HHHIIILLL을을을이이이용용용한한한증증증기기기터터터빈빈빈...

54
工學碩士 學位論文 HIL을이용한증기터빈발전기 시뮬레이터 개발에 관한 연구 A Study ontheSimulatorDevelopmentofSteam TurbineGeneratorusingHIL 指導敎授 2004年 2月 韓國海洋大學校 大學院 電氣電子工學科 張珉閨

Transcript of HHHIIILLL을을을이이이용용용한한한증증증기기기터터터빈빈빈...

HHHIIILLL AAA SSStttuuudddyyyooonnnttthhheeeSSSiiimmmuuulllaaatttooorrrDDDeeevvveeelllooopppmmmeeennntttooofffSSSttteeeaaammm

TTTuuurrrbbbiiinnneeeGGGeeennneeerrraaatttooorrruuusssiiinnngggHHHIIILLL

222000000444 222

...

:::

:::

:::

222000000333 111222

111 1

222 32.1 32.1.1 6

2.2 142.2.1 142.2.2 152.2.3 212.2.4 24

333 HHH///WWW 293.1 293.2 H/W 323.2.1HostPC 333.2.2TargetPC 333.2.3V/F 34

444 374.1HIL 374.2 414.3 42

555 46

48

AAA SSStttuuudddyyyooonnnttthhheeeSSSiiimmmuuulllaaatttooorrrDDDeeevvveeelllooopppmmmeeennntttooofff

SSSttteeeaaammm TTTuuurrrbbbiiinnneeeGGGeeennneeerrraaatttooorrruuusssiiinnngggHHHIIILLL

byJangMin-Kyu

DepartmentofElectricalandElectronicsEngineeringTheGraduateSchoolofKoreaMaritimeUniversity

Busan,RepublicofKorea

AAAbbbssstttrrraaacccttt

Steam turbine thatis run using stream among industry plant,powerplantorfacilitiesofvesselisselectedtheusageinelectricitygenerating mainly. This steam turbine generators compositiondepartmentisconsistedofsteam turbine,generatorandgovernor.Itisdifficultofsearchandexpensiveequipmentsarebulk.Canconsulttogetherdrivingofturbineandgeneratortocyberby

embodyingfrom engineofthishighpricetosimulator.Likethis,cancontrolorconfirm the function even ifdo notcombine governorphysicallyinsteam turbinedevelopmentstagebydoing.Developeddeviceisidealthatconnectandtestatthesurrounding

environmentdivisiondirectly butalotoftimes,researchexpenses

andriskbearingarerequiredtoequipthesurroundingenvironment.So,do testfordeviceusing simulator.Can improveefficiency ofexaminationcomposingthistestenvironmentbyHILS.Inthispaper,embodiedsimulatorincludingthissteam turbineand

generator by HILS.Heighten space utilization and composed asindustry PC of a PC 104 bus that hardly be influenced insurroundingsenvironment.CodedbyC codemodelingsteam turbineandgenerator.Through

D/A boardofsimulator,appearedspeedofrevolutionsignalgoesbydigitalgovernorthrough V/F converter.Compareinputvaluewithspeed command in digitalgovernor.So,send signalthatcontroldisplacementofactuatoratA/D board ofsimulator.Can confirmspeedsignalandactuatordisplacementsignalthatbecomeinputandoutputofsimulatorbyreal-time.Confirmedwhethersimulatordisplaysidlespeedandratedspeed

commandofdigitalgovernorproperly,andconfirmedwhetheroutputof simulator changes along the raiselow rate of the speed.Confirmedeffectivenessofsteam turbinesimulatorthatdesignandmanufacturesusingHILSfrom resultofabove.

1

, . , . . , ,

. ., . ,

, . . . HIL .,

, ,, .

. , , . , . , .[1-4] ,,,

HIL(HardwareIn-theLoop) .1 d-q

Matlab/Simulink/RealtimeWorkshop C . PC104 PC .HIL D/A

V/F . A/D . . Idle

, . HIL .

2

. . .

(1) (2)

, . . .[5]

. ,

, . , .

2.1

, . (thermalenergy) ()

, .

HP LP LP

Superheated steam

Reheatedsteam

Generator

Steam from HP turbine

Steam fromLP turbine

2.1 -

. , (exhauststeam) . 2.1

., , .

:,

, .

: :50170bar, :550C : :3040bar, :550C : :48bar, :250C,

:95mbar( )

, , . ., 2.2 .[6]

Steam

Turbine

VCV

V BY

V IV

Par

P

w

Steam to reheater

Steam to condenser

Steam to deaerator

p, T, w, h

2.2 -

,VCV - ,VBY - ,VIV - ,Par- , ,P- , - ,p-,T -,w - ,h- .

