Hierarchy of Decisions

45
Hierarchy of Decisions 1. Batch versuscontinuous 2. Input-outputstructure ofthe flow sheet 3. Recycle structure ofthe flow sheet 4. G eneralstructure ofthe separation system Ch.5 a. Vaporrecovery system b. Liquid recovery system 5. H eat-exchangernetw ork Ch.6, Ch.7, Ch.16 Ch. 4

description

Hierarchy of Decisions. HEAT EXCHANGER NETWORK (HEN). SUCCESSFUL APPLICATIONS O ICI ---- Linnhoff, B. and Turner, J. A., Chem. Eng ., Nov. 2, 1981 Energy savings Capital Cost - PowerPoint PPT Presentation

Transcript of Hierarchy of Decisions

Page 1: Hierarchy of Decisions

Hierarchy of Decisions

1. Batch versus continuous

2. Input-output structure of the flowsheet

3. Recycle structure of the flowsheet

4. General structure of the separation system Ch.5

a. Vapor recovery system

b. Liquid recovery system

5. Heat-exchanger network Ch.6, Ch.7, Ch.16

Ch. 4

Page 2: Hierarchy of Decisions

HEAT EXCHANGER NETWORK (HEN)

Page 3: Hierarchy of Decisions

SUCCESSFUL APPLICATIONS

O ICI

---- Linnhoff, B. and Turner, J. A., Chem. Eng., Nov. 2, 1981

Energy savings Capital Cost Available Expenditure Process Facility* k$/yr or Saving, k$

Organic Bulk Chemical New 800 sameSpecialty Chemical New 1600 savingCrude Unit Mod 1200 savingInorganic Bulk Chemical New 320 savingSpecialty Chemical Mod 200 160 New 200 savingGeneral Bulk Chemical New 2600 unclearInorganic Bulk Chemical New 200 to 360 unclearFuture Plant New 30 to 40 % 30 % savingSpecialty Chemical New 100 150Unspecified Mod 300 1000 New 300 savingGeneral Chemical New 360 unclearPetrochemical Mod Phase I 1200 600 Phase II 1200 1200

*New means new plant; Mod means plant modification.

Page 4: Hierarchy of Decisions

SUCCESSFUL APPLICATIONS

Table 1. First results of applying the pinch technology in Union Carbide

Project Energy Cost Installed PaybackProcess Type Reduction $/yr Capital Cost $ Months

Petro-Chemical Mod. 1,050,000 500,000 6Specialty Chemical Mod. 139,000 57,000 5Specialty Chemical Mod. 82,000 6,000 1Licensing Package New 1,300,000 Savings Petro-Chemical Mod. 630,000 Yet Unclear ?Organic Bulk Mod. 1,000,000 600,000 7 ChemicalOrganic Bulk Mod. 1,243,000 1,835,000 18 ChemicalSpecialty Chemical Mod. 570,000 200,000 4Organic Bulk Mod. 2,000,000 800,000 5 Chemical

Linnhoff and Vredeveld, CEP, July, 1984

Page 5: Hierarchy of Decisions

SUCESSFUL APPLICATIONS

Fluor --- IChE Symp. Ser., No. 74, 1982, P.19 --- CEP, July, 1983, P.33

FMC (Marine Colloid Division, Rockland, ME)

Page 6: Hierarchy of Decisions

CONCLUSION

HEN/MEN synthesis can be identified as a

separate and distinct task in process design

Page 7: Hierarchy of Decisions

IDENTIFY HEAT RECOVERY AS A SEPARATE AND DISTINCT

TASK IN PROCESS DESIGN.

9.60

0 1791.614

7.841

1.089

7 703

D 201

RECYCLE

TOCOLUMN

PURGE

CW

36C

200C18.2 bar

200C

180C153C

141C 40C

115.5C120C 17.6 bar

114C

35C

126C18.7 bar

17.3 bar

16 bar

FEED5C 19.5 bar

Figure 2.5 - Flowsheet for “front end” of specialty chemicals process

FLASH

REACTION

Page 8: Hierarchy of Decisions

Reactor

200C

200C

35C

35C

Reactor

RECYCLE

TOPS

Product

Purge

PRODUCT126C

5C

FEED

FOR EACH STREAM: TINITIAL, TFINAL, H = f(T).

