Herschel celestial calibration sources

78
Exp Astron DOI 10.1007/s10686-013-9357-y ORIGINAL ARTICLE Herschel celestial calibration sources Four large main-belt asteroids as prime flux calibrators for the far-IR/sub-mm range Thomas M ¨ uller · Zolt´ an Balog · Markus Nielbock · Tanya Lim · David Teyssier · Michael Olberg · Ulrich Klaas · Hendrik Linz · Bruno Altieri · Chris Pearson · George Bendo · Esa Vilenius Received: 5 July 2013 / Accepted: 26 September 2013 © Springer Science+Business Media Dordrecht 2013 Abstract Celestial standards play a major role in observational astrophysics. They are needed to characterise the performance of instruments and are paramount for photometric calibration. During the Herschel Calibration Asteroid Preparatory Programme approximately 50 asteroids have been established as far-IR/sub-mm/mm calibrators for Herschel. The selected asteroids fill the flux gap between the sub-mm/mm calibrators Mars, Uranus and Neptune, and the mid-IR bright calibra- tion stars. All three Herschel instruments observed asteroids for various calibration purposes, including pointing tests, absolute flux calibration, relative spectral response T. M ¨ uller () · E. Vilenius Max Planck Institute for Extraterrestrial Physics, PO Box 1312, Giessenbachstrasse, 85741, Garching, Germany e-mail: [email protected] Z. Balog · M. Nielbock · U. Klaas · H. Linz Max Planck Institute for Astronomy, onigstuhl 17, 69117, Heidelberg, Germany T. Lim · C. Pearson Space Science and Technology Department, RAL, Didcot, OX11 0QX, Oxon, UK D. Teyssier · B. Altieri European Space Astronomy Centre (ESAC), ESA, Villanueva de la Ca˜ nada, 28691 Madrid, Spain M. Olberg Onsala Space Observatory, Chalmers University of Technology, 43992 Onsala, Sweden G. Bendo UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, Manchester, M13 9PL, UK

Transcript of Herschel celestial calibration sources

Exp AstronDOI 10.1007/s10686-013-9357-y

ORIGINAL ARTICLE

Herschel celestial calibration sourcesFour large main-belt asteroids as prime flux calibratorsfor the far-IR/sub-mm range

Thomas Muller ·Zoltan Balog ·Markus Nielbock ·Tanya Lim ·David Teyssier ·Michael Olberg ·Ulrich Klaas ·Hendrik Linz ·Bruno Altieri ·Chris Pearson ·George Bendo ·Esa Vilenius

Received: 5 July 2013 / Accepted: 26 September 2013© Springer Science+Business Media Dordrecht 2013

Abstract Celestial standards play a major role in observational astrophysics. Theyare needed to characterise the performance of instruments and are paramountfor photometric calibration. During the Herschel Calibration Asteroid PreparatoryProgramme approximately 50 asteroids have been established as far-IR/sub-mm/mmcalibrators for Herschel. The selected asteroids fill the flux gap between thesub-mm/mm calibrators Mars, Uranus and Neptune, and the mid-IR bright calibra-tion stars. All three Herschel instruments observed asteroids for various calibrationpurposes, including pointing tests, absolute flux calibration, relative spectral response

T. Muller (�) · E. VileniusMax Planck Institute for Extraterrestrial Physics,PO Box 1312, Giessenbachstrasse, 85741, Garching, Germanye-mail: [email protected]

Z. Balog · M. Nielbock · U. Klaas · H. LinzMax Planck Institute for Astronomy,Konigstuhl 17, 69117, Heidelberg, Germany

T. Lim · C. PearsonSpace Science and Technology Department, RAL, Didcot,OX11 0QX, Oxon, UK

D. Teyssier · B. AltieriEuropean Space Astronomy Centre (ESAC), ESA,Villanueva de la Canada, 28691 Madrid, Spain

M. OlbergOnsala Space Observatory, Chalmers University of Technology,43992 Onsala, Sweden

G. BendoUK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics,Manchester, M13 9PL, UK

Exp Astron

function, observing mode validation, and cross-calibration aspects. Here we presentnewly established models for the four large and well characterized main-belt aster-oids (1) Ceres, (2) Pallas, (4) Vesta, and (21) Lutetia which can be consideredas new prime flux calibrators. The relevant object-specific properties (size, shape,spin-properties, albedo, thermal properties) are well established. The seasonal(distance to Sun, distance to observer, phase angle, aspect angle) and daily varia-tions (rotation) are included in a new thermophysical model setup for these targets.The thermophysical model predictions agree within 5 % with the available (andindependently calibrated) Herschel measurements. The four objects cover the fluxregime from just below 1,000 Jy (Ceres at mid-IR N-/Q-band) down to fluxes below0.1 Jy (Lutetia at the longest wavelengths). Based on the comparison with PACS,SPIRE and HIFI measurements and pre-Herschel experience, the validity of thesenew prime calibrators ranges from mid-infrared to about 700 μm, connecting nicelythe absolute stellar reference system in the mid-IR with the planet-based calibrationat sub-mm/mm wavelengths.

Keywords Herschel Space Observatory · PACS · SPIRE · HIFI · Far-infrared ·Instrumentation · Calibration · Celestial standards · Asteroids

1 Introduction

With the availability of the full thermal infrared (IR) wavelength range (from a fewmicrons to the millimetre range) through balloon, airborne and spaceborne instru-ments, it became necessary to establish new calibration standards and to develop newcalibration strategies. Instruments working at mm-/cm-wavelengths were mainly cal-ibrated against the planets Mars, Uranus and Neptune (e.g., [21, 22, 44, 62, 72]),while the mid-IR range was always tied to stellar models (e.g., [11, 12, 14, 19, 20,24, 66, 67, 82]). For the far-IR/sub-mm regime no optimal calibrators were availableright from the beginning: the stars are often too faint for calibration aspects whichrequire high signal-to-noise (S/N) ratios or are problematic in case of near-IR fil-ter leaks.1 The planets are very bright and not point-like anymore. They are causingsaturation or detector non-linearity effects. Between these two types of calibratorsthere remained a gap of more than two orders of magnitude in flux. This gap wasfilled by sets of well-known and well-characterized asteroids and their correspondingmodel predictions (e.g., [3, 26, 48, 50, 53, 75]). Figure 1 shows the flux-wavelengthregime covered by the three types of objects typically used for calibration purposesat far-IR/sub-mm/mm wavelength range.

The idea of using asteroids for calibration purposes goes back to IRAS [3]. TheIRAS 12, 25 and 60 μm bands were calibrated via stellar models and in that way con-nected to groundbased N- and Q-band measurements. But at 100 μm neither stellar

1Near-IR filter leaks are photometrically problematic when near-IR bright objects -like stars- are observedin far-IR bands.

Exp Astron

Fig. 1 Overview with the flux densities of the different far-IR/sub-mm/mm calibrators. The Uranus andNeptune SEDs represent the minimum and maximum fluxes during Herschel visibility phases. Three fidu-cial stars are also shown, their flux coverage is representative for the brightest stellar calibrators. For Ceresand Lutetia we show the minimum and maximum fluxes during Herschel observations

model extrapolations nor planet models were considered reliable. Asteroids solvedthe problem. Models for a selected sample of large main-belt asteroids were used to“transfer” the observed IRAS 60 μm fluxes out to 100 μm and calibrate in that waythe IRAS 100 μm band [3].

There was an independent attempt to establish a set of secondary calibrators atsub-millimetre (sub-mm) wavelengths to fill the gap between stars and planets [71].Ultra-Compact H-II regions, protostars, protoplanetary nebulae and AGB-stars wereselected, but often these sources are embedded in dust clouds which produce a strongand sometimes variable background. The modeling proves to be difficult and accuratefar-IR extrapolations are almost impossible.

The Infrared Space Observatory (ISO) [28] was also lacking reliable photometricstandards at far-IR wavelength (50–250 μm) in the flux regime between the stars [11,12, 24] and the planetary calibrators Uranus and Neptune [22, 29, 38, 62, 74]. Muller& Lagerros [46] provided a set of 10 asteroids, based on a previously developed ther-mophysical model code by Lagerros [32–34]. These sources have been extensivelyobserved by ISO for the far-IR photometric calibration, for testing relative spectralresponse functions and for many technical instrument and satellite purposes.

AKARI [59] followed the same route to calibrate the Far-Infrared Surveyor (FIS)[26] via stars, asteroids and planets in the wavelengths regime 50–200 μm.

The Spitzer mission [81] considered in the beginning only stars for calibrationpurposes. But due to a near-IR filter leak of the MIPS [68] 160 μm band, the calibra-tion scientists were forced to establish and verify calibration aspects by using coolerobjects. The asteroids served as reference for the flux calibration of the 160 μm bandas well as for testing the non-linear MIPS detector behaviour [75].

Exp Astron

In preparation for Herschel [64] and ALMA2 a dedicated asteroid programmewas established [53]. This led to a sample of about 50 asteroids for variouscalibration purposes. Along the mission only the 12 asteroids with the highest qualitycharacterization were continued to be observed for calibration.

Here we present the Herschel observations and the data reduction of all pho-tometrically relevant asteroid measurements (Section 2). First, the asteroid instru-mental fluxes in engineering units were converted to absolute fluxes using conver-sion factors derived from stellar calibrators (PACS), Neptune (SPIRE) and Mars(HIFI). Next, the absolute fluxes were corrected for differences in spectral energydistribution between the prime calibrator(s) and the asteroids to obtain mono-chromatic flux densities at predefined reference wavelengths. In Section 3 wedocument recently updated asteroid models for Ceres, Pallas, Vesta, and Lute-tia. The models are entirely based on physical and thermal properties taken fromliterature and derived from independent measurements, like occultation measure-ments, HST,3 adaptive optics, or flyby missions. We compare (Section 4) theabsolute model predictions with all available photometric Herschel (PACS [65],SPIRE [23], HIFI [13]) measurements and discuss the validity and limitations.The dispersion in the ratio of model to measured fluxes for the four aster-oids determines the error in the calibration factor. The conclusions are given inSection 5. It is important to note here that the derived Herschel flux densitiesof the asteroids were independently calibrated against 5 fiducial stars (PACS),the planet Neptune (SPIRE) and the planet Mars (HIFI). The asteroids aretherefore also serving as unique cross-calibration objects between the differentcalibration concepts, the different instruments, observing modes, wavelengths- andflux regimes.

2 Observations & data reduction

2.1 PACS photometer observations

The Photodetector Array Camera and Spectrograph (PACS [65]) on board theHerschel Space Observatory [64] provides imaging and spectroscopy capabilities.Here, we only considered photometric measurements of the four asteroids, takenwith the imaging bolometer arrays either at 70/160 μm (blue/red) or at 100/160 μm(green/red). Most of the observations were taken as part of calibration programmes,with the majority of the measurements taken in high gain and only a few in low gain.The observations have either been taken in scan-map mode or in chop-nod mode.The data were reduced in a standard way, following the steps defined in the offi-cially recommended chop-nod and scan-map reduction scripts, described in more

2http://en.wikipedia.org/wiki/Atacama Large Millimeter Array3Hubble Space Telescope

Exp Astron

detail in [2, 60], with flagging of bad and saturated pixels. The calibration was basedon the latest versions of the bolometer response file (responsivity: FM,7) and theflat-fielding (flatField: FM,3). The non-linearity correction was needed, with cor-rection of up to 6 % for the highest asteroid fluxes. The bolometer signals werealso corrected for the evaporator temperature effect (see [43]), with correction fac-tors of −0.3 % to 3.2 %. Since the asteroids have apparent Herschel-centric motionsof up to 80′′/h, the frames were projected in an asteroid-centered (co-moving) ref-erence frame for the final maps. We used map pixel sizes of 1.1′′, 1.4′′, and 2.1′′at 70, 100, and 160 μm, respectively, to sample the point spread function in anoptimal way.

PACS bolometer scan-map observations The scan-map observations of the fourprime asteroids are listed in Appendix Tables 2, 6, 9, 12 (observing mode ’PACS-SM’). They were obtained using the mini scan-map mode [1, 57] with the telescopescanning at a speed of 20′′/s along parallel legs of about 3′–4′ length. Typically 10scan-legs, separated by a few arcseconds, have been taken. The scans were performedin such a way that the source was moving along the array diagonals (70◦ and 110◦scan-angles in array coordinates) for optimized coverage and sensitivity. The datawere reduced in a standard way (see above), with details about the masking, high-pass filtering, speed selection and deglitching of the data given in [2]. We constructedfinal images in the asteroid co-moving reference frame for each individual OBSID4

and band. The combination of the scan and cross-scan observations was not necessaryfor our bright point-sources.

PACS bolometer chop-nod observations The chop-nod observations of the fourprime asteroids are listed in Appendix Tables 3, 7, 10, 13, 14, and 15 (observing mode’PACS-CN’). They were obtained using the point-source photometry AstronomicalObserving Template (AOT) that is carried out by chopping and nodding in perpen-dicular directions and with amplitudes of 52′′ (see [1, 57, 60] for further details). Thedata reduction included -in addition to what has been done for scan-maps- an adjust-ment for the apparent response drift and offset in this mode (see [60]) resulting incorrections of 4.3 % to 7.6 % for the four asteroids, depending on the time of theobservation (before/after OD 300) and the band [60]. We produced final point-sourcemaps in the asteroid co-moving reference frame.

Aperture photometry We applied aperture photometry with radii of 12′′ in blue/greenand 22′′ in red, centered on the source image in the final maps. Depending on theband, 78–82 % of the source flux is inside these apertures (see [40]). The sky noisein scan-maps was determined in a sky annulus with inner and outer radii of 35′′and 45′′, respectively (see [2]). The sky noise in the chop-nod images was takenfrom a sky annulus with inner/outer radii of 20′′/25′′ in the blue and green maps

4Herschel unique observation identifier

Exp Astron

and 24′′/28′′ in red maps (see [60]). We performed colour corrections [56] of 1.00,1.02,5 and 1.07 for the blue, green, and red band data to obtain monochromatic fluxdensities at the PACS key wavelength of 70.0, 100.0, and 160.0 μm, respectively.6

These corrections were calculated on basis of model SEDs for the four asteroids andcorrespond roughly to the corrections for a 200–300 K black body. The absolute fluxuncertainties were calculated by adding quadratically the measured sky noise (cor-rected for correlated noise, see [2]), 1 % for the uncertainties in colour correction, and5 % for errors related to the fiducial star models which are the baseline for the abso-lute flux calibration of the PACS photometer. The derived flux densities and errors(typically around 5–6 %) are given in Appendix Tables 16, 17, 18, 19 together withthe observing log and conditions (observation mid-time, object distance from Sunand Herschel, phase angle).

2.2 SPIRE photometer observations

The SPIRE [23, 76] photometer observations of the four prime asteroids are listedin Appendix Tables 4, 8, 11, 14. The data were taken in four different observingmodes “Sm Map” (small map), “Lg Map” (large map), “Scan” (scan map), “PS”(point-source), mainly as part of calibration programmes, but here we only use datataken in the standard small and large map modes. The measurements were reducedthrough HIPE7 version 11 -using the SPIRE Calibration Tree version 11- by SPIREinstrument experts and calibrated against a reference Neptune model (ESA4) [5,45, 63]. The processing of different observing modes is essentially identical, withthe exception of the so-called cooler burp correction which was only done for largemaps in a dedicated interactive analysis step. Point source photometry was extractedfrom Level 1 data using the timeline fitter task [5], fitting an elliptical Gaussian tothe asteroid in the co-moving reference frame. The object fluxes have been colour-corrected assuming a spectral index of 2 [79] to obtain mono-chromatic flux densitiesat 250, 350, and 500 μm (corrections are in the order of 5–6 % here). More detailsabout the reduction and calibration are given in Section 6.1 in [21]. The absoluteflux uncertainties were calculated by adding quadratically the individual errors fromthe Gaussian timeline fitting (typically well below 1 %), 2 % for the uncertaintiesin colour correction, and 5 % for errors related to the Neptune model which is thebaseline for the absolute flux calibration of the SPIRE photometer. The derived fluxdensities and errors (typically around 5–6 %) are given in Appendix Tables 16, 17,18, 19 together with the observing log and conditions (observation mid-time, objectdistance from Sun and Herschel, phase angle).

