Hg Workshop Talk Arndt

download Hg Workshop Talk Arndt

of 34

description

pcsaft

Transcript of Hg Workshop Talk Arndt

  • Biochemical and

    Chemical Engineering

    Markus C. Arndt, Gabriele Sadowski

    PC-SAFT: Theory and Application

    Laboratory of Thermodynamics

    Workshop on Hydrogel Modelling

    24 November 2011, Stuttgart

  • Outline

    Idea of PC-SAFT

    Its contributions:

    hard sphere

    hard chain

    dispersion

    association

    dipoles

    electrostatic energyConclusion

    2Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    electrostatic energy

    elastic forces

    exemplary modelling results

    Conclusion

  • Basic idea of PC-SAFT

    PC-SAFT: Perturbed-Chain Statistical Associating Fluid Theory

    Developed by Joachim Gro and Gabriele Sadowski

    Molecular model from statistical mechanics

    Molecules are built of spherical segments

    - may compose chains

    - with repulsive and attractive interactions

    polymer

    solvent

    3Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    solvent

    schematic Flory-Huggins

    Lattice Chain Model for a

    polymer solution Theory for chain molecules

    structure of chain fluid?

    intermolecular radial distribution function

    interaction between chain fluid?

    interaction potentialGross, Sadowski, Fluid Phase Equilib. (168) 2000Gross, Sadowski, Ind. Eng. Chem. Res. (40) 2001

  • Radial distribution function g(r)

    gives the relative probability of finding

    other molecules surrounding a center

    molecule in the distance of r

    product of ( g(r)) gives the local densityin the distance of r from the center of

    a molecule

    0

    1

    2

    0 1 2 3 4 5 6

    r/

    g(r)

    4Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    is a function of density, molecule size and shape,

    as well as of interaction potential

    calculated from molecular simulations or

    integral calculations (statistical mechanics) r

    dr

    g(r)

  • Interaction potentials

    Hard-sphere fluid:

    hard-sphere repulsion

    no attraction

    Square-well fluid:

    hard spheres

    with attraction well

    Modified square-well fluid:

    -0.01

    0.99

    0 1 2 3

    r/

    u(r)

    -101234

    0 1 2 3

    u/

    34

    5Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Modified square-well fluid:

    soft spheres

    with attraction well

    Lennard-Jones fluid:

    soft spheres

    with soft attraction well

    0 1 2 3

    r/

    -101234

    0 1 2 3

    r/

    u/

    -101234

    0 1 2 3r/

    u/

  • Perturbation theory

    Problems for real systems:

    Analytical function of radial distribution is not available

    Interaction potentials for real systems are unknown

    Solution: perturbation theory

    reference system: hard-sphere fluid

    1st perturbation: chain formation

    hard-chain fluid

    6Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    hard-chain fluid

    reference system: hard-chain fluid

    2nd perturbation: attraction (dispersive interaction)

    hard-chain fluid with attractive interactions

    Contributions to Helmholtz energy: a residual = a hard sphere + a chain formation + a dispersion

    a hard chain

  • PC-SAFT parameters

    Pure-component parameters for molecules (non-polar, non-associating, uncharged):

    segment diameter

    segment number m

    dispersion energy

    Mixtures: One-fluid theory

    7Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Mixtures: One-fluid theory

    mean segment number

    Berthelot-Lorenz combining rules between components i and j:

    i i=i

    m x m

    ( )12

    ij i j = +

    ( )1ij i j ijk = kij = binary parameter

  • PC-SAFT hard chain contribution

    Hard-chain term

    with

    ii

    hc hshs

    i i ii1 ln ( )i

    a am x (m ) g d

    kT kT=

    i i

    i

    m x m=

    hs 3 3

    1 2 2 20 32 2

    0 3 3 3 3

    1 3ln 1

    1 1

    a ( )

    kT ( ) ( )

    = + +

    221 3 2d d d d

    mean segment number

    hard-sphere term

    radial distribution

    8Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    22

    i j i jhs 2 2ij ij 2 3

    3 i j 3 i j 3

    1 3 2

    1 1 1

    d d d d g (d )

    ( ) d d ( ) d d ( )

    = + +

    + +

    { }nn i i 0,1,2,36

    i

    i

    x m d n= =

    ii i 1 0.12 exp 3d

    kT

    =

    radial distribution

    function

    temperature-dependent

    segment diameter

  • =

    for square-well potential

    PC-SAFT dispersion

    Perturbation theory of Barker and Henderson

    ( )mI ,31

    ...+=

    pi1

    232 rdrgkT

    mmxxkTa chainhard

    ijij

    i jjiji

    disp

    r

    s

    ls

    u(r)

    9Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    - power function in 3 (reduced density)- simple dependence of coefficients ai upon m (segment number)

    - fitted to simulation data of square-well fluids

    ( )mI ,31

  • PC-SAFT equation of state

    Contributions to Helmholtz energy

    a residual = a hard sphere + a chain formation + a dispersion

    10Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    a residual = a hard sphere + a chain formation + a dispersion

    a hard chain

    but what about other molecular interactions?

