,Ellis,Zanderighi (WW+jet+decay) (07)

Binoth,Karg,Kauer,Sanguinetti (in progress)

pp → V V +2 jets Bozzi,Jager,Oleari,Zeppenfeld (via WBF) (06-07)

pp → V V V Lazopoulos,Melnikov,Petriello (ZZZ) (07)

Binoth,Ossola,Papadopoulos,Pittau (WWZ,WZZ,WWW ) (08)

Hankele,Zeppenfeld (WWZ → 6 leptons, full spin correlation) (07)

pp → H+2 jets Campbell,Ellis,Zanderighi (NLO QCD to gg channel)(06)

Ciccolini,Denner,Dittmaier (NLO QCD+EW to WBF channel) (07)

pp → H+3 jets Figy,Hankele,Zeppenfeld (large Nc) (07)

pp → tt+jet Dittmaier,Uwer,Weinzierl (07)

Ellis,Giele,Kunszt (in progress)

pp → ttZ Lazopoulos,Melnikov,Petriello (08)

gg → WW Binoth,Ciccolini,Kauer,Kramer (06)

gg → HH, HHH Binoth,Karg,Kauer,Ruckl (06)

Page 34: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Process Comments

(V ∈ {Z, W, γ})

NLO calculations remaining at Les Houches 2007

pp → tt bb relevant for ttH (1)

pp → tt+2jets relevant for ttH

pp → V V bb, relevant for WBF → H → V V , ttH

pp → V V +2jets relevant for WBF → H → V V (2)

pp → V +3jets various new physics signatures (3)

pp → bbbb Higgs and new physics signatures (4)

Calculations beyond NLO added at Les Houches 2007

gg → W∗W∗ O(α2α3

s) backgrounds to Higgs (5)

NNLO pp → tt normalization of a benchmark process (6)

NNLO to WBF and Z/γ+jet Higgs couplings and SM benchmark (7)

(1) qq → ttbb calculated by A. Bredenstein, A. Denner, S. Dittmaier, and S. Pozzorini (08).

(2) WBF contributions calculated by G. Bozzi, B. Jager, C. Oleari, and D. Zeppenfeld (06-07).

(3) leading-color contributions calculated by: R. K. Ellis, et al. (08-09); Z. Bern et al. (08-09).

(4) T. Binoth et al., in progress.

(5) qq → WW calculated by G. Chachamis, M. Czakon, and D. Eiras (08) (small MW ).

(6) M. Czakon, A. Mitov, and S. Moch (06-08) (analytical for m2

Q ≪ s, exact numerical estimate).

(7) A. Gehrmann-De Ridder, T. Gehrmann, et al., work in progress.

Page 35: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Conclusions and Outlook

• The Tevatron is breaking new ground and meeting new challenges: exploring

the Higgs low mass region, possible 2σ − 3σ evidence.

• The LHC will cover the whole Higgs mass range and with high luminosity will

have access to Higgs-boson precision physics.

• Using the SM as a “template”, we can test our ability to pinpoint the

properties of to-be-discovered scalar and pseudoscalar particles:

⊲ revisit existing studies;

⊲ identify main sources of systematic uncertainty;

⊲ work at reducing them, both theoretically and experimentally.

• Building on solid SM ground, start exploring beyond SM scenarios in as much

generality as possible, looking for most distinctive patterns and signatures of

various realizations of EWSB.