5The Vesta SED requires a colour correction value of 1.03 in the green band6The PACS photometric calibration is based on the assumption of a constant energy spectrum of theobserved source ν × Fν = λ × Fλ. Asteroid SEDs deviate from this assumption and colour-correctionsare required7HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA,the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia.

Exp Astron

2.3 HIFI continuum observations

The HIFI [13] point-source observations of Ceres are listed in Appendix Table 5.The data were taken [41] in band 1a (OD 1392) and band 1b (ODs 923, 1247,1260) as part of two science programmes. Here we only consider the continuumfluxes of Ceres, which are a by-product of the data reduction and which were orig-inally not considered as relevant for the science case. The HIFI continuum fluxeswere derived from the observations taken during the four ODs. For each of the fourdata sets (i.e. for the 10 h of integration on OD 1392) all data from both polariza-tions -H and V- have been averaged. The conversion of double-sideband antennatemperatures to flux densities uses values for the aperture efficiencies derived fromobservations of Mars and are therefore tied to a model of this planet.8 The aper-ture efficiencies have recently been reviewed and we use the new values kindlyprovided to us by Willem Jellema (priv. comm.), which, at the frequencies consid-ered here, are smaller by 3.8 % and 5.9 % in the H and V polarization, respectively,than values quoted in [69]. The given flux densities are averages of both polar-izations (i.e. H and V) observed by HIFI and are derived from the median valuesof the observed continuum baselines. The error calculation takes into account thenoise r.m.s. after smoothing to a resolution of 100 MHz, quadratically added to theestimated 5 % error in the Mars model which we tie our calibration to. For con-tinuum measurements the side-band ratio errors are negligible, and standing waveeffects are also averaged out. The two polarizations of HIFI in band 1 are mis-aligned by 6.6′′, leading to a coupling loss of order 2 % (for a perfect Gaussianbeam and no satellite pointing error). Allowing for additional pointing errors, weestimate that the derived flux densities could be too low by ≈ 5 %. The derivedflux densities and errors are given in Appendix Table 16 together with the observinglog and conditions (observation mid-time, object distance from Sun and Herschel,phase angle).

3 Thermalphysical model and asteroid-specific model parameters

The applied thermophysical model (TPM) is based on the work by Lagerros[32–34]. This model is frequently and successfully applied to near-Earth asteroids(e.g., [52, 54, 55, 58]), to main-belt asteroids (e.g., [46, 51, 61]), and also to moredistant objects (e.g., [25, 39]). The TPM takes into account the true observing andillumination geometry for each observational data point, a crucial aspect for the inter-pretation of the main-belt asteroid observations which cover a wide range of phaseangles and helio-/observer-centric distances, as well as different spin-axis obliquities.

High quality size and geometric albedo values are fundamental for reliable TPMpredictions. For all four asteroids we used literature values, but only after a crit-ical inspection of the published sizes and albedos and their error estimates. TheTPM also allows one to specify simple or complex shape models and spin-vector

8http://www.lesia.obspm.fr/perso/emmanuel-lellouch/mars/

Exp Astron

50

100

150

200

(1) Ceres temperature [K]

5 10 15140

141

142

143

144

145

146

147

100

mic

ron

[Jy]

1 Ceres

24-Apr-2013 (UT)

without thermal inertia

with thermal inertia

Fig. 2 Left: Shape model of Ceres with the TPM temperature coding on the surface, calculated for theHerschel point-of-view on OD 1441, OBSID 1342270856, rotation axis is along the vertical direction.Right: the corresponding thermal light-curve at 100 μm with and without thermal effects included

properties. The one-dimensional vertical heat conduction into the surface iscontrolled by the thermal inertia �.9 The observed mid-/far-IR/sub-mm fluxes areconnected to the hottest regions on the asteroid surface and dominated by thediurnal heat wave. The seasonal heat wave is less important and therefore not con-sidered here. The infrared beaming effects (similar to opposition effects at opticalwavelengths) are calculated via a surface roughness model, described by segmentsof hemispherical craters. Here, mutual heating is included and the true craterillumination and the visibility of shadows is considered (Figs. 2, 3, 4, 5).

For the calculation of the Bond albedo (which is assumed to be close to thebolometric albedo) also the object specific slope parameters for the phase curveG and the absolute magnitudes H are needed (IAU two-parameter magnitude sys-tem for asteroids [6, 36]). The Bond albedo is given by pV ·q, with the geometricV-band albedo pV , and the phase integral q = 0.290 + 0.684·G. In cases wherepV was measured in-situ, only G is required, in cases where pV was not directlymeasured, we derived pV from HV and the object’s effective size Deff via: pV =10(2· log10(S0)−2· log10(Deff )−0.4·HV ), with the Solar constant, S0 = 1361 W/m2. Weused literature values for H-G based on large samples of measurements coveringmany aspect and phase angles from several apparitions. Typical uncertainties inG values have a negligible influence on the TPM flux predictions over the entireHerschel wavelength-range and for the accessible phase angles (approximatly15-30◦) for main-belt asteroids. Errors in H are directly influencing the geometricalbedo: 0.05 mag in H translate into a 5 % error in albedo, with a corresponding fluxchange well below 1 %.

9The thermal inertia � is defined as√

κρc, where κ is the thermal conductivity, ρ the density, and c theheat capacity.

Exp Astron

50

100

150

200

(2) Pallas temperature [K]

6 8 10 12 14 1668

69

70

71

72

73

100

mic

ron

[Jy]

29-Nov-2012 (UT)

2 Pallas

without thermal inertia

with thermal inertia

Fig. 3 Left: Shape model of Pallas with the TPM temperature coding on the surface, calculated for theHerschel point-of-view on OD 1295, OBSID 1342256236, rotation axis is along the vertical direction.Right: the corresponding thermal light-curve at 100 μm with and without thermal effects included

The level of roughness is driven by the r.m.s. of the surface slopes whichcorrespond to a given crater depth-to-radius value combined with the fraction f of thesurface covered by craters, see also Lagerros ([32]) for further details. For all fourtargets we used the “default” roughness settings (ρ = 0.7, f = 0.6) [47].

We used wavelength-dependent emissivity models with emissivities of 0.9 up to150 μm and slowly decreasing values beyond ∼150 μm. The “default” model -usedfor Ceres, Pallas, and Lutetia- has lowest emissivities of around 0.8 in the sub-mm-range, the Vesta-specific emissivity model is more extreme and has values goingdown to 0.6 at 600 μm. Both models are used as specified and applied in [46–48].

For the thermal inertia � we used a “default” value for large, regolith-coveredmain-belt asteroids, namely � = 15 Jm−2s−0.5K−1 [47]. This value is not very well

50

100

150

200(4) Vesta temperature [K]

9 10 11 12 13 14 1567

68

69

70

71

72

73

74

100

mic

ron

[Jy]

19-Feb-2013 (UT)

4 Vesta

without thermal inertia

with thermal inertia

Fig. 4 Left: Shape model of Vesta with the TPM temperature coding on the surface, calculated for theHerschel point-of-view on OD 1377, OBSID 1342263924, rotation axis is along the vertical direction.Right: the corresponding thermal light-curve at 100 μm with and without thermal effects included

Exp Astron

50

100

150

200(21) Lutetia temperature [K]

0 2 4 6 8 10 121.7

1.8

1.9

2

2.1

2.2

100

mic

ron

[Jy]

21-Dec-2009 (UT)

21 Lutetiawithout thermal inertia

with thermal inertia

Fig. 5 Left: Shape model of Lutetia with the TPM temperature coding on the surface, calculated forthe Herschel point-of-view on OD 221, OBSID 1342188334, rotation axis is along the vertical direction.Right: the corresponding thermal light-curve at 100 μm with and without thermal effects included

constrained and in the literature one can find smaller values down to 5 Jm−2s−0.5K−1

(e.g., [61]) or larger values of 25 Jm−2s−0.5K−1 (e.g., [46]). The precise value hasvery little influence on far-IR and sub-mm-fluxes [49] -at least for large regolith-covered main-belt asteroids- and it agrees very well with the lunar value of � =39 Jm−2 s−0.5 K−1 [27] considering the lower temperature environment at 2-3 AUfrom the Sun which lowers the thermal conductivity within the top surface dust layerconsiderably.

3.1 (1) Ceres

Ceres is the largest and most massive asteroid in the main-belt. It is presumed to behomogeneous, gravitationally relaxed and it has a low density, low albedo and rel-atively featureless visible reflectance spectrum [78]. The shape that best reproducesthe available data (occultations, HST measurements, adaptive optics studies, light-curve, ...) is an oblate spheroid [7, 17, 42, 78] with an equatorial diameter of 974.6 kmand a polar diameter of 909.4 km, resulting in an equivalent diameter of an equal vol-ume sphere of 952.4 ± 3.4 km [78]. The semi-major axes ratios are therefore a/b =1.0 and b/c = 1.072. The spin-axis is within 3◦ of (λsv, βsv) = (346◦, + 82◦) [17]in ecliptic reference frame, with a siderial rotation period of 9.074170 ± 0.000001 h[10]. The spin-vector is therefore oriented close to perpendicular to the line-of-sightand the optical light-curve amplitude is generally small (up to 0.04 mag [46]). Thegeometric V-band albedo is pV = 0.090± 0.0055 [17, 37]. For the calculation of theBond albedo we used an absolute magnitude HV = 3.28 mag and a slope parameterG = 0.05 [30, 46].

3.2 (2) Pallas

Pallas has about half the size of Ceres and is considered as an intact proto-planet which has undergone impact excavation [73]. Its published size, shape, and

Exp Astron

spin-properties have substantially changed over the last years [8, 16, 18, 73, 80]. Weused the latest nonconvex shape model from DAMIT10 with a siderial rotation periodof 7.81322 h. This solution includes all available information from occultations, HST,light-curves over several decades, and adaptive optics measurements. The shape canroughly be described as a triaxial-ellipsoid body with a/b = 1.06, b/c = 1.09. Its spin-axis is oriented towards celestial directions (λecl, βecl) = (31◦ ± 5◦, −16◦ ± 5◦),which means it has a high obliquity of 84◦, leading to high seasonal contrasts. Shape-introduced light-curve amplitudes can reach up to 0.16 mag [31]. The effective size2×(abc)1/3, a critical parameter for our calculations, was given as 533 ± 6 km [18],545 ± 18 km [73], 513 ± 7 km [8]. We adopted the first value which has the small-est errorbar and which is based on multiple occultations, including one of the bestobserved occultation of a star ever. We use HV = 4.13 mag and G = 0.16 [30, 31,46]. Our geometric albedo pV = 0.139 was calculated from HV and the effective sizeof 533 km.

3.3 (4) Vesta

Vesta is one of the largest and the second most massive asteroid in the main-belt. Ithas recently been visited by the DAWN11 mission. Most of the key elements for ourthermophysical model purposes are very well known, but the final shape models arenot yet publically released. Our calculations are based on the HST shape model [77]with a spin-vector (λecl, βecl) = (319◦ ± 5◦, 59◦ ± 5◦), very close to values derivedrecently from DAWN [70]. The siderial rotation period is Psid = 5.3421289 h [15,77]. The obliquity of about 27 ◦ combined with a more extreme triaxial body leads toshape-introduced light-curve amplitudes of up to 0.18 mag [31]. We assigned a meansize of 525.4 ± 0.2 km [70], roughly corresponding to a triaxial-ellipsoid body witha/b = 1.03, b/c=1.25. We took HV = 3.20 mag and G = 0.34 [46], the correspondinggeometric albedo pV = 0.336 was calculated from the effective size of 525.4 km.

3.4 (21) Lutetia

Lutetia is significantly smaller and more irregularly shaped than the other threeobjects. Due to its unusual spectral type with indications of a high metal content,it was originally not considered in our list of potential flux calibrators. But Lutetiawas very well characterized by a ROSETTA12 flyby in 2011 and we took advan-tage of the derived, high-quality properties. Our shape model is the latest nonconvexshape model from DAMIT,13 which is based on a combination of flyby informa-tion, occultations, radiometry, light-curve datasets, radar echoes, interferometry, and

10Database of Asteroid Models from Inversion Techniques, http://astro.troja.mff.cuni.cz/projects/asteroids3D/11http://dawn.jpl.nasa.gov/12http://www.esa.int/Our Activities/Space Science/Rosetta13Database of Asteroid Models from Inversion Techniques, http://astro.troja.mff.cuni.cz/projects/asteroids3D/

Exp Astron

disk-resolved imaging [9]. It has a spin-vector of (λecl, βecl ) = (52◦ ±2◦, −6◦ ±2◦),and a siderial rotation period of Psid = 8.168271 h [9, 35]. The absolute effec-tive size of the final shape model is Deff = 99.3 km and the measured geometricalbedo is pV = 0.19 ± 0.01 [9]. Typical shape-introduced light-curve amplitudes canreach up to 0.25 mag [31]. The absolute magnitude and the slope paramemeter, bothnormalised to the mean light-curve value, are given as HV = 7.25 and G = 0.12 [4].

4 Results, validity and limitations

Based on the thermophysical model and object setup in Section 3, we calculatedTPM flux densities at the PACS, SPIRE, and HIFI reference wavelengths for themid-time of each observation (Start-time + 0.5×duration of each OBSID, Herschel-centric reference system). The calculations have been done for the true Herschel-centric observing geometry with the asteroid placed at the correct helio-centric andHerschel-centric distance, under the true phase angle and spin-vector orientation. Theobserved and calibrated mono-chromatic flux densities have then been divided by theTPM predictions. The ratios are shown in the following Figs. 6, 7, 8, 9, and are listedin Appendix Tables 16, 17, 18, 19, and discussed below.

Fig. 6 Observed and calibrated Herschel flux densities of Ceres divided by the corresponding TPM pre-dictions (one point per OBSID). The median ratios for each instrument and each band are given togetherwith the standard deviations of the ratios. For PACS and SPIRE we also give the ratios per observingmode. PACS data are shown as diamonds (chop-nod data) and squares (scan-map data), SPIRE data areshown as plus-symbols (large map mode) and crosses (small map mode), HIFI data are shown as triangles

Exp Astron

Fig. 7 Observed and calibrated Herschel flux densities of Pallas divided by the corresponding TPMpredictions, like in Fig. 6

Fig. 8 Observed and calibrated Herschel flux densities of Vesta divided by the corresponding TPMpredictions, like in Fig. 6

Exp Astron

Fig. 9 Observed and calibrated Herschel flux densities of Lutetia divided by the corresponding TPMpredictions, like in Fig. 6

Absolute flux level The median ratios for all four asteroids and in all PACS & SPIREbands are well within 1.00 ± 0.05. There are no systematic outliers visible. A fewindividual measurements are slightly outside the 5 % boundary, but here it is notclear if the problem is related to instrumental/technical issues or sky backgroundrelated effects. Our sources have apparent sky motions of up to about 80′′/h (as seenfrom Herschel) and they cross background sources and dense star fields. And indeed,Ceres, Vesta and Lutetia reached galactic latitudes below 5◦ during Herschel observ-ing periods and bright sources (not easily recognized in automatic processing) couldhave influenced the photometry in rare cases. The influence of lower S/N levelscan be seen in the increased ratio scatter in the PACS 160 μm and SPIRE 500 μmmeasurements of Lutetia.

The maximum-to-minimum observed flux ratios in a given band are 2.3, 2.7, 3.5,4.3 for Ceres, Pallas, Vesta, and Lutetia, respectively (see Appendix Tables 16, 17,18, 19). This flux change is mainly dominated by changing distances between theasteroid and Herschel, with smaller influences from changing heliocentric asteroiddistances and phase angles. The TPM setup handles these seasonal geometric effectswith high accuracy. We found no significant remaining trends in the obs/TPM-ratioswith helio-centric and Herschel-centric distance.

Short-term variations The four asteroids are not spherical and optical lightcurvesshow amplitudes of up to 0.25 mag. These variations are caused mainly by rota-tionally changing cross-sections and therefore expected to be seen in disk-integrated

Exp Astron

thermal emission as well. In our model setup this is handled by complex shapemodels combined with spin-vector information (derived from occultation results,light-curve inversion techniques, high resultion imaging techniques and/or flybyinformation), and object-specific zero-points in time and rotational phase. Our setupexplains the available optical light-curves and other cross-section related data verywell, but it is not entirely clear if such models would also explain the rotationalchanges in thermal emission. Figures 6, 7, 8, 9 show -at least in the most reliableshortest wavelength bands at 70 and 250 μm- very small standard deviations in theobs/TPM ratios. For Ceres and Pallas we find standard deviations of 2 %, while forthe more complex shaped objects Vesta and Lutetia we find 3 %. This very low scat-ter agrees with findings on non-variable reference stars (see [2]) and tells us thatthe shape and rotational properties of the four asteroids are modeled with sufficientaccuracy.