  • Further contributions to PC-SAFT

    Association hydrogen bonding

    association between two (hard-sphere) molecules

    with association sites (proton donator and acceptor)

    reference system: hard-sphere fluid

    perturbation: square-well attraction

    Additional pure-component parameters for associating molecules:

    association energy AiBi

    Proton-

    Donator

    Proton-

    Acceptor

    11Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    association energy

    association volume AiBi

    Mixtures: One-fluid theory

    Wohlbach-Sandler combining rules:

    no additional binary parameter

    ( )12

    i j j ji iA B A BA B

    = + ( )3

    12

    i j j ji iii jjA B A BA B

    ii jj

    = +

  • PC-SAFT association contribution

    Association i

    i

    ii

    iassoc AA 1ln

    2 2A

    a Xx X

    kT

    = +

    12Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    with 1

    1 j i ji

    j

    B A BA

    j

    j B

    X x X

    = +

    ( ) 3 exp 1i ji j i j A BA B A Bhsij ij ijg dkT

    =

    fraction of molecules

    which are not bonded

    association strength

  • Further contributions to PC-SAFT

    Dipole and Quadrupole

    reference system: two-center Lennard-Jones fluid

    perturbation: dipole (Stockmayer potential) or quadrupole

    ( )DD

    ijjijiij

    jjii

    i j

    jjiiji JnnkT

    xxa,2

    22,,3

    33

    22=

    pi

    333224 pi

    +

    23

    2

    1 aaa

    apolar

    =

    13Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    applicable for polar components (ketones, esters, ethers, aldehydes, etc.)

    no additional pure-component parameters required

    direct use of the dipole moment from experiments or quantum mechanics

    ( )DD

    ijkkjikjijkikij

    kkjjii

    i j

    kkjjiikji

    kJnnn

    kTxxxa

    ,3222

    ,,,

    333

    3

    22

    3 34 =

    pi

    n

    n

    ijijnijn

    DDij kT

    baJ 34

    0,,,2

    =

    +=

    =

    =

    4

    03,,3

    n

    nijkn

    DDijk cJ

  • Further contributions to PC-SAFT

    Electrostatic interactions

    reference system:

    hard-sphere fluid

    perturbation: Debye-Hckel charge forces

    22

    12

    elec

    i i ieli

    a ex z

    kT kT

    pi

    =

    +

    14Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    with

    no additional pure-component parameters required

    ion-specific, not salt-specific parameters

    direct use of the molecules electric charge

    2

    3

    3 3 1ln(1 ) 2(1 ) (1 )

    ( ) 2 2i i i i

    i

    = + + + + +

    22 2N

    i ie li

    ez x

    kT

    =

    12 ikT kTpi

  • Further contributions to PC-SAFT

    Elastic energy of a network

    reference system:

    hard-chain fluid

    perturbation: elastic force due to deformation

    =

    0

    13

    2

    max

    32

    0ln11

    232

    VV

    VV

    VV

    xkT

    a

    n

    np

    elast

    15Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    with

    one new parameter to be adjusted: network functionality n use of experimental setup

    3

    3

    1

    6

    Pi i i

    ip

    n NV x m

    x

    pi=

    3

    3 2

    max

    1 109.52 sin

    8 2 180c p pV x N m d

    pi =

    o

    o

    0max0

    2 VVVkT n

  • Adjustable parameter is inevitable

    Assumption: tetrahedrally oriented monodisperse chains

    Reality: Networks are not homogenously built

    Imperfections and network errors may

    cause greater stiffness

    give greater mesh size

    be elastically ineffective

    Experimental procedure?

    varying chain length

    16Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Accounted for with adjustable parameter n

    entanglement

    unoccupied binding

    sites of cross-linkerdangling endschain loops

  • Contributions and parameters of PC-SAFT

    =aresidual ahard-chain adispersion+

    +

    mseg

    hb hb

    n+

    (+kij)

    17Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    2 up to 6 (+1) adjustable pure component parameters to obtain the

    Helmholtz energy in arbitrary mixtures

    Parameter fitted to experimental data of pure components or a mixture

    such as liquid density, vapor pressure, activity coefficient, solubility, ..