2.1.1

( ) . (steam chest) (inletpiping) (crossoverpiping) . (steam chest)

. . 2.3(b) TCH .

Governor-ControlledValves

SteamChest

ValvePosition

Steam

High Pressure TurbineSteam Flow

(a)

PGV mHPsTCH

F

+1

STEAM CHEST

(b)

2.3 :(a) (b)

6 2.4 . 2.5 . TCH,TRH, TCO (steam chest) (inletpiping),(reheaters), - (crossoverpiping)

.FVHP,FHP,FIP, FLP . (fraction)

2.1 .

VALVEPOSITION

CONTROLVALVESSTEAMCHEST

SHAFT

TO CONDENSER

HP

(a)

VALVEPOSITION

CONTROLVALVESSTEAMCHEST

REHEATER CROSSOVER

LP LP

TO CONDENSER

HP IP SHAFT

(b)

CONTROLVALVESSTEAMCHEST

HPVALVEPOSITION

REHEATER

IP

CROSSOVER

LP LPLP IP,LP SHAFTLP

LP LPLP HP,LP SHAFTLP

(c)

HP,LP SHAFT

(d)

VALVEPOSITION

CONTROLVALVESSTEAMCHEST

REHEATER

HP IP

CROSSOVER

LP LPLP LP

TO CONDENSER

LP SHAFT

2.4 (a)Nonreheat(b)Tandem Compound,SingleReheat(c)CrossCompound,SingleReheat(d)CrossCompound,SingleReheat

sTCH+11

P GV PM

sTCH+11

PGV

PM1

sTRH+11

sTCO+11

FHP

FIP

FLP/2

++

FLP/2

+

+

PM2

sTCH+11

PGV

P M2

sTCO+11

FHP F IP

FLP

+

+

sTRH+11

P M1

(a)

(b)

(c)

(d)

sTCH+11

PM

sTCO+11

FHP FIP FLP

+

+ +

+

sTRH+11

GVP

2.5 (a)Nonreheat(b)Tandem Compound,SingleReheat(c)CrossCompound,SingleReheat(d)CrossCompound,SingleReheat

Steam SystemConfiguration

TypicalCylinderFractions TypicalTimeConstants

FVHP FHP FIP FLP TCHTRHTRH1

TRH2 TCONonreheatFig.11(a) .2-.5 Tandem

CompoundSingleReheatFig.11(b)

.3 .4 .3 .1-.4 4-11 .3-.5

CrossCompoundSingleReheatFig.11(c)

.3 .3 .4 .1-.4 4-11 .3-.5

CrossCompoundSingleReheatFig.11(d)

.25 .25 .5 .1-.4 4-11 .3-.5

2.1

2.6 . 2.2 2.5 2.6 .[7-12]

11

1

sT+P GV

31

1

sT+

k1

+

21

1

sT+ 411

sT+

k2 k4 k6

k3 k5

+

k7

k8

PM1

PM2

+

+

+

+

+

+

+

+ +

+

2.6

SystemDescription

TimeConstants FractionsT1 T2 T3 T4 K1 K2 K3 K4 K5 K6 K7 K8

Nonreheat(Figure12a)TCH 1 0 0 0 0 0 0 0TandemCompound,SingleReheat

(Figure12b)

TCH TRH TCO FHP 0 FIP 0 FLP 0 0 0

CrossCompound,SingleReheat

(Figure12c)

TCH TRH TCO FHP 0 0 FIP FLP/2FLP/2 0 0

CrossCompound,SingleReheat

(Figure12d)

TCH TRH TCO FHP 0 FIP 0 0 FLP 0 0

2.2

2.1 2.2 . 1 . 1 63% ( 37% ) 63% . 2.8 2.3

. (steam chest) .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

2.7

2.7 0.35. 1 0.35 0.63 .

0 3 6 9 12 150

0.2

0.4

0.6

0.8

1

2.8

1 .

SystemDescription

TimeConstants FractionsT1 T2 T3 K1 K3 K5

( 15)

TCH0.35

TRH10

TCO0.45

FHP0.3

FIP0.4

FLP0.3

2.3

2.2

2.2.1

3 3 (armature) (field) . (damper) ., (stator) , . , , .( .) , ., , ( ) . 3 .[13] .

(1) MMF .

(2) . .

(3) . Carter'sfactor . = 0- 2cos(Ps) , 0 2 .