Spectral shape aspects The obs/TPM ratios for a given object are almost identical forall bands of the same instrument. This is an indication that our TPM reproduces theobserved slopes in spectral energy distribution (SED) correctly. The modeled objectSEDs are summing up all different surface temperatures over the entire disk. Here, atlong wavelength and close to the Rayleigh-Jeans SED approximation, the SEDs areclosely correlated with the disk-averaged temperatures, while at shorter wavelengths(e.g., in the mid-IR) the hottest sub-solar regions dominate the SED shapes. Theconstant ratios over all three bands of an instrument also confirm the validity of thestrongly band-dependent colour-correction (see Sections 2.1 and 2.2). These correc-tions are calculated from the lab-measured relative spectral response functions of theindividual bands [21, 56]. Our results show no problems with the tabulated colour-correction values, a nice confirmation that the bands are well characterized and thatthere are no indications for filter leaks.

PACS/SPIRE cross-calibration and emissivity aspects For the 3 bright sources Ceres,Pallas, and Vesta the SPIRE ratios are 2–5 % higher than the PACS ratios. The causeis not clear, but there are different possibilities: (i) A systematic difference in theabsolute flux calibrators (5 fiducial stars for PACS [2] and a specific Neptune modelfor SPIRE [5]). Both calibration systems are given with an absolute accuracy of ±5 %and the offset we see in the asteroids is within this range. Both calibration systemsunderwent recent adjustments and re-adjustments with typical changes of a few per-cent. Discussions are still ongoing and the related publications -possibly with slightadjustments- are in preparation. (ii) A flux-dependency in the reduction/calibrationsteps which is not correctly accounted for: the PACS asteroid data are corrected fordetector non-linearities (up to 6 % for the highest asteroid fluxes), but an absolutevalidation at these flux levels is difficult. The SPIRE asteroid data are well belowthe flux level of Neptune which is used as reference object and the asteroids alsomove much faster than Neptune on the sky. Both aspects might cause an offset of afew percent on the final fluxes. (iii) The asteroid models use a wavelength-dependentemissivity model [46–48] and the largest emissivity changes happen between 200 and500 μm. But if there are problems in the emissivity model solution we would expectto see obs/TPM ratios changing gradually with wavelengths and not in a step-function

Exp Astron

as we see it here. We also tested a constant emissivity model (ε = 0.9 = const.)which clearly confirms that lower and wavelength-dependent emissivities are neededto explain the SPIRE measurements. However, the effective emissivity changes arenot precisely known for the region beyond ≈150 μm where subsurface layers (proba-bly with different thermal properties [27]) start to become visible. A future scientificanalysis of all combined PACS and SPIRE observations might reveal a new andslightly different wavelength-dependent emissivity model for the large main-beltasteroids.

One additional element in this context is the outcome of a dedicated PACS/SPIREcross-calibration study for the fiducial calibration stars and -at a much higher fluxlevel- for the planets Uranus and Neptune. In this way, one could investigate furtherthe reason for the small jump between PACS and SPIRE fluxes.

There are a few additional points which deserve mentioning:

• For Lutetia we find significantly larger standard deviations in the obs/TPMratios at 350 and 500 μm, but Lutetia is already faint at these wavelength(below 600 mJy at 350 μm and some measurement are even below 100 mJyat 500 μm) and background contamination and instrument noise levels start tocontribute.

• The 70 μm obs/TPM ratio for Vesta is about 4 % higher than the ratios at 100and 160 μm. We don’t know the reason for this effect, but we speculate that thismight be the result of a broadband mineralogic surface feature covered by the70 μm-band (∼55–95 μm). We plan to follow this up via PACS spectrometermeasurements of Vesta.

• For the 3 brightest targets we also see a very small difference between PACSdata taken in chop-nod mode and scan-map mode. The chop-nod ratios are about1 % lower than the corresponding scan-map ratios. We expected to see slightlyunderestimated fluxes in the chop-nod mode for very bright targets (see [60]),but it was not clear how big the effect would be. Based on the asteroid results,we expect to see a 2–3 % flux differences for even brighter targets, like Neptuneand Uranus, between measurements taken in these two different PACS observingmodes.

• The HIFI ratios are very close to the PACS ratios and about 5 % lowerthan the SPIRE ratios. But the derived fluxes are very sensitive to point-ing errors. Additional pointing errors could increase the derived flux densitiesby up to ≈ 5 % which would then bring the HIFI ratios very close to theSPIRE ones.

• There was one SPIRE observation of Vesta (OD 411, OBSID 1342199329, LargeMap mode) which produced fluxes which are about 35 % higher than the cor-responding model predictions in all 3 bands, probably due to a contaminatingbackground source. We eliminated this measurement from our analysis.

• We see a 3–4 % offset between SPIRE large and small scan map observationsof Ceres and Pallas, but not for Vesta. This offset is not present in observa-tions taken in both modes close in time. The cause is therefore either relatedto satellite/instrument effects changing with time (like the changing telescope

Exp Astron

flux) or by a time-dependent thermal effect which is not covered by our currentmodel-setup. A first investigation seems to point towards a small effect relatedto subsurface emission which seems to play a role at the longest SPIRE wave-lengths and which is at present only approximated by our wavelength-dependentemissivity models.

• Ceres, Pallas, and Vesta also have SPIRE observations taken in non-standardscanning mode. A first comparison with our model predictions confirms thevalidity of the data. They will be included in future analysis projects.

Quality of model parameters The fact that our TPM predictions agree -on abso-lute scale- very well with the Herschel measurements does not automaticallymean that all our object properties (mainly effective size, albedo, thermal prop-erties) are correct. The object-related quantities have uncertainties and could beeven slightly off. But we aimed for finding the most accurate object sizes, andderived preferentially from direct measurements and published in literature. Thethermal properties influence the predictions in an absolute sense and also in awavelength-dependent manner. We took default values from literature to avoid anydependency of our object properties from Herschel-related information. Overall,our model settings allow us to reproduce the observed absolute fluxes and SEDshapes with high accuracy and we have therefore great confidence in our modelsolutions.

Accuracy We made a statistical analysis of the observation-to-model ratios for allfour asteroids (Table 1, Fig. 10) to see how many observational data points arematched by the corresponding TPM prediction.

For this comparison we considered the absolute flux errors for each individualmeasurement as it was produced by the general data reduction and calibration pro-cedure mentioned above. The absolute flux errors include the processing errors,

Table 1 Statistical comparison between observed and TPM fluxes

Object 70 μm 100 μm 160 μm 250 μm 350 μm 500 μm

1 Ceres 51/0 39/0 84/4 20/4 18/6 24/0

2 Pallas 20/0 19/1 40/0 11/2 8/5 12/1

4 Vesta 32/8 25/7 64/8 14/1 15/0 15/0

21 Lutetia 14/1 19/0 29/5 9/0 6/3 5/4

1-σ agreement 92 % 92 % 92 % 87 % 70 % 91 %

2-σ agreement 100 % 100 % 100 % 100 % 100 % 97 %

The numbers indicate how many observations are matched by the corresponding TPM prediction withinthe given 1-σ error bars and how many are not matched. The last two lines give the agreement per band inpercent, based on the 1-σ and 2-σ errors in the observed fluxes

Exp Astron

50 100 150 200 250 300 350 400 450 500 550

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Wavelength (µm)

Obs

erve

d / m

odel

CeresPallasVestaLutetia

Fig. 10 Dispersion in the ratios of measured-to-model fluxes for the four asteroids as a function of wave-length. The weighted mean ratios are shown with errorbars reflecting the absolute flux calibration ofindividual measurements as well as the variance of the sample

the photometry errors (corrected for correlated noise) and the absolute flux calibra-tion error as provided by the three instrument teams. In all three PACS bands morethan 90 % of all measurements agree within their 1-σ errorbars with the correspond-ing TPM prediction. In the SPIRE bands the agreement is still between about 70 %and 90 %. If we allow for 2-σ errorbars we find 100 % agreement for Ceres, Pallasand Vesta in all six bands. For Lutetia there are only two measurements in the 500 μmband which are outside the 2-σ threshold. Figure 10 shows the agreement betweenobservations and TPM predictions in a graphical way. For each object we calculatedthe weighted mean ratio and errorbars adding up quadratically the variance of theweighted mean and the weighted sample variance. These errorbars are dominatedby the 5 % absolute flux calibration errors of our measurements, the variance of theweighted mean (as can be seen in Figs. 6, 7, 8, 9) is typically 2–3 % only, with excep-tion of the long-wavelength channels for Lutetia. This excellent agreement betweenobserved and TPM fluxes confirms the validity of the four asteroids as prime calibra-tors on a similar quality level as given for the fiducial star models in the PACS range(5 %), the Neptune model in the SPIRE range (5 %), and the Mars model in the HIFIband 1a/1b (5 %).

Limitations Our comparison between TPM predictions and measurements is lim-ited to a wavelength range between about 50 μm (short wavelength end of thePACS 70 μm filter) and about 700 μm (long wavelength end of the SPIRE

Exp Astron

500 μm filter). The Herschel visibility constrained the tested phase angles tovalues between about 15◦ and 30◦ before and after opposition. Outside thesewavelengths and phase angle ranges the TPM might have slightly higher uncer-tainties. Some of the asteroids have complex shapes and the shape models usedmight not characterize the true shape very accurately. This could also cause smalldeviations between TPM predictions and the true measured fluxes for specificviewing geometries. The rotation periods are known with high accuracy for allfour asteroids and the applied spin vectors are of sufficient quality for the nextdecade.

Overall, the TPM deviations outside the specified wavelengths and phase-angleranges are expected to be small and absolute model accuracies of better than 10 %seem to be reasonable for all four asteroids. Further testing against additional ther-mal data is foreseen in the near future to cover the full ALMA and SPICA14

regime.

5 Conclusions

We find the following general results related to the 4 asteroids:

• The new asteroid models predict the observed fluxes on absolute scales withbetter than 5 % accuracy in the in the 50 to 700 μm range. This meansthat the effective size and albedo values in our model setup are of highquality.

• Shape and spin properties dominate the short-term brightness variations: ourshape, rotation-period and spin-axis approximations are sufficient for our pur-poses.

• In general, the rotational and seasonal flux changes are modeled with high qualityto account for short-term (rotational effects on time scales of hours) and long-term (effects with phase angle and changing distance to the Sun on time scalesof months or years) object variability.

• Our “default” description of the thermal properties is sufficient to explain theobserved far-IR/sub-mm fluxes. Please note that the Vesta emissivity is verydifferent from the emissivity model used for the other objects.

• The asteroid surfaces of all 4 asteroids are very well described by a low-conductivity, hence low thermal inertia surface regolith with very little heattransport to the nightside of the object (they are observed at phase angles up toabout 30◦).

• There are indications that Vesta has a broad shallow mineralogic emission featurewhich contributes up to 4 % to the total flux measured in the PACS 70 μmband.

14http://www.ir.isas.jaxa.jp/SPICA/SPICA HP/index English.html

Exp Astron

We find the following Herschel-related results:

• The PACS chop-nod and scan-map derived fluxes agree very well (within 1 %),although there seems to be a small tendency that the chop-nod fluxes are slightlyunderestimated for very bright targets.

• The SPIRE observation/model ratios for Ceres, Pallas, and Vesta are 2–5 %higher than the PACS related ones. This could be related to the very differentcalibration schemes of both instruments, but there is also the possibility of amodel-introduced effect (e.g., related to the object emissivity models).

• The reduced and calibrated HIFI continuum fluxes for Ceres agree very well withthe PACS measurements and confirm the high photometric quality of the HIFIcontinuum measurements.

Ceres, Pallas, Vesta, and Lutetia as prime calibrators:

• The new TPM setup for the four asteroids predicts the observed fluxes on abso-lute scales with better than 5 % accuracy in the wavelength range 50 to 700 μmand for phase angles between ∼15◦ and ∼30◦.

• Outside the Herschel PACS/SPIRE wavelength range and for extreme phaseangles we still expect that the absolute accuracy of the TPM predictions are betterthan 10 %.

Overall, our thermophysical model predictions for the four asteroids agree within5 % with the available (and independently calibrated) Herschel measurements. Theachieved absolute accuracy is similar to the ones quoted for the official Herschelprime calibrators, the stellar photosphere models, the Neptune and Mars planetmodels, which justifies to upgrade the four asteroid models to the rank of prime cal-ibrators. The four objects cover the flux regime from just below 1,000 Jy (Ceres atmid-IR) down to fluxes below 0.1 Jy (Lutetia at the longest wavelengths). Basedon the comparison with PACS, SPIRE and HIFI measurements and pre-Herschelexperience, the validity of prime calibrators ranges from mid-infrared to about600 μm, connecting nicely the absolute stellar reference system in the mid-IR withthe planet-based calibration at sub-mm/mm wavelengths.

Acknowledgments We would like to thank the PIs of the various scientific projects for permission touse their Herschel science data in the context of our calibration work.

Appendix

Overview of available Herschel photometric measurements

In the following tables we list the available photometric observations (calibration andscience observations) with one of the four asteroids in the field of view. Some ofthe early measurements were used with very different instrument settings and non-standard observing modes. The corresponding fluxes are not well calibrated and weexcluded them from our analysis.

Exp Astron

Tabl

e2

Ove

rvie

wQ

4of

allr

elev

antH

ersc

hel-

PAC

Sph

otom

eter

scan

-map

obse

rvat

ions

of(1

)C

eres

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1441

1342

2708

56D

DT

dboc

kele

328

620

13-0

4-24

T05

:11:

49Z

PPho

to-C

eres

Vis

it12

1441

1342

2708

51D

DT

dboc

kele

328

620

13-0

4-24

T04

:04:

45Z

PPho

to-C

eres

Vis

it11

1441

1342

2708

46D

DT

dboc

kele

328

620

13-0

4-24

T02

:57:

05Z

PPho

to-C

eres

Vis

it10

1441

1342

2708

41D

DT

dboc

kele

328

620

13-0

4-24

T01

:51:

57Z

PPho

to-C

eres

Vis

it09

1441

1342

2708

28D

DT

dboc

kele

328

620

13-0

4-24

T01

:00:

51Z

PPho

to-C

eres

Vis

it08

1441

1342

2708

23D

DT

dboc

kele

328

620

13-0

4-23

T23

:54:

43Z

PPho

to-C

eres

Vis

it07

1441

1342

2708

18D

DT

dboc

kele

328

620

13-0

4-23

T22

:48:

42Z

PPho

to-C

eres

Vis

it06

1441

1342

2708

13D

DT

dboc

kele

328

620

13-0

4-23

T21

:41:

50Z

PPho

to-C

eres

Vis

it05

1441

1342

2708

08D

DT

dboc

kele

328

620

13-0

4-23

T20

:37:

24Z

PPho

to-C

eres

Vis

it04

1441

1342

2708

03D

DT

dboc

kele

328

620

13-0

4-23

T19

:43:

14Z

PPho

to-C

eres

Vis

it03

1441

1342

2707

98D

DT

dboc

kele

328

620

13-0

4-23

T18

:36:

38Z

PPho

to-C

eres

Vis

it02

1441

1342

2707

87D

DT

dboc

kele

328

620

13-0

4-23

T17

:41:

20Z

PPho

to-C

eres

Vis

it01

1420

1342

2692

79rp

pacs

189

286

2013

-04-

03T

00:1

4:13

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

200J

ygr

nC

eres

0007

1420

1342

2692

78rp

pacs

189

286

2013

-04-

03T

00:0

8:24

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

200J

ygr

nC

eres

0007

1420

1342

2692

76rp

pacs

189

286

2013

-04-

02T

23:5

8:50

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

200J

ybl

uC

eres

0007

1420

1342

2692

75rp

pacs

189

286

2013

-04-

02T

23:5

3:01

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

200J

ybl

uC

eres

0007

1244

1342

2528

78rp

pacs

159

1055

2012

-10-

09T

14:4

1:09

ZR

PPho

tSpa

tial

1-R

PPho

tSpa

tial

314D

StdS

can1

35m

edgr

nC

eres

0003

1244

1342

2528

77rp

pacs

159

1055

2012

-10-

09T

14:2

2:31

ZR

PPho

tSpa

tial

1-R

PPho

tSpa

tial

314D

StdS

can0

45m

edgr

nC

eres

0003

1244

1342

2528

76rp

pacs

159

1055

2012

-10-

09T

14:0

3:53

ZR

PPho

tSpa

tial

1-R

PPho

tSpa

tial

314D

StdS

can1

35m

edbl

ueC

eres

0003

1244

1342

2528

75rp

pacs

159

1055

2012

-10-

09T

13:4

5:15

ZR

PPho

tSpa

tial

1-R

PPho

tSpa

tial

314D

StdS

can0

45m

edbl

ueC

eres

0003

1244

1342

2528

74rp

pacs

159

286

2012

-10-

09T

13:3

9:26

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

110

210J

ygr

nc7

6C

eres

06

1244

1342

2528

73rp

pacs

159

286

2012

-10-

09T

13:3

3:37

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

070

210J

ygr

nc7

6C

eres

06

Exp Astron

Tabl

e2

(con

tinu

ed)

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1244

1342

2528

71rp

pacs

159

286

2012

-10-

09T

13:2

4:03

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

110

370J

ybl

uc7

6C

eres

06

1244

1342

2528

70rp

pacs

159

286

2012

-10-

09T

13:1

8:14

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

070

370J

ybl

uc7

6C

eres

06

1237

1342

2520

62rp

pacs

157

286

2012

-10-

02T

05:4

2:14

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

110

156J

ygr

nc7

5C

eres

05

1237

1342

2520

61rp

pacs

157

286

2012

-10-

02T

05:3

6:25

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

070

156J

ygr

nc7

5C

eres

05

1237

1342

2520

59rp

pacs

157

286

2012

-10-

02T

05:2

6:51

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

110

274J

ybl

uc7

5C

eres

05

1237

1342

2520

58rp

pacs

157

286

2012

-10-

02T

05:2

1:02

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

070

274J

ybl

uc7

5C

eres

05

947

1342

2344

71rp

pacs

115

286

2011

-12-

17T

00:5

3:38

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

110

Plan

ckgr

nC

eres

0003

947

1342

2344

70rp

pacs

115

286

2011

-12-

17T

00:4

7:49

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

070

Plan

ckgr

nC

eres

0003

947

1342

2344

68rp

pacs

115

286

2011

-12-

17T

00:3

8:15

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

110

Plan

ckbl

uC

eres

0003

947

1342

2344

67rp

pacs

115

286

2011

-12-

17T

00:3

2:26

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

070

Plan

ckbl

uC

eres

0003

782

1342

2237

07rp

pacs

8810

5520

11-0

7-05

T04

:06:

57Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4DSt

dSca

n135

med

grn

Cer

es00

02

782

1342

2237

06rp

pacs

8810

5520

11-0

7-05

T03

:48:

19Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4DSt

dSca

n045

med

grn

Cer

es00

02

782

1342

2237

05rp

pacs

8828

620

11-0

7-05

T03

:42:

30Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

014

4Jy

grn

c43

Cer

es03

782

1342

2237

04rp

pacs

8828

620

11-0

7-05

T03

:36:

41Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

014

4Jy

grn

c43

Cer

es03

782

1342

2237

02rp

pacs

8810

5520

11-0

7-05

T03

:14:

18Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4DSt

dSca

n135

med

blue

Cer

es00

02

782

1342

2237

01rp

pacs

8810

5520

11-0

7-05

T02

:55:

40Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4DSt

dSca

n045

med

blue

Cer

es00

02

782

1342

2237

00rp

pacs

8828

620

11-0

7-05

T02

:49:

51Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

025

1Jy

blu

c43

Cer

es03

782

1342

2236

99rp

pacs

8828

620

11-0

7-05

T02

:44:

02Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

025

1Jy

blu

c43

Cer

es03

769

1342

2229

42rp

pacs

8628

620

11-0

6-22

T14

:28:

59Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

012

7Jy

grn

c42

Cer

es03

769

1342

2229

41rp

pacs

8628

620

11-0

6-22

T14

:23:

10Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

012

7Jy

grn

c42

Cer

es03

769

1342

2229

39rp

pacs

8628

620

11-0

6-22

T14

:13:

36Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

022

2Jy

blu

c42

Cer

es03

769

1342

2229

38rp

pacs

8628

620

11-0

6-22

T14

:07:

47Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

022

2Jy

blu

c42

Cer

es03

759

1342

2225

70rp

pacs

8428

620

11-0

6-12

T07

:36:

42Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

011

6Jy

grn

c41

Cer

es03

Exp Astron

Tabl

e2

(con

tinu

ed)

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

759

1342

2225

69rp

pacs

8428

620

11-0

6-12

T07

:30:

53Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

011

6Jy

grn

c41

Cer

es03

759

1342

2225

67rp

pacs

8428

620

11-0

6-12

T07

:21:

19Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

020

2Jy

blu

c41

Cer

es03

759

1342

2225

66rp

pacs

8428

620

11-0

6-12

T07

:15:

30Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

020

2Jy

blu

c41

Cer

es03

743

1342

2217

42rp

pacs

8228

620

11-0

5-27

T06

:23:

31Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

010

0Jy

grn

c40

Cer

es03

743

1342

2217

41rp

pacs

8228

620

11-0

5-27

T06

:17:

42Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

010

0Jy

grn

c40

Cer

es03

743

1342

2217

39rp

pacs

8228

620

11-0

5-27

T06

:08:

08Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

017

4Jy

blu

c40

Cer

es03

743

1342

2217

38rp

pacs

8228

620

11-0

5-27

T06

:02:

19Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

017

4Jy

blu

c40

Cer

es03

734

1342

2213

53rp

pacs

7910

5520

11-0

5-18

T12

:15:

24Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4DSt

dSca

n135

med

grn

Cer

es00

01

734

1342

2213

52rp

pacs

7910

5520

11-0

5-18

T11

:56:

46Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4DSt

dSca

n045

med

grn

Cer

es00

01

734

1342

2213

51rp

pacs

7910

5520

11-0

5-18

T11

:38:

08Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4DSt

dSca

n135

med

blue

Cer

es00

01

734

1342

2213

50rp

pacs

7910

5520

11-0

5-18

T11

:19:

30Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4DSt

dSca

n045

med

blue

Cer

es00

01

726

1342

2202

97rp

pacs

7928

620

11-0

5-10

T03

:03:

46Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

095

Jygr

nc3

9C

eres

03

726

1342

2202

96rp

pacs

7928

620

11-0

5-10

T02

:57:

57Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

095

Jygr

nc3

9C

eres

03

726

1342

2202

94rp

pacs

7928

620

11-0

5-10

T02

:48:

23Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

016

6Jy

blu

c39

Cer

es03

726

1342

2202

93rp

pacs

7928

620

11-0

5-10

T02

:42:

34Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

016

6Jy

blu

c39

Cer

es03

485

1342

2043

28rp

pacs

4328

620

10-0

9-10

T22

:30:

35Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

grn

Cer

es00

01

485

1342

2043

27rp

pacs

4328

620

10-0

9-10

T22

:24:

46Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

grn

Cer

es00

01

485

1342

2043

25rp

pacs

4328

620

10-0

9-10

T22

:15:

12Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

blu

Cer

es00

01

485

1342

2043

24rp

pacs

4328

620

10-0

9-10

T22

:09:

23Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

blu

Cer

es00

01

286

1342

1911

34rp

pacs

727

620

10-0

2-24

T04

:08:

56Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

020

0Jy

grn

Cer

es00

01

286

1342

1911

33rp

pacs

727

620

10-0

2-24

T04

:03:

17Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S07

020

0Jy

grn

Cer

es00

01

286

1342

1911

31rp

pacs

727

620

10-0

2-24

T03

:53:

53Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

020

0Jy

blu

Cer

es00

01

286

1342

1911

30rp

pacs

727

620

10-0

2-24

T03

:48:

14Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S07

020

0Jy

blu

Cer

es00

01

Exp Astron

Tabl

e3

Ove

rvie

wof

allr

elev

antH

ersc

hel-

PAC

Sph

otom

eter

chop

-nod

obse

rvat

ions

of(1

)C

eres

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1420

1342

2692

77rp

pacs

189

162

2013

-04-

03T

00:0

4:39

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ygr

nC

eres

0007

1420

1342

2692

74rp

pacs

189

162

2013

-04-

02T

23:4

9:16

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ybl

uC

eres

0007

1244

1342

2528

72rp

pacs

159

162

2012

-10-

09T

13:2

9:52

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323A

cPS

210J

ygr

nc7

6C

eres

06

1244

1342

2528

69rp

pacs

159

162

2012

-10-

09T

13:1

4:29

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323A

cPS

370J

ybl

uc7

6C

eres

06

1237

1342

2520

60rp

pacs

157

162

2012

-10-

02T

05:3

2:40

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323A

cPS

156J

ygr

nc7

5C

eres

05

1237

1342

2520

57rp

pacs

157

162

2012

-10-

02T

05:1

7:17

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323A

cPS

274J

ybl

uc7

5C

eres

05

947

1342

2344

69rp

pacs

115

162

2011

-12-

17T

00:4

4:04

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ygr

nC

eres

0004

947

1342

2344

66rp

pacs

115

162

2011

-12-

17T

00:2

8:41

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ybl

uC

eres

0004

782

1342

2237

03rp

pacs

8816

220

11-0

7-05

T03

:32:

56Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S14

4Jy

grn

c43

Cer

es03

782

1342

2236

98rp

pacs

8816

220

11-0

7-05

T02

:40:

17Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S25

1Jy

blu

c43

Cer

es03

769

1342

2229

40rp

pacs

8616

220

11-0

6-22

T14

:19:

25Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S12

7Jy

grn

c42

Cer

es03

769

1342

2229

37rp

pacs

8616

220

11-0

6-22

T14

:04:

02Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S22

2Jy

blu

c42

Cer

es03

759

1342

2225

68rp

pacs

8416

220

11-0

6-12

T07

:27:

08Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S11

6Jy

grn

c41

Cer

es03

759

1342

2225

65rp

pacs

8416

220

11-0

6-12

T07

:11:

45Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S20

2Jy

blu

c41

Cer

es03

743

1342

2217

40rp

pacs

8216

220

11-0

5-27

T06

:13:

57Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S95

Jygr

nc4

0C

eres

03

743

1342

2217

37rp

pacs

8216

220

11-0

5-27

T05

:58:

34Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S17

4Jy

blu

c40

Cer

es03

726

1342

2202

95rp

pacs

7916

220

11-0

5-10

T02

:54:

12Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S95

Jygr

nc3

9C

eres

03

726

1342

2202

92rp

pacs

7916

220

11-0

5-10

T02

:38:

49Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S16

6Jy

blu

c39

Cer

es03

485

1342

2043

26rp

pacs

4316

220

10-0

9-10

T22

:21:

01Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S20

0Jy

grn

Cer

es00

02

485

1342

2043

23rp

pacs

4316

220

10-0

9-10

T22

:05:

38Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S20

0Jy

blu

Cer

es00

02

286

1342

1911

32rp

pacs

716

220

10-0

2-24

T03

:59:

32Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S20

0Jy

grn

Cer

es00

01

286

1342

1911

29rp

pacs

716

220

10-0

2-24

T03

:44:

29Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S20

0Jy

blu

Cer

es00

01

Exp Astron

Tabl

e4

Ove

rvie

wof

allr

elev

antH

ersc

hel-

SPIR

Eph

otom

eter

obse

rvat

ions

of(1

)C

eres

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

Mod

eA

OR

Lab

el

1434

1342

2703

25rp

spir

e16

459

320

13-0

4-17

T11

:24:

44Z

SmM

apcy

cle8

91-

SPho

to-S

mal

lM-R

ep4-

Cer

es

1411

1342

2683

44rp

spir

e16

259

320

13-0

3-25

T02

:48:

32Z

SmM

apcy

cle8

81-

SPho

to-S

mal

lM-R

ep4-

Cer

es

1403

1342

2677

48rp

spir

e16

059

320

13-0

3-17

T05

:06:

15Z

SmM

apcy

cle8

71-

SPho

to-S

mal

lM-R

ep4-

Cer

es

1387

1342

2666

70rp

spir

e15

820

5720

13-0

3-01

T03

:26:

27Z

SmM

apcy

cle8

61-

SPho

to-L

arge

M-R

ep4-

10x1

0-C

eres

1249

1342

2533

88rp

spir

e13

859

320

12-1

0-13

T22

:38:

27Z

SmM

apcy

cle7

61-

SPho

to-S

mal

lM-R

ep4-

Cer

es

1235

1342

2516

87rp

spir

e13

659

320

12-0

9-29

T22

:43:

32Z

SmM

apcy

cle7

53-

SPho

to-S

mal

lM-R

ep4-

Cer

es

1215

1342

2508

03rp

spir

e13

259

320

12-0

9-10

T12

:49:

19Z

SmM

apcy

cle7

41-

SPho

to-S

mal

lM-R

ep4-

Cer

es

1201

1342

2503

25rp

spir

e13

059

320

12-0

8-26

T16

:59:

32Z

SmM

apcy

cle7

31-

SPho

to-S

mal

lM-R

ep4-

Cer

es

1197

1342

2506

43rp

spir

e12

859

320

12-0

8-22

T16

:21:

13Z

SmM

apcy

cle7

21-

SPho

to-S

mal

lM-R

ep4-

Cer

es

964

1342

2362

36rp

spir

e92

593

2012

-01-

02T

17:0

9:51

ZSm

Map

cycl

e56

1-SP

hoto

-Sm

allM

-Rep

4-C

eres

964

1342

2362

35rp

spir

e92

602

2012

-01-

02T

16:5

9:19

ZSm

Map

cycl

e56

1-SP

hoto

-Sm

allM

-Rep

4-C

eres

-Bri

ght

948

1342

2349

31rp

spir

e90

593

2011

-12-

18T

11:4

3:28

ZSm

Map

cycl

e55

1-SP

hoto

-Sm

allM

-Rep

4-C

eres

775

1342

2232

21rp

spir

e64

593

2011

-06-

28T

14:0

2:23

ZSm

Map

cycl

e42

1-SP

hoto

-Sm

allM

-Rep

4-C

eres

725

1342

2206

42rp

spir

e58

593

2011

-05-

08T

23:0

5:52

ZSm

Map

cycl

e39

3-SP

hoto

-Sm

allM

-Rep

4-C

eres

529

1342

2070

50rp

spir

e30

593

2010

-10-

24T

22:5

5:51

ZSm

Map

cycl

e25

1-SP

hoto

-Sm

allM

-Rep

4-C

eres

521

1342

2066

82rp

spir

e28

593

2010

-10-

17T

14:1

8:39

ZSm

Map

cycl

e24

1-SP

hoto

-Sm

allM

-Rep

4-C

eres

-00

01

515

1342

2062

04rp

spir

e28

593

2010

-10-

11T

09:3

5:44

ZSm

Map

cycl

e24

1-SP

hoto

-Sm

allM

-Rep

4-C

eres

499

1342

2050

96rp

spir

e27

593

2010

-09-

25T

15:4

6:17

ZSm

Map

cycl

e23

2-SP

hoto

-Sm

allM

-Rep

4-C

eres

486

1342

2043

71rp

spir

e26

2977

2010

-09-

12T

14:5

9:47

ZL

gMap

cycl

e22

1-SP

hoto

-Lar

geM

-Rep

4-15

x15-

Cer

es

479

1342

2040

62rp

spir

e25

1356

2010

-09-

05T

14:1

5:13

ZPS

cycl

e21

1-SP

hoto

-Poi

ntS-

Rep

4-C

eres

479

1342

2040

61rp

spir

e25

593

2010

-09-

05T

14:0

4:55

ZSm

Map

cycl

e21

1-SP

hoto

-Sm

allM

-Rep

4-C

eres

-00

01

326

1342

1937

90rp

spir

e14

1334

2010

-04-

05T

03:2

4:54

ZL

gMap

cycl

e11

1-SP

hoto

-Lar

ge-R

ep4-

8x8-

Cer

es

Exp Astron

Tabl

e4

(con

tinu

ed)