Figure 2.6-Specialty chemicals process-heat exchange duties

Page 9: Hierarchy of Decisions

REACTOR

1

23

。 。

70

1652

654

STEAM

STEAM

RECYCLE

PRODUCTCOOLINGWATERFEED

= 1722

= 654

a ) DESIGN AS USUAL

C

H6 UNITS

Page 10: Hierarchy of Decisions

REACTOR

1

2

3

。 1068

STEAMRECYCLE

PRODUCTFEED

= 1068

= 0

b ) DESIGN WITH TARGETS

C

H4 UNITS

。 。。

Page 11: Hierarchy of Decisions

SUGGESTED PROCEDURE FOR THE DESIGN OF NEW HEAT EXCHANGER NETWORKS

1. Determine Targets.

Energy Target -maximum recoverable energy

Capital Target -minimum number of heat transfer units.

-minimum total heat transfer area

2. Generate Alternatives to Achieve Those Targets.

3. Modify the Alternatives Based on Practical Considerations.

4. Equipment Design and Costing for Each Alternative.

5. Select the Most Attractive Candidate.

Page 12: Hierarchy of Decisions

STEP ONE

Determine the Targets

Page 13: Hierarchy of Decisions

§ ENERGY TARGETS (TWO STREAM HEAT EXCHANGE)

T/H DIAGRAM

HH

T

TT

TS

Q=CP(TT-TS)

Figure 2.10 - Representation of process streams in the T/H diagram

ST

TT

TTCP

CPdT

QHT

S

Page 14: Hierarchy of Decisions

H(KW)

350 300 400

T(C)

100

115

135

UTILITYHEATING

140

UTILITYCOOLING

70

200

TWO-STREAM HEAT EXCHANGE IN THE T/H DIAGRAM

T

Page 15: Hierarchy of Decisions

H(KW)

350 300 400

T(C)

T

100

120

135

UTILITYHEATING

130

UTILITYCOOLING

70

200

TWO-STREAM HEAT EXCHANGE IN THE T/H DIAGRAM

-100 +100 -100 =250 =400 =300

Page 16: Hierarchy of Decisions

FACTS

1. Total Utility Load

Increa se Increa se

2. in = in

Hot Utility Cold Utility( () )

minT

Page 17: Hierarchy of Decisions

§ENERGY TARGETS (MANY HOT AND COLD STREAMS)

COMPOSITE CURVES

T1

T2

T3

T4

T5

(T1-T2) (B)

(T2-T3) (A+B+C)

(T3-T4) (A+C)

(T4-T5) (A)

CP=A

CP=B

CP=C

T

H

INTERVALH

Page 18: Hierarchy of Decisions

§ENERGY TARGETS (MANY HOT AND COLD STREAMS)

COMPOSITE CURVES

T1

T2

T3

T4

T5

T

H

1H

2H

3H

4H

Page 19: Hierarchy of Decisions

PINCH POINT

T

“PINCH”

minimumcold utility

Minimumhot

utility

H

Energy targets and “the Pinch” with Composite Curves

min,HQ

min,CQ

minT

Page 20: Hierarchy of Decisions

m hotStreams

n coldStreams

Qin

QoutQout - Qin = H

Heat Exchange System

m

i

n

j

outjc

outihout

injc

n

j

inih

m

iin HHQHHQ

1 1,,,

1,

1

or

m

i

n

j

injc

outih

m

i

n

j

outjc

inihinout HHHHHQQ

1 1,,

1 1,,

Page 21: Hierarchy of Decisions

The “Problem Table” Algorithm - A Targeting Approach

---Linnhoff and Flower, AIChE J. (1978)