, .

2.2.2

n+1 .n 1 . n . . . Kirchoffs

. , short . 0 . ,

. . . , . . ,

. . d . q d 90 ., a q . ,dq

. . abc dq .

T= 23

sin sin(- 23) sin(+23)

cos cos(- 23) cos(+23) (2.1)

(dq abc ) .

Tinv= 23

sin cossin(- 23) cos(-

23)

sin(+ 23) cos(+23)

(2.2)

(2.1) (2.2) .

(t)=t

0()d+ 0 (2.3)

() .,abc fa,fb, fc dq

fd,fq T .,

[ ]fdfq =T

fafbfc

(2.4)

,

fafbfc=Tinv[ ]fdfq (2.5)

(2.1) (2.2) . ,abc dq . abc dq ,

.

vd=-Rsid- -(Lls+Lmd)diddt+Lmddifddt+Lmd

dikddt (2.6)

vq=-Rsiq+ -(Lls+Lmq)diqdt+Lmqdikqdt (2.7)

,

d=-(Lls+Lmd)id+Lmd(ifd+ikd) (2.8)

q=-(Lls+Lmq)iq+Lmqikq (2.9)

vfd=Rfdifd-Lmddiddt+(Llfd+Lmd)difddt+Lmd

dikddt (2.10)

0=Rkdikd-Lmddiddt+Lmddifddt+(Llkd+Lmd)

dikddt (2.11)

0=Rkqikq-Lmqdiqdt+(Llkq+Lmq)dikqdt (2.12)

. : vd : d vq : q id : d iq : q vfd : ( ) ifd : ( ) ikd :d ( ) ikq :q ( ) d :d

q :q Rs : Lls : Lmd :d Rfd : ( ) Llfd : ( ) Rkd :d ( ) Llkd :d ( ) Lmq :q Rkq :q ( ) Llkq :q ( )

(2.6)-(2.12) 2.9 .

+

+

+

+

Lls

vfd

id

iq

vd

vq

Rs

Rs

LlkdLlfd

Lmd

Lls

LmqLlkq

Rfd Rkd

Rkq

q

d

2.9

,

(1)D q . . ac , , , dc .

(2) , . d q . ,

(3) , . .

(4) ., , , .

. , . . .

. , ,

.

2.2.3

, abc .

va=Vpcosv (2.13)

vb=Vpcos(v- 23) (2.14)

vc=Vpcos(v+ 23) (2.15)

,

v= vt+ v0 (2.16)

,, v= . , . . a (+) . , .

= - v=t

0(()- v())d+ (0)- v(0) (2.17)

,(2.1) (2.13)-(2.15) ,dq .

vd= 32Vpsin(- v)=32Vpsin (2.18)

vq= 32Vpcos(- v)=32Vpcos (2.19)

(2.18) (2.19) , dq ac , ( ) dq .

q , d . ,

V= 13(vq+jvd) (2.20)

(2.20) V (2.13)(2.15) va,vb, vc . j . rms . 2.10 dq t=0 3V . 3V dq

. va,vb, vc a,b, c 2V .

a

b

c

d

v

i

v

i

q

d

d

q

q

j

I3

V3

2.10

3I V .abc a,b,c 2I . () d q .

id= 32Ipsin(+ ) (2.21)

iq= 32Ipcos(+ ) (2.22)

Ip .

2.2.4

2.9 . . 2

. .[14]

D Ld

Ld=Lls+Lmd (2.23)

D Ld'

Ld'=Lls+ LmdLlfdLmd+Llfd (2.24)

D Ld''

Ld''=Lls+ LmdLlfdLlkdLmdLlfd+LmdLlkd+LlfdLlkd(2.25)

Q Lq

Lp=Lls+Lmq (2.26)

Q Lq''

Lq''=Lls+ LmqLlkqLmq+Llkq (2.27)

D Td0'

Td0'= Llfd+LmdRfd (2.28)

D Td'

Td'=Llfd+ LmdLlsLmd+Lls

Rfd (2.29)

D Td0''

Td''=Llkd+ LmdLlfdLmd+Llfd

Rkd (2.30)

D Td''

Td''=Llkd+ LmdLlfdLlsLmdLlfd+LmdLls+LlfdLls

Rkd (2.31)

Q Tq0''

Tq0''= Llkq+LmqRkq (2.32)

Q Tq''

Tq''=Llkq+ LmqLlsLmq+Lls

Rkq (2.33)

3 . , , . Ld,Ld'',Td' Td'' , d . d( q)

. , . Ld,Ld'',Lq,Lq'',Td',Td0',Td'',Tq0'',Tq'',Tq0'' , d q . .