    =aresidual ahard-chain adispersion+

    (+ aassociation) (+ aelastic)(+ aelectrostatic)(+ adipole)

  • Why Helmholtz energy A?

    PC-SAFT Helmholtz Energy A may be used for

    pressure p and compressibility factor Z

    density by iteration chemical potential

    fugacity coefficient Entropy S

    internal energy U

    T

    Ap

    V

    =

    AS

    T

    =

    ijT,V,nii n

    A

    =

    18Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    internal energy U

    enthalpy H

    Gibbs energy G

    complete thermodynamic description of a system

    U A TS= +VT

    =

    H U pV= +G H TS=

  • Modelling approach of phase equilibria

    Modelling the thermodynamic equilibrium i = i

    vapour phase

    liquid phase

    19Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Condition: isofugacity criterion fi = fi

    Using the concept xii p = xii p with the fugacity coefficient from PC-SAFT:

  • n-heptane ethanol

    temperature dependence of VLE

    365

    370

    375

    kij=0,038

    T

    [K]

    Vapour Liquid Equilibria (VLE)

    1,0

    1,5

    kij=0,036

    p

    [bar]

    338,15 K

    Acetone n-heptane

    pressure dependence of VLE

    V

    20Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    0,0 0,2 0,4 0,6 0,8 1,0

    345

    350

    355

    360

    x/yHeptan

    [-]

    1,0132 bar

    0,0 0,2 0,4 0,6 0,8 1,0

    0,5

    x/yAceton

    [-]

    313,15 K

    Albers, unpublished 2011

    V

    VL

    L

  • Liquid Liquid Equilibria (LLE)

    Miscibility gap water ethylacetate narrows with increasing temperature

    and with the solubiliser methanol (at 20 C)

    L

    21Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Exp: Sorensen; Liquid-liquid Equilibrium Data Collection 1980

    L

    LL

  • Solid Liquid Equilibria (solubility)

    Amino acids in water (binary and ternary systems)

    glycine L-alanine

    L-valine

    25 C 30 C

    SL

    22Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    L-leucine

    Held et al., Ind. Eng. Chem. Res (50) 2011

    L-valine

    L

  • Solid Liquid Equilibria (solubility)

    Ternary sugar solubility in water

    SL

    35 C

    25 C

    23Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Held, unpublished

    Exp: Ferreira et al., Ind. Eng. Chem. Res (42) 2003

    L

  • PNIPAAm in water

    Binary mixture of PNIPAAm-water (without cross-linker)

    LLE and density

    LL

    T [K]

    [

    k

    g

    /

    m

    ]

    *

    *n

    NH O

    24Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Exp: Wohlfarth C, CRC Handbook of Liquid-Liquid Equilibrium Data of Polymer Solutions 2008

    L

    wPNIPAAm [-]

    5 C

    20 C

    25 C

    wPNIPAAm [-]

  • PNIPAAm in water

    Binary mixture of PNIPAAm-solvent (cross-linked to hydrogel)

    Considering elastic force: xii p = xiipxii p = xii(p-pelast)

    T [K] y = 0.005y = 0.005y = 0.005y = 0.005

    y = 0.010y = 0.010y = 0.010y = 0.010

    elastic pressure

    p = pelast

    p = p|

    25Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Exp: Poschlad, Diss., Berlin, 2011

    Exp: Zhi, Chem. Eng. Sci. (65) 2010

    m/m0 [-]

    y = 0.015y = 0.015y = 0.015y = 0.015

  • Hydrogels: other mixtures

    Poly(acrylic acid) PAA water

    Loose chains: no LLE

    Cross-linked gel: high swelling

    without transition

    T [K]

    1.5

    PNIPAAm water/2-propanol (20 C)

    Pronounced co-nonsolvency

    26Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Exp: Shin et al., Eur Polym J, 34 (2), 1998

    m/m0 [-]

    Exp: Miki et al., Mater. Res. Soc. of Japan, 32 (889), 2007

    1

    0.5

    0

  • Ternary swelling: PNIPAAm in water/ethanol

    Ternary System: Swelling depends on

    Temperature

    Concentration of

    Water/EtOH

    27Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    PNIPAAm in water

    PNIPAAm in ethanol

    Ternary mixture (25 C)