Stream No. CP TS TT

and Type (KW/C) (C) (C) (C) (C)

(1) Cold 2 20 25 T 6

135 140 T3 (2) Hot 3 170 165 T 1 60 55 T5 (3) Cold 4 80 85 T 4 140 145 T2 (4) Hot 1.5 150 145 (T 2) 30 25 (T6)

Tmin = 10C

*ST *

TT

iT

Page 22: Hierarchy of Decisions

T1* = 165C

T2* = 145C

T3* = 140C

T4* = 85C

T5* = 55C

T6* = 25C

Subsystem

#TK

CPHot

- CPcold HK

1

4

2

3

1 20 3.0 60

2 5 0.5 2.5

3 55 -1.5 -82.5

4 30 2.5 75

5 30 -0.5 -15

Page 23: Hierarchy of Decisions

i j

jCCiHHinout HHHHQQH 4343)3()3(

3

i j

jColdiHOT TTCPTTCP *4

*3,

*4

*3,

*4

*3

3

,, TTCPCPi j

jColdiHOT

3

3

,, TCPCPi j

jColdiHOT

Heat ExchangeSubsystem (3)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

)3(inQ

)3(outQ

from subsys #2

To subsys #4

hot streams145C

135C

90C

Cold streams80C

)()( Kin

KoutK QQH

Page 24: Hierarchy of Decisions

T1* = 165C -------------------------- ( 0 )------

T2* = 145C --------------------------( 60 )-----( 80 )

T3* = 140C -------------------------( 62.5 )---( 82.5 )

T4* = 85C -------------------------( -20.0 )-----( 0 )

T5* = 55C --------------------------( 55.0 )----( 75 )

T6* = 25C --------------------------( 40.0 )----

H1 = 60

H2 = 2.5

H3 = -82.5

H4 = 75

H5 = -15

20

60

minimumhotutility

minimumcoldutility

Pinch

FROM HOT UTILITY

TO COLD UTILITY

)()( Kin

KoutK QQH

Page 25: Hierarchy of Decisions

§ “PROBLEM TABLE” ALFORITHM

SUBSYSTEM

TM TC=T

Tmin

TP

0 (T0)1 (T1)

2 (T2)

minTTT CH

Hh2Hc2 Hh1 Hc1

Page 26: Hierarchy of Decisions

§ “PROBLEM TABLE” ALFORITHM

ENTHALPY BALANCE OF SUBSYSTEM

C2C1H2H1INOUT HHHHQQ

As T = T1 - T2 0

CH CPCPdT

dQ

Page 27: Hierarchy of Decisions

5. The Grand Composite Curve

80

60

40

20

0

-20

Q(K

W)

20 40 60 80 100 120 140 160 180

Qc,min

T6* T5* T4* T3*T2* T1*

Qh,min

HU

CU

“Pinch”

Page 28: Hierarchy of Decisions

SIGNIFICANCE OF THE PINCH POINT

1. Do not transfer heat across the pinch

2. Do not use cold utility above

3. Do not use hot utility below

Page 29: Hierarchy of Decisions

Qh

Qh,min

Qc,min

Qh

Q

T

Tc Tp Th

Qh Qh,min

Qc Qc,min

HU

CU

Page 30: Hierarchy of Decisions

Qh,min

Qc,min

Q

T

Tc Tp Th

HUCU

T1

Page 31: Hierarchy of Decisions

Qh

Qh,min

Qc,min

Q

T

Tc Tp Th

HU

CU1

QcCU2

min,min, hchh QQQQ

Page 32: Hierarchy of Decisions

Qh,minQc,min

Q

T

Tc Tp Th

HUCU

T1

Page 33: Hierarchy of Decisions

Qh,min

Qc,min

Q

T

Tc Tp Th

HU1CU

T1

Q1

Q2

Tp’

HU2

2min, QQQh 1

Page 34: Hierarchy of Decisions

REACTOR 1

REACTOR 2

H=27MW

H=32MW

H= -30MW

H= -31.5MW

FEED 2 140

FEED 1 20 180 250

230

200 80

40

40

40

PRODUCT2

PRODUCT1

OFF GAS

Figure 6.2 A simple flowsheet with two hot streams and two cold streams.