. . , . , .

, . ,

Delle-Alstholm . 2.4 . SSFT StandStillFrequencyResponse,RTDR RotatingTimeDomainResponse.[15]

d-qParametersper

AdkingsandHarley

UnitsBaseMVA20.65BasekV13.8

MfrData

[1]

SecondOrder ThirdOrder

SSFR RTDR SSFR

[2] [3] [4] [5] [6]

Synchronous

x1 pu 0.12 0.1066 0.1066 0.0366

Ra@100C 0.00183 0.00183

xd pu 1.67 1.703 1.703 1.824

xq pu 1.58 1.41 1.41 1.484

Transient

x'd pu 0.149 0.1675 0.1745 0.1906

T'do sec 4.61 6.326 5.954 5.273

x'q pu 1.58 0.5653 0.9206 1.110

T'qo sec 0.39 0.6206 2.436 3.858

Subtransient

x''d pu 0.116 0.1404 0.1721 0.157

T''do sec 0.023 0.0336 1.0610 1.008

x''q pu 0.124 0.2747 0.5465 0.5502

T''qo sec 0.065 0.0620 0.3879 0.4009

2.4

3 H/W

3.1

DigitalGovernor

ACTUATOR

EXHAUST

MPUGENERATOR

Plant

3.1

MPU(Magneticpickup) (Governor) (Actuator) . MPU

. , . , , . ,

. . ,

.3.2 .

DigitalGovernor

PC/104

Tower PC

A/DConverter

D/AConverter

Governor

Actuator Position

V/F

Frequency

Steam Pressure

Power

RS232

Simulator

- MatLab 6.1 & Simulink- xPC Target

ACTUATOR

EXHAUST

DigitalGovernor

3.2

4 .

(1) PC , PC, . Matlab/Simulink/xPCTarget , VisualC++ .

(2) PC . . PC PC .

(3) .

(4) MPU V/F .

PC C . PC RS-232 . PC . . 4

, , . pu pu .,X- 1000ms/div .Y- -0.21.2 0.2 .

.

.

3.3

3.2 H/W

H/W PC, PC, PC I/O , PC RS-232 .

3.4

3.2.1 PC(HostPC)

xPCTarget PC Windows95,windows2000,window NT .3.5 , Ethernet . PC PC .CPU

4 2.4GHz RAM 256MB. Matlab/Simulink/xPCTarget VisualC++.

3.2.2 PC(TargetPC)

PC Intel 386/486/Pentium AMD K5/K6/Athlonprocessor . 3.5 , ethernet .xPCTargetEmbeddedOption 3.5

. PC PC

PC104 .

, . .DC . . . .

3.5 PC I/O

3.2.3V/F

PC I/O 010V .

MPU V/F .V/F LM331IC ,

3.5 . CL ,DC VCL 0A .

ISW(ave)= IRL(ave)+ICL(ave) (3.1)

PWT Is=

V in+0.5VCRL +0

V inRL ,ifV in

VCL (3.2)

Fout= 1Tout V in

IsRLPW =V inRs

VrefRLLn(3)RTCT

= V inRS2.09RLRTCT (3.3)

IS

RLVin CL

0A ave

TIMER

ISW

3.6LM331

V in VL . RLCL V in .

,V/F . V in ,

.[16] 10mV 10V, 10Hz10kHz

.

in

thr

Ire

out

RC

Isw

gnd

Vcc

7

8

3

56

2 1

4

+15V

Vin

0.1uF

0.1uF

100k

RB

100k

RL

47 5k

12k

0.01uF

CT

6.8k

RT10k

RP

1uF

CL

LLLLMMMM333333331111

+10mVto

+10V10Hz

to10kHz

Fout

Fmaxadjust

RS

3.7V/F

3.8705 V/F

4

4.1 HIL

. , ,HIL ,, .HIL SUT(System UndertheTest)

SUT . SUT .SUT .SUT .SUT . 4.1 HIL .

EmbeddedSystem(SUT)

Real-TimeSimulation

Sensor input signals

Operator commands

Actuator control signals

Operator displays

4.1HIL

4.1 SUT . , SUT . .,I/O . .HIL

. , , , .

. / . HIL

. verification validation .verification SUT

. SUT .verification SUT HIL .validation

.validation

HIL . . HIL , .

.HIL 4.2 . HIL .

I/O, shutdown

. HIL . . I/O . . .

Initialize simulationand hardware

Read from inputdevices

Write to outputdevices

Delay until time tostart next frame

Evaluate simulationmodels

End of run?