  • Conclusion (I)

    Advantages of PC-SAFT compared to other EOS and activity-coefficient models

    physically-based model

    accounts for size and shape of molecules

    suitable also for complex and large molecules

    equations of state account for the density (pressure) dependence

    28Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    reliable for extrapolation

    to other conditions (T, p, concentration)

    to multi-component systems (binary ternary, )

    results confirmed the wide applicability of PC-SAFT

    all thermodynamic properties can be derived from Helmholtz energy function

  • Conclusion (II)

    Hydrogel networks can be modelled with PC-SAFT

    by considering a new elastic contribution:

    aelast in the Helmholtz energy

    Pelast in the isofugacity equation

    Gel swelling and the gel concentrations depend on

    chain length

    29Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    chain length

    temperature

    concentration of solutes/cosolvents

    Further research with focus on more complex

    systems, polyelectrolytes and diffusion

    m/m0 [-]

    T [K]

  • PC-SAFT: Theory and Application

    Thank you for your attention!

    30Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Questions?

  • Deduction and explanation of PC-SAFT

    Gross, J.; Sadowski, G. Application of perturbation theory to a hard-chain

    reference fluid: An equation of state for squarewell chains. Fluid Phase

    Equilib. 2000, 168, 183.

    Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a

    Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244.

    31Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

  • PC-SAFT - dispersion

    Dispersion term

    with

    dispj 3

    1 i j i j ij

    2j 3

    1 2 i j i j ij

    2 ,

    ,

    i

    i j

    i

    i j

    a I ( m) x x m m

    kT kT

    m C I ( m) x x m mkT

    =

    1hc

    hc1

    12 2 3 4

    1

    8 2 20 27 12 2 1 (1 )

    ZC Z

    m m

    = + +

    + = + +

    defined variable

    32Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    [ ]248 2 20 27 12 2

    1 (1 )(1 ) (1 )(2 )m m

    + = + +

    ( ) 6 i1 i0

    , ( )i

    I m a m =

    = ( )6

    i2 i

    0, ( )

    iI m b m

    =

    = power functions

    i 0i 1i 2i1 1 2( ) m m ma m a a a

    m m m

    = + +

    i 0i 1i 2i1 1 2( ) m m mb m b b b

    m m m

    = + +

    defined coefficients

  • PC-SAFT polar contibutions

    Pad approximation

    Dipolar term

    polar 2

    3 21a

    aa a

    =

    ( )DD

    ijjijiij

    jjii

    i j

    jjiiji Jnnkt

    xxa,2

    22,,3

    33

    22=

    pi

    ( )DD

    ijkkjikjikkjjiikkjjii

    kji Jnnnktxxxa

    ,3222

    ,,,

    333

    3

    22

    3 34 =

    pi

    33Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    Quadrupolar term

    ( ) ijkkjikjijkikiji j kjik Jnnnktxxxa ,3,,,33 3 =

    ( )

    pi ijjiji

    ij

    jjii

    i j

    jjiiji Jnnkt

    xxa,2

    22,,7

    55

    2

    2

    2 43

    =

    ( )

    pi

    ijkkjikjijkikij

    kkjjii

    i j

    kkjjiikji

    kJnnn

    ktxxxa

    ,3222

    ,,,333

    555

    3

    22

    3 169 =

  • PC-SAFT equations

    Dipolar term

    Quadrupolar term

    with

    n

    n

    ijijnijn

    DDij kT

    baJ

    =

    +=

    4

    0,,,2

    =

    =

    4

    0,,3

    n

    n

    ijknDD

    ijk cJ

    n

    n

    ijijnijnij kT

    baJ

    =

    +=

    4

    0,,,2

    =

    =

    4

    0,,3

    n

    n

    ijknijk cJ

    mmm 211

    34Laboratory of Thermodynamics

    Prof. Dr. G. Sadowski

    with

    n

    ij

    ij

    ij

    ijn

    ij

    ijnijn a

    m

    m

    m

    ma

    m

    maa 210,

    211 +

    +=

    n

    ij

    ij

    ij

    ijn

    ij

    ijnijn b

    m

    m

    m

    mb

    m

    mbb 210,

    211 +

    +=

    n

    ijk

    ijk

    ijk

    ijkn

    ijk

    ijknijkn c

    m

    m

    m

    mc

    m

    mcc 210,

    211 +

    +=

    ( )21jiij mmm =

    ( )31kjiijk mmmm =