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

Mod

eA

OR

Lab

el

326

1342

1937

89rp

spir

e14

1356

2010

-04-

05T

03:0

1:46

ZPS

cycl

e11

1-SP

hoto

-Poi

nt-R

ep4-

Cer

es

326

1342

1937

88rp

spir

e14

593

2010

-04-

05T

02:5

1:28

ZSm

Map

cycl

e11

1-SP

hoto

-Sm

allR

ep4-

Cer

es

287

1342

1911

93rp

spir

e8

1351

2010

-02-

25T

16:5

3:39

ZL

gMap

cycl

e81-

SPho

to-L

arge

-Rep

4-8x

8-C

eres

-co

py

287

1342

1911

92rp

spir

e8

1371

2010

-02-

25T

16:3

0:16

ZPS

cycl

e81-

SPho

to-P

oint

-Rep

4-C

eres

-co

py

275

1342

1906

70rp

spir

e8

610

2010

-02-

13T

11:5

1:24

ZSm

Map

cycl

e81-

Spir

ePho

toSm

allS

canG

en-R

ep4-

Cer

es

275

1342

1906

69rp

spir

e8

1351

2010

-02-

13T

11:2

8:19

ZL

gMap

cycl

e81-

SPho

to-L

arge

-Rep

4-8x

8-C

eres

275

1342

1906

68rp

spir

e8

1371

2010

-02-

13T

11:0

4:56

ZPS

cycl

e81-

SPho

to-P

oint

-Rep

4-C

eres

5013

4217

9358

cops

pire

1823

4020

09-0

7-02

T23

:46:

08Z

Scan

HC

OP

SJL

OD

5001

1-SP

hoto

-10x

10A

B4R

epN

omin

al-C

eres

5013

4217

9356

cops

pire

1821

5920

09-0

7-02

T23

:05:

52Z

Scan

HC

OP

SJL

OD

5001

1-SP

hoto

-10x

10A

B4R

epFa

st-C

eres

SmM

ap:s

mal

lsca

nm

apm

ode;

LgM

ap:l

arge

scan

map

mod

e;Sc

an:n

on-s

tand

ard

scan

map

;PS:

poin

t-so

urce

mod

e

Exp Astron

Tabl

e5

Ove

rvie

wof

allr

elev

antH

ersc

hel-

HIF

Ipo

into

bser

vati

ons

of(1

)C

eres

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1392

1342

2660

21D

DT

mku

eppe

r1

9146

2013

-03-

06T

10:3

7:47

ZH

Poin

t-C

eres

-DD

T-Fe

b201

3Pa

rt4

1392

1342

2660

20D

DT

mku

eppe

r1

9146

2013

-03-

06T

08:0

3:55

ZH

Poin

t-C

eres

-DD

T-Fe

b201

3Pa

rt3

1392

1342

2660

19D

DT

mku

eppe

r1

9146

2013

-03-

06T

05:3

0:03

ZH

Poin

t-C

eres

-DD

T-Fe

b201

3Pa

rt2

1392

1342

2660

18D

DT

mku

eppe

r1

8575

2013

-03-

06T

03:0

5:42

ZH

Poin

t-C

eres

-DD

T-Fe

b201

3Pa

rt1

1260

1342

2544

28D

DT

mku

eppe

r1

8575

2012

-10-

24T

20:0

4:28

ZH

Poin

t-C

eres

-GT

1-lo

rour

ke-D

DT-

Oct

2012

1247

1342

2531

22G

T1

loro

urke

982

4520

12-1

0-11

T19

:53:

46Z

HPo

int-

Cer

es-G

T1-

loro

urke

-Feb

2013

923

1342

2326

94G

T1

loro

urke

940

1020

11-1

1-23

T11

:31:

20Z

HPo

int-

Cer

es-G

T1-

loro

urke

-N

ov20

11

Exp Astron

Tabl

e6

Ove

rvie

wof

allr

elev

antH

ersc

hel-

PAC

Sph

otom

eter

scan

-map

obse

rvat

ions

of(2

)Pa

llas

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1295

1342

2562

37rp

pacs

167

286

2012

-11-

29T

06:2

8:31

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

200J

ybl

uPa

llas

0006

1295

1342

2562

36rp

pacs

167

286

2012

-11-

29T

06:2

2:42

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

200J

ybl

uPa

llas

0006

1295

1342

2562

34rp

pacs

167

286

2012

-11-

29T

06:1

3:08

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

50Jy

red

Pall

as00

06

1295

1342

2562

33rp

pacs

167

286

2012

-11-

29T

06:0

7:19

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

50Jy

red

Pall

as00

06

1139

1342

2474

37rp

pacs

143

286

2012

-06-

25T

21:0

8:55

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

200J

ybl

uPa

llas

0005

1139

1342

2474

36rp

pacs

143

286

2012

-06-

25T

21:0

3:06

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

200J

ybl

uPa

llas

0005

1139

1342

2474

34rp

pacs

143

286

2012

-06-

25T

20:5

3:32

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

50Jy

red

Pall

as00

05

1139

1342

2474

33rp

pacs

143

286

2012

-06-

25T

20:4

7:43

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

50Jy

red

Pall

as00

05

889

1342

2312

68rp

pacs

105

286

2011

-10-

20T

04:3

9:02

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

110

Plan

ckgr

nPa

llas

0003

889

1342

2312

67rp

pacs

105

286

2011

-10-

20T

04:3

3:13

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

070

Plan

ckgr

nPa

llas

0003

889

1342

2312

65rp

pacs

105

286

2011

-10-

20T

04:2

3:39

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

110

Plan

ckbl

uPa

llas

0003

889

1342

2312

64rp

pacs

105

286

2011

-10-

20T

04:1

7:50

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

070

Plan

ckbl

uPa

llas

0003

720

1342

2205

91rp

pacs

7728

620

11-0

5-04

T11

:45:

19Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

grn

Pall

as00

02

720

1342

2205

90rp

pacs

7728

620

11-0

5-04

T11

:39:

30Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

grn

Pall

as00

02

720

1342

2205

89rp

pacs

7728

620

11-0

5-04

T11

:33:

41Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

blu

Pall

as00

02

720

1342

2205

88rp

pacs

7728

620

11-0

5-04

T11

:27:

52Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

blu

Pall

as00

02

686

1342

2177

85rp

pacs

7428

620

11-0

3-31

T13

:25:

38Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

050

Jyre

dPa

llas

0003

686

1342

2177

84rp

pacs

7428

620

11-0

3-31

T13

:19:

49Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S07

050

Jyre

dPa

llas

0003

686

1342

2177

82rp

pacs

7428

620

11-0

3-31

T13

:10:

15Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

020

0Jy

blu

Pall

as00

03

686

1342

2177

81rp

pacs

7428

620

11-0

3-31

T13

:04:

26Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S07

020

0Jy

blu

Pall

as00

03

446

1342

2020

80rp

pacs

3328

620

10-0

8-02

T18

:35:

22Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

grn

Pall

as00

01

446

1342

2020

79rp

pacs

3328

620

10-0

8-02

T18

:29:

33Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

grn

Pall

as00

01

Exp Astron

Tabl

e6

(con

tinu

ed)

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

446

1342

2020

77rp

pacs

3328

620

10-0

8-02

T18

:19:

59Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

blu

Pall

as00

01

446

1342

2020

76rp

pacs

3328

620

10-0

8-02

T18

:14:

10Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

blu

Pall

as00

01

245

1342

1892

67rp

pacs

525

420

10-0

1-14

T08

:00:

09Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

750

Jyre

dPa

llas

0001

245

1342

1892

66rp

pacs

525

420

10-0

1-14

T07

:54:

52Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S06

350

Jyre

dPa

llas

0001

245

1342

1892

65rp

pacs

525

420

10-0

1-14

T07

:49:

35Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

720

0Jy

blu

Pall

as00

01

245

1342

1892

64rp

pacs

525

420

10-0

1-14

T07

:44:

18Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S06

320

0Jy

blu

Pall

as00

01

Exp Astron

Tabl

e7

Ove

rvie

wof

allr

elev

antH

ersc

hel-

PAC

Sph

otom

eter

chop

-nod

obse

rvat

ions

of(2

)Pa

llas

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1295

1342

2562

35rp

pacs

167

162

2012

-11-

29T

06:1

8:57

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ybl

uPa

llas

0006

1295

1342

2562

32rp

pacs

167

162

2012

-11-

29T

06:0

3:34

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

50Jy

red

Pall

as00

06

1139

1342

2474

35rp

pacs

143

162

2012

-06-

25T

20:5

9:21

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ybl

uPa

llas

0005

1139

1342

2474

32rp

pacs

143

162

2012

-06-

25T

20:4

3:58

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

50Jy

red

Pall

as00

05

889

1342

2312

66rp

pacs

105

162

2011

-10-

20T

04:2

9:28

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

50Jy

red

Pall

as00

04

889

1342

2312

63rp

pacs

105

162

2011

-10-

20T

04:1

4:05

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ybl

uPa

llas

0004

686

1342

2177

83rp

pacs

7416

220

11-0

3-31

T13

:16:

04Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S50

Jyre

dPa

llas

0003

686

1342

2177

80rp

pacs

7416

220

11-0

3-31

T13

:00:

41Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S20

0Jy

blu

Pall

as00

03

446

1342

2020

78rp

pacs

3316

220

10-0

8-02

T18

:25:

48Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S50

Jyre

dPa

llas

0002

446

1342

2020

75rp

pacs

3316

220

10-0

8-02

T18

:10:

25Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S20

0Jy

blu

Pall

as00

02

245

1342

1892

63rp

pacs

516

220

10-0

1-14

T07

:40:

33Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S50

Jyre

dPa

llas

0001

245

1342

1892

62rp

pacs

516

220

10-0

1-14

T07

:36:

48Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S20

0Jy

blu

Pall

as00

01

Exp Astron

Tabl

e8

Ove

rvie

wof

allr

elev

antH

ersc

hel-

SPIR

Eph

otom

eter

obse

rvat

ions

of(2

)Pa

llas

,lik

ein

Tabl

e4

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

Mod

eA

OR

Lab

el

1348

1342

2615

98rp

spir

e15

213

5620

13-0

1-20

T17

:07:

59Z

PScy

cle8

31-

SPho

to-P

oint

S-R

ep4-

Pall

as

1348

1342

2615

97rp

spir

e15

259

320

13-0

1-20

T16

:57:

41Z

SmM

apcy

cle8

31-

SPho

to-S

mal

lM-R

ep4-

Pall

as

1330

1342

2583

78rp

spir

e15

059

320

13-0

1-03

T03

:48:

49Z

SmM

apcy

cle8

21-

SPho

to-S

mal

lM-R

ep4-

Pall

as

1314

1342

2573

61rp

spir

e14

859

320

12-1

2-17

T18

:49:

33Z

SmM

apcy

cle8

11-

SPho

to-S

mal

lM-R

ep4-

Pall

as

1156

1342

2479

87rp

spir

e12

359

320

12-0

7-12

T21

:20:

45Z

SmM

apcy

cle7

01-

SPho

to-S

mal

lM-R

ep4-

Pall

as

1156

1342

2479

86rp

spir

e12

313

5620

12-0

7-12

T20

:57:

41Z

PScy

cle7

01-

SPho

to-P

oint

S-R

ep4-

Pall

as

1116

1342

2465

76rp

spir

e11

759

320

12-0

6-02

T20

:31:

54Z

SmM

apcy

cle6

71-

SPho

to-S

mal

lM-R

ep4-

Pall

as

915

1342

2323

42rp

spir

e84

593

2011

-11-

15T

14:2

6:03

ZSm

Map

cycl

e52

1-SP

hoto

-Sm

allM

-Rep

4-Pa

llas

880

1342

2308

81rp

spir

e80

593

2011

-10-

11T

13:2

3:13

ZSm

Map

cycl

e50

1-SP

hoto

-Sm

allM

-Rep

4-Pa

llas

718

1342

2198

19rp

spir

e56

2977

2011

-05-

02T

22:0

8:38

ZL

gMap

cycl

e38

2-SP

hoto

-Lar

geM

-Rep

4-15

x15-

Pall

as

683

1342

2169

57rp

spir

e52

593

2011

-03-

28T

23:0

8:45

ZSm

Map

cycl

e36

1-SP

hoto

-Sm

allM

-Rep

4-Pa

llas

467

1342

2035

84rp

spir

e24

593

2010

-08-

23T

20:0

1:40

ZSm

Map

cycl

e20

1-SP

hoto

-Sm

allM

-Rep

4-Pa

llas

-00

01

458

1342

2030

76rp

spir

e24

593

2010

-08-

15T

13:1

3:44

ZSm

Map

cycl

e20

1-SP

hoto

-Sm

allM

-Rep

4-Pa

llas

447

1342

2022

07rp

spir

e22

2977

2010

-08-

04T

11:5

6:14

ZL

gMap

cycl

e19

1-SP

hoto

-Lar

geM

-Rep

4-15

x15-

Pall

as

423

1342

2002

02rp

spir

e20

1334

2010

-07-

11T

07:1

5:37

ZL

gMap

cycl

e17

1-SP

hoto

-Lar

geM

-Rep

4-8x

8-Pa

llas

-00

01

423

1342

2002

01rp

spir

e20

593

2010

-07-

11T

07:0

5:11

ZSm

Map

cycl

e17

1-SP

hoto

-Sm

allM

-Rep

4-Pa

llas

-00

01

423

1342

2002

00rp

spir

e20

1356

2010

-07-

11T

06:4

2:07

ZPS

cycl

e17

1-SP

hoto

-Poi

ntS-

Rep

4-Pa

llas

-00

01

417

1342

1997

84rp

spir

e20

1334

2010

-07-

05T

11:3

2:44

ZL

gMap

cycl

e17

1-SP

hoto

-Lar

geM

-Rep

4-8x

8-Pa

llas

417

1342

1997

83rp

spir

e20

593

2010

-07-

05T

11:2

2:18

ZSm

Map

cycl

e17

1-SP

hoto

-Sm

allM

-Rep

4-Pa

llas

417

1342

1997

82rp

spir

e20

1356

2010

-07-

05T

10:5

9:14

ZPS

cycl

e17

1-SP

hoto

-Poi

ntS-

Rep

4-Pa

llas

Exp Astron

Tabl

e9

Ove

rvie

wof

allr

elev

antH

ersc

hel-

PAC

Sph

otom

eter

scan

-map

obse

rvat

ions

of(4

)V

esta

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1377

1342

2639

25rp

pacs

179

286

2013

-02-

19T

09:0

6:16

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

200J

ybl

uV

esta

0006

1377

1342

2639

24rp

pacs

179

286

2013

-02-

19T

09:0

0:27

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

200J

ybl

uV

esta

0006

1377

1342

2639

22rp

pacs

179

286

2013

-02-

19T

08:5

0:53

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

100J

ygr

nV

esta

0006

1377

1342

2639

21rp

pacs

179

286

2013

-02-

19T

08:4

5:04

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

100J

ygr

nV

esta

0006

1202

1342

2502

99rp

pacs

153

286

2012

-08-

28T

04:0

3:03

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

110

88Jy

blu

c73

Ves

ta05

1202

1342

2502

98rp

pacs

153

286

2012

-08-

28T

03:5

7:14

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323B

sPS

070

88Jy

blu

c73

Ves

ta05

900

1342

2316

93rp

pacs

105

286

2011

-10-

31T

03:3

1:07

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

110

Plan

ckgr

nV

esta

0003

900

1342

2316

92rp

pacs

105

286

2011

-10-

31T

03:2

5:18

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

070

Plan

ckgr

nV

esta

0003

900

1342

2316

90rp

pacs

105

286

2011

-10-

31T

03:1

5:44

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

110

Plan

ckbl

uV

esta

0003

900

1342

2316

89rp

pacs

105

286

2011

-10-

31T

03:0

9:55

ZR

PPho

tFlu

x1-

RPP

hotF

lux

631A

sPS

070

Plan

ckbl

uV

esta

0003

743

1342

2217

28rp

pacs

8228

620

11-0

5-27

T02

:27:

26Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

012

0Jy

grn

c40

Ves

ta03

743

1342

2217

27rp

pacs

8228

620

11-0

5-27

T02

:21:

37Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

012

0Jy

grn

c40

Ves

ta03

743

1342

2217

25rp

pacs

8228

620

11-0

5-27

T02

:12:

03Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

021

1Jy

blu

c40

Ves

ta03

743

1342

2217

24rp

pacs

8228

620

11-0

5-27

T02

:06:

14Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

021

1Jy

blu

c40

Ves

ta03

726

1342

2202

91rp

pacs

7928

620

11-0

5-10

T02

:27:

48Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

010

0Jy

grn

c39

Ves

ta03

726

1342

2202

90rp

pacs

7928

620

11-0

5-10

T02

:21:

59Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

010

0Jy

grn

c39

Ves

ta03

726

1342

2202

88rp

pacs

7928

620

11-0

5-10

T02

:12:

25Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

017

6Jy

blu

c39

Ves

ta03

726

1342

2202

87rp

pacs

7928

620

11-0

5-10

T02

:06:

36Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

017

6Jy

blu

c39

Ves

ta03

720

1342

2205

87rp

pacs

7728

620

11-0

5-04

T11

:17:

05Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

090

Jygr

nc3

8V

esta

03

720

1342

2205

86rp

pacs

7728

620

11-0

5-04

T11

:11:

16Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

090

Jygr

nc3

8V

esta

03

720

1342

2205

84rp

pacs

7728

620

11-0

5-04

T11

:01:

42Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

015

9Jy

blu

c38

Ves

ta03

720

1342

2205

83rp

pacs

7728

620

11-0

5-04

T10

:55:

53Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

015

9Jy

blu

c38

Ves

ta03

703

1342

2187

48rp

pacs

7528

620

11-0

4-17

T14

:18:

51Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

075

Jygr

nc3

7V

esta

03

Exp Astron

Tabl

e9

(con

tinu

ed)

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

703

1342

2187

47rp

pacs

7528

620

11-0

4-17

T14

:13:

02Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

075

Jygr

nc3

7V

esta

03

703

1342

2187

45rp

pacs

7528

620

11-0

4-17

T14

:03:

28Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

013

2Jy

blu

c37

Ves

ta03

703

1342

2187

44rp

pacs

7528

620

11-0

4-17

T13

:57:

39Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

013

2Jy

blu

c37

Ves

ta03

686

1342

2177

79rp

pacs

7428

620

11-0

3-31

T12

:50:

07Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

012

0Jy

blu

c36

Ves

ta03

686

1342

2177

78rp

pacs

7428

620

11-0

3-31

T12

:44:

18Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

012

0Jy

blu

c36

Ves

ta03

677

1342

2166

13rp

pacs

7210

5520

11-0

3-22

T11

:04:

25Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4CSt

dSca

n135

med

grn

Ves

ta00

01

677

1342

2166

12rp

pacs

7210

5520

11-0

3-22

T10

:45:

47Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4CSt

dSca

n045

med

grn

Ves

ta00

01

677

1342

2166

11rp

pacs

7210

5520

11-0

3-22

T10

:27:

09Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4CSt

dSca

n135

med

blu

Ves

ta00

01

677

1342

2166

10rp

pacs

7210

5520

11-0

3-22

T10

:08:

31Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4CSt

dSca

n045

med

blu

Ves

ta00

01

677

1342

2166

09rp

pacs

7228

620

11-0

3-22

T10

:02:

42Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S11

010

6Jy

blu

c35

Ves

ta03

677

1342

2166

08rp

pacs

7228

620

11-0

3-22

T09

:56:

53Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3BsP

S07

010

6Jy

blu

c35

Ves

ta03

348

1342

1956

28rp

pacs

1827

620

10-0

4-27

T03

:29:

56Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

grn

Ves

ta00

01

348

1342

1956

27rp

pacs

1827

620

10-0

4-27

T03

:24:

17Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

grn

Ves

ta00

01

348

1342

1956

25rp

pacs

1827

620

10-0

4-27

T03

:14:

53Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

blu

Ves

ta00

01

348

1342

1956

24rp

pacs

1827

620

10-0

4-27

T03

:09:

14Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

blu

Ves

ta00

01

348

1342

1956

22rp

pacs

1839

2620

10-0

4-27

T01

:59:

00Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4BSt

dSca

n+20

med

grn

Ves

ta00

01

345

1342

1954

77rp

pacs

1874

120

10-0

4-24

T01

:43:

57Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4ASt

dSca

n-42

med

grn

Ves

ta00

01

345

1342

1954

76rp

pacs

1874

120

10-0

4-24

T01

:30:

33Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4ASt

dSca

n+42

med

grn

Ves

ta00

01

345

1342

1954

75rp

pacs

1870

320

10-0

4-24

T01

:17:

47Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4ASt

dSca

n-42

higr

nV

esta

0001

345

1342

1954

74rp

pacs

1870

320

10-0

4-24

T01

:05:

01Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4ASt

dSca

n+42

higr

nV

esta

0001

345

1342

1954

73rp

pacs

1874

120

10-0

4-24

T00

:51:

37Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4ASt

dSca

n-42

med

blu

Ves

ta00

01

345

1342

1954

72rp

pacs

1874

120

10-0

4-24

T00

:38:

13Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4ASt

dSca

n+42

med

blu

Ves

ta00

01

345

1342

1954

71rp

pacs

1870

320

10-0

4-24

T00

:25:

27Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4ASt

dSca

n-42

hibl

uV

esta

0001

Exp Astron

Tabl

e9

(con

tinu

ed)

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

345

1342

1954

70rp

pacs

1870

320

10-0

4-24

T00

:12:

41Z

RPP

hotS

pati

al1-

RPP

hotS

pati

al31

4ASt

dSca

n+42

hibl

uV

esta

0001

160

1342

1861

37pv

pacs

6083

120

09-1

0-21

T02

:33:

52Z

PVPh

otSp

atia

l1-

PVPh

otSp

atia

l31

4DSt

dSca

nbl

uhig

hV

esta

0001

160

1342

1861

36pv

pacs

6086

520

09-1

0-21

T02

:18:

24Z

PVPh

otSp

atia

l1-

PVPh

otSp

atia

l31

4DSt

dSca

nbl

umed

Ves

ta00

01

160

1342

1861

35pv

pacs

6012

2720

09-1

0-21

T01

:56:

54Z

PVPh

otSp

atia

l1-

PVPh

otSp

atia

l31

4DSt

dSca

nbl

ulow

Ves

ta00

01

160

1342

1861

34pv

pacs

6083

120

09-1

0-21

T01

:42:

00Z

PVPh

otSp

atia

l1-

PVPh

otSp

atia

l31

4DSt

dSca

ngr

nhig

hV

esta

0001

160

1342

1861

33pv

pacs

6086

520

09-1

0-21

T01

:26:

32Z

PVPh

otSp

atia

l1-

PVPh

otSp

atia

l31

4DSt

dSca

ngr

nmed

Ves

ta00

01

160

1342

1861

32pv

pacs

6012

2720

09-1

0-21

T01

:05:

02Z

PVPh

otSp

atia

l1-

PVPh

otSp

atia

l31

4DSt

dSca

ngr

nlow

Ves

ta00

01

Exp Astron

Tabl

e10

Ove

rvie

wof

allr

elev

antH

ersc

hel-

PAC

Sph

otom

eter

chop

-nod

obse

rvat

ions

of(4

)V

esta

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1377

1342

2639

23rp

pacs

179

162

2013

-02-

19T

08:5

6:42

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ybl

uV

esta

0006

1377

1342

2639

20rp

pacs

179

162

2013

-02-

19T

08:4

1:19

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

100J

ygr

nV

esta

0006

1202

1342

2502

97rp

pacs

153

162

2012

-08-

28T

03:5

3:29

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323A

cPS

88Jy

blu

c73

Ves

ta05

1181

1342

2491

93rp

pacs

149

162

2012

-08-

07T

02:5

4:22

ZR

PPho

tFlu

x1-

RPP

hotF

lux

323A

cPS

200J

ybl

uc7

1V

esta

05

1181

1342

2491

92rp

pacs

149

162

2012

-08-

07T

02:5

0:37

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

100J

ygr

nV

esta

0005

900

1342

2316

91rp

pacs

105

162

2011

-10-

31T

03:2

1:33

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

100J

ygr

nV

esta

0004

900

1342

2316

88rp

pacs

105

162

2011

-10-

31T

03:0

6:10

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

200J

ybl

uV

esta

0004

743

1342

2217

26rp

pacs

8216

220

11-0

5-27

T02

:17:

52Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S12

0Jy

grn

c40

Ves

ta03

743

1342

2217

23rp

pacs

8216

220

11-0

5-27

T02

:02:

29Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S21

1Jy

blu

c40

Ves

ta03

726

1342

2202

89rp

pacs

7916

220

11-0

5-10

T02

:18:

14Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S10

0Jy

grn

c39

Ves

ta03

726

1342

2202

86rp

pacs

7916

220

11-0

5-10

T02

:02:

51Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S17

6Jy

blu

c39

Ves

ta03

720

1342

2205

85rp

pacs

7716

220

11-0

5-04

T11

:07:

31Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S90

Jygr

nc3

8V

esta

03

720

1342

2205

82rp

pacs

7716

220

11-0

5-04

T10

:52:

08Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S15

9Jy

blu

c38

Ves

ta03

703

1342

2187

46rp

pacs

7516

220

11-0

4-17

T14

:09:

17Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S75

Jygr

nc3

7V

esta

03

703

1342

2187

43rp

pacs

7516

220

11-0

4-17

T13

:53:

54Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S13

2Jy

blu

c37

Ves

ta03

686

1342

2177

77rp

pacs

7416

220

11-0

3-31

T12

:40:

33Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S12

0Jy

blu

c36

Ves

ta03

677

1342

2166

07rp

pacs

7216

220

11-0

3-22

T09

:53:

08Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

3AcP

S10

6Jy

blu

c35

Ves

ta03

348

1342

1956

26rp

pacs

1816

220

10-0

4-27

T03

:20:

32Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S10

0Jy

grn

Ves

ta00

01

348

1342

1956

23rp

pacs

1816

220

10-0

4-27

T03

:05:

29Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S20

0Jy

blu

Ves

ta00

01

Exp Astron

Tabl

e11

Ove

rvie

wof

allr

elev

antH

ersc

hel-

Spir

eph

otom

eter

obse

rvat

ions

of(4

)V

esta

like

inTa

ble

4

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

Mod

eA

OR

Lab

el

1403

1342

2677

47rp

spir

e16

059

320

13-0

3-17

T04

:53:

35Z

SmM

apcy

cle8

71-

SPho

to-S

mal

lM-R

ep4-

Ves

ta

1388

1342

2653

85rp

spir

e15

859

320

13-0

3-02

T06

:55:

50Z

SmM

apcy

cle8

61-

SPho

to-S

mal

lM-R

ep4-

Ves

ta

1375

1342

2638

11rp

spir

e15

659

320

13-0

2-17

T00

:23:

02Z

SmM

apcy

cle8

51-

SPho

to-S

mal

lM-R

ep4-

Ves

ta

1201

1342

2503

24rp

spir

e13

059

320

12-0

8-26

T16

:47:

24Z

SmM

apcy

cle7

31-

SPho

to-S

mal

lM-R

ep4-

Ves

ta

1179

1342

2490

90rp

spir

e12

659

320

12-0

8-05

T12

:26:

59Z

SmM

apcy

cle7

11-

SPho

to-S

mal

lM-R

ep4-

Ves

ta

916

1342

2323

69rp

spir

e86

593

2011

-11-

16T

12:0

4:22

ZSm

Map

cycl

e53

1-SP

hoto

-Sm

allM

-Rep

4-V

esta

892

1342

2313

47rp

spir

e82

593

2011

-10-

23T

13:4

3:33

ZSm

Map

cycl

e51

1-SP

hoto

-Sm

allM

-Rep

4-V

esta

702

1342

2186

88rp

spir

e54

593

2011

-04-

16T

01:2

6:07

ZSm

Map

cycl

e37

1-SP

hoto

-Sm

allM

-Rep

4-V

esta

669

1342

2159

94rp

spir

e51

593

2011

-03-

13T

21:1

1:57

ZSm

Map

cycl

e35

1-SP

hoto

-Sm

allM

-Rep

4-V

esta

411

1342

1993

29rp

spir

e19

1334

2010

-06-

28T

20:3

6:13

ZL

gMap

cycl

e16

1-SP

hoto

-Lar

geM

-Rep

4-8x

8-V

esta

-00

01

411

1342

1993

28rp

spir

e19

593

2010

-06-

28T

20:2

5:47

ZSm

Map

cycl

e16

1-SP

hoto

-Sm

allM

-Rep

4-V

esta

-00

01

411

1342

1993

27rp

spir

e19

1356

2010

-06-

28T

20:0

2:43

ZPS

cycl

e16

1-SP

hoto

-Poi

ntS-

Rep

4-V

esta

-00

01

402

1342

1985

75rp

spir

e19

1334

2010

-06-

19T

16:0

2:47

ZL

gMap

cycl

e16

1-SP

hoto

-Lar

geM

-Rep

4-8x

8-V

esta

402

1342

1985

74rp

spir

e19

593

2010

-06-

19T

15:5

2:21

ZSm

Map

cycl

e16

1-SP

hoto

-Sm

allM

-Rep

4-V

esta

402

1342

1985

73rp

spir

e19

1356

2010

-06-

19T

15:2

9:17

ZPS

cycl

e16

1-SP

hoto

-Poi

ntS-

Rep

4-V

esta

393

1342

1981

44rp

spir

e18

593

2010

-06-

10T

16:4

9:59

ZSm

Map

cycl

e15

1-SP

hoto

-Sm

allR

ep4-

Ves

ta

393

1342

1981

43rp

spir

e18

1356

2010

-06-

10T

16:2

6:55

ZPS

cycl

e15

1-SP

hoto

-Poi

nt-R

ep4-

Ves

ta

393

1342

1981

42rp

spir

e18

1334

2010

-06-

10T

16:0

4:11

ZL

gMap

cycl

e15

1-SP

hoto

-Lar

ge-R

ep4-

8x8-

Ves

ta

381

1342

1973

17rp

spir

e17

1261

2010

-05-

30T

15:4

4:54

ZL

gMap

cycl

e14

1-SP

hoto

-Lar

ge-R

ep4-

8x8-

Ves

ta-F

ast

381

1342

1973

16rp

spir

e17

1334

2010

-05-

30T

15:2

1:59

ZL

gMap

cycl

e14

1-SP

hoto

-Lar

ge-R

ep4-

8x8-

Ves

ta

381

1342

1973

15rp

spir

e17

593

2010

-05-

30T

15:1

1:33

ZSm

Map

cycl

e14

1-SP

hoto

-Sm

allR

ep4-

Ves

ta

381

1342

1973

14rp

spir

e17

1356

2010

-05-

30T

14:4

8:29

ZPS

cycl

e14

1-SP

hoto

-Poi

nt-R

ep4-

Ves

ta

369

1342

1966

67rp

spir

e16

1334

2010

-05-

18T

14:3

4:08

ZL

gMap

cycl

e13

1-SP

hoto

-Lar

ge-R

ep4-

8x8-

Ves

ta

Exp Astron

Tabl

e11

(con

tinu

ed)