Shutdown simulationand hardware

Integrate statevariables

Yes

Initialization

Dynamic Loop

Shutdown

No

4.2HIL

4.2

4mA - 20mA(Actuator

Signal)

1V - 5V(shunt

)

0V - 5V(Scaling)

0V - 1V(pu )

Steam Turbine

GeneratorModel

V/F Converter

( )Digital

Governor

A/D D/ASimulator

4.3

420mA shunt 15V . pu 01V . 4.4 Matlab/Simulink

. . .

4.4

4.3

705 4.1 HIL.2 , Idle

Idle . , % .

. . 1 20[rpm], 1 31[rpm] .

4.1705

Setting Dynamics

Raiselimit 2000[rpm] Gain1 0.1379

Lowerlimit 505[rpm] Reset1 0.06

Ratedspeed 1200[rpm] Compensation1 0.4

Idlespeed 600[rpm] Gain2 0.10279

Raiserate 1200[rpm/min] Reset2 1.0

Lowerrate 1854[rpm/min] Compensation2 0.2

droop 0[%]

gain,reset compensation P,I D .gain .gain , .reset . 0 . , slow hunting overshoot .compensation . 4.5 4.6 600rpm Idle 1200rpm

. , .

. PID , . 4.7 4.8

. 1200rpm 12% . 46 1200rpm/min ,8 1340rpm 13.4% . 1854rpm/min 31rpm . .

4.5Idle-Rated

4.6

4.7

4.8

5

HIL . . .

, . HIL

.

1. , PID .

2. Matlab xPC Target , HIL .

3. 600rpm Idle 1200rpm , .

4.1200rpm 12%

1200rpm/min ,7 1340rpm . 1854rpm/min , 31rpm .

HIL . , .

[1],", ",,1995.[2] 7," HILS ",,Vol.7,No.1,pp.317-319,2003.

[3]," ",,,1999.

[4] 6, ABSECU HILS ,2001 Session,pp.104-106.

[5]," ",,1999.[6]A.W.Ordys,A.W.Pike,M.A.Johnson,R.M.KatebiandM.J.Grimble, "ModellingandSimulationofPowerGenerationPlants",GreatBritain,1994.

[7]IEEE Std122-1991,"IEEE RecommendedPracticeforFunctionaland Performance characteristics ofControlSystems forSteamTurbine-GeneratorUnits",InstituteofElectricalandElectronicsEngineers,1991.

[8]IEEE PowerSystem Engineering Committee Report,"DynamicmodelsforSteam andHydroTurbinesinPowerSystem Studies"IEEE Transactions on Power Apparatus and Systems,Vol.PAS-92,No.6,Nov./Dec.,pp.1904-1915,1973.

[9]IEEE PowerSystem Engineering Committee Report,"DynamicmodelsforSteam andHydroTurbinesinPowerSystem Studies"IEEE Transactions on Power Apparatus and Systems,Vol.PAS-92,No.6,Nov./Dec.,pp.1904-1915,1973.

[10]T.J.Hammons,R.J.Fleming andM.H.EwerBibliography ofliterature on steam turbine-generator controlsystems,IEEEcommitteereport,IEEE Transactions on PowerApparatusandSystems,Vol.PAS-109,(9),pp.2959-2970,1983.

[11] 4, ,,1998.[12] 3 ,,,1998.[13] "Modeling and Control of a Synchronous Generator withElectronic Load",Ivan Jadric,http://scholar.lib.vt.edu/theses/available/etd-22198-124235/unrestricted/etdtext.pdf.

[14]Kyung-Sun Choi,"A study on the modeling ofgeneratorcontrolsytem usingloadrejectionTest& Enhancementofpowersystem stabilitybyFuzzy-Pss",, ,1998.

[15]P.A.ERusche.PE,GregoryJBrock,LouisN hannett,JohnnyR Willis,Testand Simulation ofNetwork DynamicResponseUsing SSFR andRIDR DerivedSynchronousMachineModels,IEEE TransactionsonEnergyConversion,Vol5,No.1,March1990,pp.145-151.

[16]http://elearning.algonquincollege.com/coursemat/saurioc/ELE-3/ELE-3-NOTES/V-F-CONVERTER.pdf.

1 2 2.1 2.1.1

2.2 2.2.1 2.2.2 2.2.3 2.2.4

3 H/W 3.1 3.2 H/W3.2.1 Host PC3.2.2 Target PC3.2.3 V/F

4 4.1 HIL 4.2 4.3

5