Page 35: Hierarchy of Decisions

TABLE 6.2 Heat Exchange Stream Data for the Flowsheet in Fig. 6.2

Heat Supply Target capacity temp. temp. H flow rate CP Stream Type TS (C) TT (C) (MW) (MW C-1)

1. Reactor 1 feed Cold 20 180 32.0 0.2

2. Reactor 1 product Hot 250 40 -31.5 0.15

3. Reactor 2 feed Cold 140 230 27.0 0.3

4. Reactor 2 product Hot 200 80 -30.0 0.25

Page 36: Hierarchy of Decisions

H= -1.5

H= 6.0

H= 4.0

H= -14.0

H= 2.0

H= 2.0 H= 2.0

H= 2.0

H= -14.0

H= 4.0

H= -1.0

H= 6.0

H= -1.5

H= -1.0

(a) (b)HOT UTILITY HOT UTILITY

COLD UTILITY COLD UTILITYFigure 6.18 The problem table cascade.

245C 0MW 7.5MW

235C 1.5MW 9.0MW

195C -4.5MW 3.0MW

185C -3.5MW 4.0MW

145C -7.5MW 0MW

75C 6.5MW 14.0MW

35C 4.5MW 12.0MW

25C 2.5MW 10.0MW

Page 37: Hierarchy of Decisions

Figure 6.24 The grand composite curve shows the utility requirements in both enthalpy and temperature terms.

Page 38: Hierarchy of Decisions

pinch

CW

LP Steam

HP SteamT*

H

(a)

BOILER

Fuel Boiler Feedwater

(Desuperheat)

HP Stream

LP Stream

Process

Process

Condensate

Figure 6.25. The grand composite curve allows alternative utility mixes to be evaluated.

Page 39: Hierarchy of Decisions

pinch

CW

T*

H

(b)

Figure 6.25. The grand composite curve allows alternative utility mixes to be evaluated.

Hot Oil

Hot Oil Return

Hot Oil FlowProcessFuel

FURNACE

Page 40: Hierarchy of Decisions

300

250

200

150

100

50

0 0 5 10 15

(a) TC

H(MW)

HP Steam

LP Steam

Figure 6.26 Alternative utility mixes for the process in Fig. 6.2.

Page 41: Hierarchy of Decisions

300

250

200

150

100

50

0 0 5 10 15

(b) TC

H(MW)

Figure 6.26 Alternative utility mixes for the process in Fig. 6.2.

Hot Oil

Page 42: Hierarchy of Decisions

T*

H

Figure 6.27 Simple furnace model.

T*TFT

T*STACK

Fuel

QHmin

T*O

ambienttemp.

StackLoss

Ambient Temperature

FlueGas

Theoretical FlameTemperature T*O

QHmin

Fuel

AirT*TFT

T*STACK

Page 43: Hierarchy of Decisions

T*

H

Figure 6.28 Increasing the theoreticalflame temperature by reducing excess air or combusion air preheat reduces thestack loss.

T*’TFT

T*TFT

T*STACK

StackLoss

FlueGas

T*O

Page 44: Hierarchy of Decisions

T*

T*TFT

T*

T*TFT

T*ACID DEW

T*PINCH

T*C

T*ACID DEW

T*PINCH

T*C

(a)Stack temperature limited by acid dew point (b)Stack temperature limited by process away from the pinch Figure 6.29 Furnace stack temperature can be limited by other factors than pinch temperature.

Page 45: Hierarchy of Decisions

300

250

200

150

100

50

0 0 5 10 15 H(MW)

Figure 6.30 Flue gas matched against the grand composite curve of theprocess in Fig. 6.2

T*1800

1750Flue Gas