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

Mod

eA

OR

Lab

el

369

1342

1966

66rp

spir

e16

593

2010

-05-

18T

14:2

3:42

ZSm

Map

cycl

e13

1-SP

hoto

-Sm

allR

ep4-

Ves

ta

369

1342

1966

65pv

spir

e67

1356

2010

-05-

18T

14:0

0:38

ZPS

cycl

e13

2-SP

hoto

-Poi

nt-R

ep4-

Ves

ta

354

1342

1957

50rp

spir

e15

1334

2010

-05-

03T

10:3

9:14

ZL

gMap

cycl

e12

1-SP

hoto

-Lar

ge-R

ep4-

8x8-

Ves

ta

354

1342

1957

49rp

spir

e15

593

2010

-05-

03T

10:2

8:48

ZSm

Map

cycl

e12

1-SP

hoto

-Sm

allR

ep4-

Ves

ta

354

1342

1957

48pv

spir

e65

1356

2010

-05-

03T

10:0

5:44

ZPS

cycl

e12

2-SP

hoto

-Poi

nt-R

ep4-

Ves

ta

181

1342

1869

48pv

spir

e49

1468

2009

-11-

11T

19:2

8:15

ZPS

phot

1-SP

hoto

-Poi

ntR

ep4-

brig

ht

181

1342

1869

47pv

spir

e49

1468

2009

-11-

11T

19:0

3:31

ZPS

phot

1-Sp

ireP

hoto

Poin

tJig

gleG

en-o

ther

Way

-bri

ght

181

1342

1869

46pv

spir

e49

1459

2009

-11-

11T

18:3

8:56

ZPS

phot

1-SP

hoto

-Poi

ntR

ep4

181

1342

1869

44pv

spir

e49

1459

2009

-11-

11T

17:5

5:21

ZPS

phot

1-Sp

ireP

hoto

Poin

tJig

gleG

en-o

ther

Way

168

1342

1865

07pv

spir

e46

1449

2009

-10-

29T

01:1

5:33

ZSc

anph

ot-f

lux-

cal

2-Sp

ireP

hoto

Lar

geSc

anG

en-A

rray

-Sca

n-Y

-Rep

2-4V

esta

167

1342

1864

90pv

spir

e45

1458

2009

-10-

28T

20:2

8:58

ZSc

anph

ot-f

lux-

cal

2-Sp

ireP

hoto

Lar

geSc

anG

en-A

rray

-Sca

n+Y

-Rep

2-4V

esta

-br

167

1342

1864

89pv

spir

e45

1468

2009

-10-

28T

20:0

3:45

ZPS

phot

-flu

x-ca

l2-

SPho

to-P

oint

Rep

4-br

ight

153

1342

1860

02pv

spir

e42

427

2009

-10-

14T

21:2

7:42

ZPS

phot

-oth

er1-

SPho

to-7

pt-R

ep1-

Ves

ta-

copy

-00

03

153

1342

1860

01pv

spir

e42

243

2009

-10-

14T

21:2

3:13

ZPS

phot

-oth

er1-

Spir

ePho

toPe

akup

Gen

-PSW

-E6

-4

Ves

ta

153

1342

1860

00pv

spir

e42

427

2009

-10-

14T

21:1

5:40

ZPS

phot

-oth

er1-

SPho

to-7

pt-R

ep1-

Ves

ta-

copy

-00

04

153

1342

1859

99pv

spir

e42

243

2009

-10-

14T

21:1

1:11

ZPS

phot

-oth

er1-

Spir

ePho

toPe

akup

Gen

-PSW

-E10

-4

Ves

ta

153

1342

1859

89pv

spir

e42

427

2009

-10-

14T

20:0

7:39

ZPS

phot

-oth

er1-

SPho

to-7

pt-R

ep1-

Ves

ta-

copy

-00

02

153

1342

1859

88pv

spir

e42

243

2009

-10-

14T

20:0

3:24

ZPS

phot

-oth

er1-

Spir

ePho

toPe

akup

Gen

-000

0-

4V

esta

153

1342

1859

87pv

spir

e42

427

2009

-10-

14T

19:5

6:05

ZPS

phot

-oth

er1-

SPho

to-7

pt-R

ep1-

Ves

ta-

copy

-00

01

153

1342

1859

38pv

spir

e42

1458

2009

-10-

14T

16:1

2:24

ZSc

anph

ot-f

lux-

cal

1-Sp

ireP

hoto

Lar

geSc

anG

en-A

rray

-Sca

n+Y

-Rep

2-4V

esta

-br

153

1342

1859

26pv

spir

e42

1468

2009

-10-

14T

15:2

2:00

ZPS

phot

-flu

x-ca

l1-

Spir

ePho

toPo

intJ

iggl

eGen

-oth

erW

ay-b

righ

t

153

1342

1859

24pv

spir

e42

1468

2009

-10-

14T

14:3

8:27

ZPS

phot

-flu

x-ca

l1-

SPho

to-P

oint

Rep

4-br

ight

Exp Astron

Tabl

e11

(con

tinu

ed)

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

Mod

eA

OR

Lab

el

153

1342

1859

22pv

spir

e42

1459

2009

-10-

14T

13:5

5:03

ZPS

phot

-flu

x-ca

l1-

SPho

to-P

oint

Rep

4-

copy

153

1342

1859

21pv

spir

e42

1459

2009

-10-

14T

13:3

0:32

ZPS

phot

-flu

x-ca

l1-

Spir

ePzh

otoP

oint

Jigg

leG

en-o

ther

Way

153

1342

1859

09pv

spir

e42

1449

2009

-10-

14T

12:4

0:22

ZSc

anph

ot-f

lux-

cal

1-Sp

ireP

hoto

Lar

geSc

anG

en-A

rray

-Sca

n+Y

-Rep

2-4V

esta

153

1342

1859

08pv

spir

e42

1449

2009

-10-

14T

12:1

5:51

ZSc

anph

ot-f

lux-

cal

1-Sp

ireP

hoto

Lar

geSc

anG

en-A

rray

-Sca

n-Y

-Rep

2-4V

esta

153

1342

1858

10pv

spir

e42

1459

2009

-10-

14T

00:2

2:32

ZPS

phot

-flu

x-ca

l1-

SPho

to-P

oint

Rep

4

153

1342

1858

07pv

spir

e42

427

2009

-10-

14T

00:1

0:39

ZPS

phot

-oth

er1-

SPho

to-7

pt-R

ep1-

Ves

ta

153

1342

1857

94pv

spir

e42

1161

2009

-10-

13T

23:2

4:15

ZSc

anph

ot-f

lux-

cal

1-Sp

ireP

hoto

Lar

geSc

an-A

rray

-Sca

n-Y

-PM

W-R

ep2-

4Ves

ta

153

1342

1857

93pv

spir

e42

1161

2009

-10-

13T

23:0

4:32

ZSc

anph

ot-f

lux-

cal

1-Sp

ireP

hoto

Lar

geSc

an-A

rray

-Sca

n+Y

-PM

W-R

ep2-

4Ves

ta

153

1342

1857

92pv

spir

e42

1170

2009

-10-

13T

22:4

4:40

ZSc

anph

ot-f

lux-

cal

1-Sp

ireP

hoto

Lar

geSc

an-A

rray

-Sca

n-Y

-PM

W-R

ep2-

4Ves

ta-b

r

153

1342

1857

91pv

spir

e42

1170

2009

-10-

13T

22:2

4:48

ZSc

anph

ot-f

lux-

cal

1-Sp

ireP

hoto

Lar

geSc

an-A

rray

-Sca

n+Y

-PM

W-R

ep2-

4Ves

ta-b

r

Exp Astron

Tabl

e12

Ove

rvie

wof

allr

elev

antH

ersc

hel-

PAC

Sph

otom

eter

scan

-map

obse

rvat

ions

of(2

1)L

utet

ia

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1399

1342

2672

65rp

pacs

183

286

2013

-03-

13T

02:2

2:43

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

5Jy

blu

Lut

etia

0006

1399

1342

2672

64rp

pacs

183

286

2013

-03-

13T

02:1

6:54

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

5Jy

blu

Lut

etia

0006

1399

1342

2672

62rp

pacs

183

286

2013

-03-

13T

02:0

7:20

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

2Jy

grn

Lut

etia

0006

1399

1342

2672

61rp

pacs

183

286

2013

-03-

13T

02:0

1:31

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

2Jy

grn

Lut

etia

0006

1198

1342

2501

08rp

pacs

153

286

2012

-08-

23T

22:5

1:36

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

5Jy

blu

Lut

etia

0005

1198

1342

2501

07rp

pacs

153

286

2012

-08-

23T

22:4

5:47

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

5Jy

blu

Lut

etia

0005

1198

1342

2501

05rp

pacs

153

286

2012

-08-

23T

22:3

6:13

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

110

2Jy

grn

Lut

etia

0005

1198

1342

2501

04rp

pacs

153

286

2012

-08-

23T

22:3

0:24

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324B

sPS

070

2Jy

grn

Lut

etia

0005

859

1342

2289

51rp

pacs

9828

620

11-0

9-19

T21

:23:

31Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

grn

Lut

etia

0001

859

1342

2289

50rp

pacs

9828

620

11-0

9-19

T21

:17:

42Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

grn

Lut

etia

0001

859

1342

2289

48rp

pacs

9828

620

11-0

9-19

T21

:08:

08Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S11

0Pl

anck

blu

Lut

etia

0001

859

1342

2289

47rp

pacs

9828

620

11-0

9-19

T21

:02:

19Z

RPP

hotF

lux

1-R

PPho

tFlu

x63

1AsP

S07

0Pl

anck

blu

Lut

etia

0001

684

1342

2174

15rp

pacs

7428

620

11-0

3-29

T21

:08:

58Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

02J

ygr

nL

utet

ia00

03

684

1342

2174

14rp

pacs

7428

620

11-0

3-29

T21

:03:

09Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S07

02J

ygr

nL

utet

ia00

03

684

1342

2174

12rp

pacs

7428

620

11-0

3-29

T20

:53:

35Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

05J

ybl

uL

utet

ia00

03

684

1342

2174

11rp

pacs

7428

620

11-0

3-29

T20

:47:

46Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S07

05J

ybl

uL

utet

ia00

03

400

1342

1984

95rp

pacs

2728

620

10-0

6-17

T17

:22:

53Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

050

0mJy

red

Lut

etia

0002

400

1342

1984

94rp

pacs

2728

620

10-0

6-17

T17

:17:

04Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S07

050

0mJy

red

Lut

etia

0002

400

1342

1984

93rp

pacs

2728

620

10-0

6-17

T17

:11:

15Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

02J

ygr

nL

utet

ia00

02

400

1342

1984

92rp

pacs

2728

620

10-0

6-17

T17

:05:

26Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S07

02J

ygr

nL

utet

ia00

02

221

1342

1883

37rp

pacs

325

420

09-1

2-21

T02

:07:

02Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

750

0mJy

red

Lut

etia

0001

221

1342

1883

36rp

pacs

325

420

09-1

2-21

T02

:01:

45Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S06

350

0mJy

red

Lut

etia

0001

221

1342

1883

35rp

pacs

325

420

09-1

2-21

T01

:56:

28Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S11

72J

ygr

nL

utet

ia00

01

221

1342

1883

34rp

pacs

325

420

09-1

2-21

T01

:51:

11Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4BsP

S06

32J

ygr

nL

utet

ia00

01

Exp Astron

Tabl

e13

Ove

rvie

wof

allr

elev

antH

ersc

hel-

PAC

Sph

otom

eter

chop

-nod

obse

rvat

ions

of(2

1)L

utet

ia

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

AO

RL

abel

1399

1342

2672

63rp

pacs

183

162

2013

-03-

13T

02:1

3:09

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

5Jy

blu

Lut

etia

0006

1399

1342

2672

60rp

pacs

183

162

2013

-03-

13T

01:5

7:46

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

2Jy

grn

Lut

etia

0006

1198

1342

2501

06rp

pacs

153

162

2012

-08-

23T

22:4

2:02

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

5Jy

blu

Lut

etia

0005

1198

1342

2501

03rp

pacs

153

162

2012

-08-

23T

22:2

6:39

ZR

PPho

tFlu

x1-

RPP

hotF

lux

324A

cPS

2Jy

grn

Lut

etia

0005

859

1342

2289

49rp

pacs

9816

220

11-0

9-19

T21

:13:

57Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S2J

ygr

nL

utet

ia00

04

859

1342

2289

46rp

pacs

9816

220

11-0

9-19

T20

:58:

34Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S5J

ybl

uL

utet

ia00

04

684

1342

2174

13rp

pacs

7416

220

11-0

3-29

T20

:59:

24Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S2J

ygr

nL

utet

ia00

03

684

1342

2174

10rp

pacs

7416

220

11-0

3-29

T20

:44:

01Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S5J

ybl

uL

utet

ia00

03

221

1342

1883

33rp

pacs

316

220

09-1

2-21

T01

:47:

26Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S50

0mJy

red

Lut

etia

0001

221

1342

1883

32rp

pacs

316

220

09-1

2-21

T01

:43:

41Z

RPP

hotF

lux

1-R

PPho

tFlu

x32

4AcP

S2J

ygr

nL

utet

ia00

01

Exp Astron

Tabl

e14

Ove

rvie

wof

allr

elev

antH

ersc

hel-

SPIR

Eph

otom

eter

obse

rvat

ions

of(2

1)L

utet

iali

kein

Tabl

e4

OD

OB

SID

Prop

osal

Dur

.St

artt

ime

Mod

eA

OR

Lab

el

1434

1342

2703

26rp

spir

e16

459

320

13-0

4-17

T11

:36:

39Z

SmM

apcy

cle8

91-

SPho

to-S

mal

lM-R

ep4-

Lut

etia

1411

1342

2683

45rp

spir

e16

259

320

13-0

3-25

T03

:00:

27Z

SmM

apcy

cle8

81-

SPho

to-S

mal

lM-R

ep4-

Lut

etia

1402

1342

2677

16rp

spir

e16

059

320

13-0

3-16

T04

:13:

22Z

SmM

apcy

cle8

71-

SPho

to-S

mal

lM-R

ep4-

Lut

etia

1388

1342

2653

86rp

spir

e15

859

320

13-0

3-02

T07

:08:

54Z

SmM

apcy

cle8

61-

SPho

to-S

mal

lM-R

ep4-

Lut

etia

1215

1342

2508

02rp

spir

e13

259

320

12-0

9-10

T12

:37:

25Z

SmM

apcy

cle7

41-

SPho

to-S

mal

lM-R

ep4-

Lut

etia

1196

1342

2506

37rp

spir

e12

859

320

12-0

8-22

T12

:58:

26Z

SmM

apcy

cle7

21-

SPho

to-S

mal

lM-R

ep4-

Lut

etia

892

1342

2313

44rp

spir

e82

593

2011

-10-

23T

13:0

7:52

ZSm

Map

cycl

e51

1-SP

hoto

-Sm

allM

-Rep

4-L

utet

ia

861

1342

2291

93rp

spir

e78

593

2011

-09-

22T

08:3

2:17

ZSm

Map

cycl

e49

1-SP

hoto

-Sm

allM

-Rep

4-L

utet

ia

423

1342

2002

04O

T1

loro

urke

917

920

10-0

7-11

T07

:55:

55Z

SmM

apSP

hoto

-Lut

etia

-Sm

allm

ap

Exp Astron

Tabl

e15

Add

itio

nalH

ersc

helf

ixed

posi

tion

phot

omet

erob

serv

atio

ns(n

otr

acki

ng)

OD

OB

SID

Targ

etR

AD

ecP

ropo

sal

Dur

.S

tart

time

AO

TM

ode

AO

RL

abel

5013

4217

9352

Cer

es02

0720

0911

h28m

31.0

80s

+13d

24m

21.9

0sco

pspi

re18

158

2009

-07-

02T

22:2

3:12

ZS

pire

Pho

toS

can

HC

OP

SJL

OD

5001

1-S

pire

Pho

to

Cal

IltP

calF

lash

Gen

-000

1

5013

4217

9351

Cer

es02

0720

0911

h28m

31.0

80s

+13d

24m

21.9

0sco

pspi

re18

4220

09-0

7-02

T22

:22:

10Z

Spi

reP

hoto

Sca

nH

CO

PS

JLO

D50

011-

Spi

reP

hoto

Pca

lFla

shG

en-0

003

5013

4217

9350

Cer

es02

0720

0911

h28m

31.0

80s

+13d

24m

21.9

0sco

pspi

re18

3891

2009

-07-

02T

21:1

7:03

ZS

pire

Pho

toS

can

HC

OP

SJL

OD

5001

1-S

pire

Pho

to

Cal

Bsm

Pid

Tun

ingG

en-P

OS

2-

Spi

reP

hoto

Pca

lFla

shG

en-0

003

5013

4217

9349

Cer

es02

0720

0911

h28m

31.0

80s

+13d

24m

21.9

0sco

pspi

re18

4220

09-0

7-02

T21

:16:

05Z

Spi

reP

hoto

Sca

nH

CO

PS

JLO

D50

011-

Spi

reP

hoto

Pca

lFla

shG

en-0

002

5013

4217

9348

Cer

es02

0720

0911

h28m

31.0

80s

+13d

24m

21.9

0sco

pspi

re18

158

2009

-07-

02T

21:1

3:15

ZS

pire

Pho

toS

can

HC

OP

SJL

OD

5001

1-S

pire

Pho

to

Cal

IltP

calF

lash

Gen

-000

0

4213

4217

9028

Cer

es20

0906

2411

h19m

05.5

00s

+14d

50m

01.5

0sco

pspi

re15

4220

09-0

6-25

T01

:52:

45Z

Spi

reP

hoto

Sca

nH

CO

PS

JLO

D42

011-

Spi

reP

hoto

Pca

lFla

shG

en-0

002

4213

4217

9027

Cer

es20

0906

2411

h19m

05.5

00s

+14d

50m

01.5

0sco

pspi

re15

6303

2009

-06-

25T

00:0

7:24

ZS

pire

Pho

toS

can

HC

OP

SJL

OD

4201

1-S

pire

Pho

to

Cal

GC

OF

pgIn

itial

Poi

ntin

gGen

-

5x5

-C

eres

2009

0624

4213

4217

9026

Cer

es20

0906

2411

h19m

05.5

00s

+14d

50m

01.5

0sco

pspi

re15

4220

09-0

6-25

T00

:06:

24Z

Spi

reP

hoto

Sca

nH

CO

PS

JLO

D42

011-

Spi

reP

hoto

Pca

lFla

shG

en-0

001

1179

1342

2490

91V

esta

alpT

au-1

4h35

m49

.350

s+1

6d37

m02

.60s

rpsp

ire

126

1854

2012

-08-

05T

12:3

8:02

ZS

pire

Pacs

Para

llel

cycl

e71

1–R

PPa

rAO

TV

al32

4A

Std

Nom

blu

fast

Ves

taal

pTau

1

1179

1342

2490

93m

idP

osaT

auV

esta

4h35

m51

.430

s+1

6d37

m06

.40s

rppa

cs14

915

7620

12-0

8-05

T13

:37:

18Z

Pacs

Pho

tosc

an-m

apR

PP

hotF

lux

1-R

PP

hotF

lux

324C

s

169s

kygr

nV

esta

alpT

au01

1179

1342

2490

92m

idP

osaT

auV

esta

4h35

m50

.510

s+1

6d37

m04

.70s

rppa

cs14

915

7620

12-0

8-05

T13

:09:

59Z

Pacs

Pho

tosc

an-m

apR

PP

hotF

lux

1-R

PP

hotF

lux

324C

s

169s

kybl

ueV

esta

alpT

au01

Exp Astron

Obs

erva

tion

alre

sult

sof

the

Her

sche

lpho

tom

etri

cm

easu

rem

ents

Tabl

e16

Phot

omet

ric

Her

sche

ldat

aof

(1)

Cer

esto

geth

erw

ith

the

obse

rvin

gge

omet

ryan

dth

eT

PMpr

edic

tion

s

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1244

1342

2528

7524

5621

0.07

473

70.0

040

9.88

720

.901

2.71

802.

2836

21.0

394.

159

1.04

PAC

S-SM

1244

1342

2528

7624

5621

0.08

767

70.0

041

1.24

820

.970

2.71

802.

2834

21.0

394.

279

1.04

PAC

S-SM

1441

1342

2708

5624

5640

6.71

818

70.0

024

6.87

612

.588

2.58

272.

8983

−20.

424

5.03

71.

01PA

CS-

SM

1441

1342

2708

5124

5640

6.67

161

70.0

024

6.03

712

.546

2.58

272.

8978

−20.

424

5.14

21.

00PA

CS-

SM

1441

1342

2708

4624

5640

6.62

462

70.0

024

8.02

412

.647

2.58

272.

8973

−20.

424

5.18

91.

01PA

CS-

SM

1441

1342

2708

4124

5640

6.57

939

70.0

024

6.49

512

.569

2.58

282.

8968

−20.

424

5.31

81.

00PA

CS-

SM

1441

1342

2708

2824

5640

6.54

390

70.0

024

7.05

012

.597

2.58

282.

8964

−20.

424

5.31

81.

01PA

CS-

SM

1441

1342

2708

2324

5640

6.49

797

70.0

024

7.78

112

.634

2.58

282.

8959

−20.

424

5.35

61.

01PA

CS-

SM

1441

1342

2708

1824

5640

6.45

213

70.0

024

7.73

912

.632

2.58

282.

8954

−20.

424

5.47

41.

01PA

CS-

SM

1441

1342

2708

1324

5640

6.40

569

70.0

024

7.05

012

.597

2.58

292.

8949

−20.

424

5.55

81.

01PA

CS-

SM

1441

1342

2708

0824

5640

6.36

095

70.0

024

6.60

112

.574

2.58

292.

8944

−20.

424

5.60

21.

00PA

CS-

SM

1441

1342

2708

0324

5640

6.32

333

70.0

024

7.11

612

.601

2.58

292.

8940

−20.

424

5.68

31.

01PA

CS-

SM

1441

1342

2707

9824

5640

6.27

708

70.0

024

7.30

412

.610

2.58

292.

8935

−20.

424

5.87

61.

01PA

CS-

SM

1441

1342

2707

8724

5640

6.23

868

70.0

024

7.65

412

.628

2.58

292.

8931

−20.

424

5.78

71.

01PA

CS-

SM

1420

1342

2692

7524

5638

5.49

679

70.0

028

9.11

214

.742

2.59

362.

6519

−22.

228

8.11

71.

00PA

CS-

SM

1420

1342

2692

7624

5638

5.50

083

70.0

028

8.76

914

.724

2.59

362.

6519

−22.

228

8.30

01.

00PA

CS-

SM

1244

1342

2528

7024

5621

0.05

597

70.0

040

7.48

520

.778

2.71

802.

2838

21.0

394.

135

1.03

PAC

S-SM

1244

1342

2528

7124

5621

0.06

001

70.0

040

5.16

520

.660

2.71

802.

2838

21.0

394.

149

1.03

PAC

S-SM

1237

1342

2520

5824

5620

2.72

458

70.0

037

0.60

518

.897

2.72

402.

3861

21.5

359.

514

1.03

PAC

S-SM

1237

1342

2520

5924

5620

2.72

862

70.0

037

0.57

818

.896

2.72

402.

3861

21.5

359.

555

1.03

PAC

S-SM

947

1342

2344

6724

5591

2.52

418

70.0

023

8.08

512

.140

2.93

242.

8235

−19.

823

3.76

81.

02PA

CS-

SM

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

947

1342

2344

6824

5591

2.52

822

70.0

023

7.86

412

.129

2.93

242.

8235

−19.

823

3.73

11.

02PA

CS-

SM

782

1342

2236

9924

5574

7.61

557

70.0

030

1.80

615

.389

2.98

252.

5852

19.6

288.

389

1.05

PAC

S-SM

782

1342

2237

0024

5574

7.61

961

70.0

030

2.57

215

.428

2.98

252.

5852

19.6

288.

505

1.05

PAC

S-SM

782

1342

2237

0124

5574

7.62

365

70.0

030

1.64

515

.381

2.98

242.

5851

19.6

288.

418

1.05

PAC

S-SM

782

1342

2237

0224

5574

7.63

659

70.0

030

2.95

115

.448

2.98

242.

5849

19.6

288.

438

1.05

PAC

S-SM

769

1342

2229

3824

5573

5.09

039

70.0

026

6.51

613

.590

2.98

342.

7522

20.1

253.

850

1.05

PAC

S-SM

769

1342

2229

3924

5573

5.09

443

70.0

026

7.01

613

.615

2.98

342.

7521

20.1

253.

873

1.05

PAC

S-SM

759

1342

2225

6624

5572

4.80

409

70.0

023

9.73

012

.224

2.98

392.

8904

20.0

230.

180

1.04

PAC

S-SM

759

1342

2225

6724

5572

4.80

813

70.0

024

0.30

012

.253

2.98

392.

8904

20.0

230.

180

1.04

PAC

S-SM

743

1342

2217

3824

5570

8.75

326

70.0

020

9.84

010

.700

2.98

423.

1019

19.3

200.

452

1.05

PAC

S-SM

743

1342

2217

3924

5570

8.75

730

70.0

020

9.75

010

.695

2.98

423.

1019

19.3

200.

580

1.05

PAC

S-SM

734

1342

2213

5024

5569

9.97

353

70.0

019

4.83

29.

935

2.98

403.

2130

18.5

187.

525

1.04

PAC

S-SM

734

1342

2213

5124

5569

9.98

647

70.0

019

4.61

79.

924

2.98

403.

2128

.518

7.52

31.

04PA

CS-

SM

726

1342

2202

9324

5569

1.61

455

70.0

018

3.89

79.

377

2.98

373.

3144

17.7

176.

794

1.04

PAC

S-SM

726

1342

2202

9424

5569

1.61

859

70.0

018

4.01

69.

383

2.98

373.

3144

17.7

176.

786

1.04

PAC

S-SM

485

1342

2043

2424

5545

0.42

484

70.0

027

9.58

614

.256

2.89

922.

6237

−20.

427

2.22

31.

03PA

CS-

SM

485

1342

2043

2524

5545

0.42

888

70.0

027

9.87

314

.271

2.89

922.

6238

−20.

427

2.24

41.

03PA

CS-

SM

286

1342

1911

3024

5525

1.66

015

70.0

025

3.02

012

.902

2.75

022.

9026

20.1

242.

630

1.04

PAC

S-SM

286

1342

1911

3124

5525

1.66

407

70.0

025

3.04

012

.903

2.75

022.

9025

20.1

242.

709

1.04

PAC

S-SM

1420

1342

2692

7824

5638

5.50

748

100.

0016

3.30

28.

327

2.59

362.

6520

−22.

216

5.67

20.

99PA

CS-

SM

1420

1342

2692

7924

5638

5.51

152

100.

0016

2.93

08.

308

2.59

362.

6521

−22.

216

5.68

50.

98PA

CS-

SM

1244

1342

2528

7724

5621

0.10

061

100.

0022

8.88

611

.688

2.71

802.

2832

21.0

226.

699

1.01

PAC

S-SM

1244

1342

2528

7824

5621

0.11

355

100.

0023

0.88

311

.776

2.71

802.

2830

21.0

226.

724

1.02

PAC

S-SM

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1244

1342

2528

7324

5621

0.06

666

100.

0022

7.99

111

.639

2.71

802.

2837

21.0

226.

584

1.01

PAC

S-SM

1244

1342

2528

7424

5621

0.07

069

100.

0022

9.57

611

.709

2.71

802.

2836

21.0

226.

609

1.01

PAC

S-SM

1237

1342

2520

6124

5620

2.73

527

100.

0020

9.28

010

.671

2.72

402.

3860

21.5

206.

929

1.01

PAC

S-SM

1237

1342

2520

6224

5620

2.73

931

100.

0020

9.32

610

.674

2.72

402.

3859

21.5

206.

857

1.01

PAC

S-SM

947

1342

2344

7024

5591

2.53

486

100.

0013

5.17

36.

893

2.93

242.

8236

−19.

813

5.76

71.

00PA

CS-

SM

947

1342

2344

7124

5591

2.53

890

100.

0013

4.97

96.

883

2.93

242.

8237

−19.

813

5.76

70.

99PA

CS-

SM

782

1342

2237

0424

5574

7.65

213

100.

0017

1.14

48.

727

2.98

242.

5847

19.6

167.

184

1.02

PAC

S-SM

782

1342

2237

0524

5574

7.65

617

100.

0017

0.65

48.

702

2.98

242.

5847

19.6

167.

167

1.02

PAC

S-SM

782

1342

2237

0624

5574

7.66

021

100.

0017

0.41

88.

690

2.98

242.

5846

19.6

167.

174

1.02

PAC

S-SM

782

1342

2237

0724

5574

7.67

315

100.

0017

0.38

18.

688

2.98

242.

5845

19.6

167.

193

1.02

PAC

S-SM

769

1342

2229

4124

5573

5.10

108

100.

0015

0.90

57.

695

2.98

342.

7520

20.1

147.

118

1.03

PAC

S-SM

769

1342

2229

4224

5573

5.10

512

100.

0014

9.93

57.

645

2.98

342.

7520

20.1

147.

113

1.02

PAC

S-SM

759

1342

2225

6924

5572

4.81

477

100.

0013

5.88

56.

929

2.98

392.

8903

20.0

133.

379

1.02

PAC

S-SM

759

1342

2225

7024

5572

4.81

881

100.

0013

5.33

36.

901

2.98

392.

8902

20.0

133.

411

1.01

PAC

S-SM

743

1342

2217

4124

5570

8.76

395

100.

0011

8.90

36.

063

2.98

423.

1018

19.3

116.

182

1.02

PAC

S-SM

743

1342

2217

4224

5570

8.76

799

100.

0011

8.68

86.

052

2.98

423.

1017

19.3

116.

163

1.02

PAC

S-SM

734

1342

2213

5224

5569

9.99

941

100.

0011

0.40

15.

629

2.98

403.

2127

18.5

108.

593

1.02

PAC

S-SM

734

1342

2213

5324

5570

0.01

235

100.

0011

0.10

85.

614

2.98

403.

2125

18.5

108.

598

1.01

PAC

S-SM

726

1342

2202

9624

5569

1.62

523

100.

0010

3.99

05.

303

2.98

373.

3143

17.7

102.

351

1.02

PAC

S-SM

726

1342

2202

9724

5569

1.62

927

100.

0010

3.22

95.

264

2.98

373.

3142

17.7

102.

359

1.01

PAC

S-SM

485

1342

2043

2724

5545

0.43

552

100.

0015

7.84

18.

048

2.89

922.

6239

−20.

415

8.02

01.

00PA

CS-

SM

485

1342

2043

2824

5545

0.43

956

100.

0015

7.73

58.

043

2.89

922.

6239

−20.

415

7.99

81.

00PA

CS-

SM

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

286

1342

1911

3324

5525

1.67

060

100.

0014

2.34

57.

258

2.75

022.

9025

20.1

139.

605

1.02

PAC

S-SM

286

1342

1911

3424

5525

1.67

453

100.

0014

1.92

47.

237

2.75

022.

9024

20.1

139.

544

1.02

PAC

S-SM

1420

1342

2692

7524

5638

5.49

679

160.

0070

.713

3.60

72.

5936

2.65

19−2

2.2

70.7

961.

00PA

CS-

SM

1420

1342

2692

7624

5638

5.50

083

160.

0070

.844

3.61

32.

5936

2.65

19−2

2.2

70.8

451.

00PA

CS-

SM

1420

1342

2692

7824

5638

5.50

748

160.

0070

.884

3.61

52.

5936

2.65

20−2

2.2

70.8

001.

00PA

CS-

SM

1420

1342

2692

7924

5638

5.51

152

160.

0070

.885

3.61

52.

5936

2.65

21−2

2.2

70.8

051.

00PA

CS-

SM

1244

1342

2528

7524

5621

0.07

473

160.

0010

3.46

85.

329

2.71

802.

2836

21.0

96.7

621.

07PA

CS-

SM

1244

1342

2528

7624

5621

0.08

767

160.

0010

3.10

35.

358

2.71

802.

2834

21.0

96.7

921.

07PA

CS-

SM

1244

1342

2528

7724

5621

0.10

061

160.

0010

2.96

45.

401

2.71

802.

2832

21.0

96.8

011.

06PA

CS-

SM

1244

1342

2528

7824

5621

0.11

355

160.

0010

3.00

95.

478

2.71

802.

2830

21.0

96.8

101.

06PA

CS-

SM

1441

1342

2708

5624

5640

6.71

818

160.

0060

.172

3.06

92.

5827

2.89

83−2

0.4

60.0

421.

00PA

CS-

SM

1441

1342

2708

5124

5640

6.67

161

160.

0059

.980

3.06

12.

5827

2.89

78−2

0.4

60.0

691.

00PA

CS-

SM

1441

1342

2708

4624

5640

6.62

462

160.

0060

.404

3.08

12.

5827

2.89

73−2

0.4

60.0

791.

01PA

CS-

SM

1441

1342

2708

4124

5640

6.57

939

160.

0060

.019

3.06

12.

5828

2.89

68−2

0.4

60.1

111.

00PA

CS-

SM

1441

1342

2708

2824

5640

6.54

390

160.

0060

.117

3.06

72.

5828

2.89

64−2

0.4

60.1

131.

00PA

CS-

SM

1441

1342

2708

2324

5640

6.49

797

160.

0060

.270

3.07

32.

5828

2.89

59−2

0.4

60.1

231.

00PA

CS-

SM

1441

1342

2708

1824

5640

6.45

213

160.

0060

.227

3.07

22.

5828

2.89

54−2

0.4

60.1

521.

00PA

CS-

SM

1441

1342

2708

1324

5640

6.40

569

160.

0060

.159

3.06

82.

5829

2.89

49−2

0.4

60.1

731.

00PA

CS-

SM

1441

1342

2708

0824

5640

6.36

095

160.

0059

.914

3.05

62.

5829

2.89

44−2

0.4

60.1

841.

00PA

CS-

SM

1441

1342

2708

0324

5640

6.32

333

160.

0060

.269

3.07

42.

5829

2.89

40−2

0.4

60.2

041.

00PA

CS-

SM

1441

1342

2707

9824

5640

6.27

708

160.

0060

.305

3.07

82.

5829

2.89

35−2

0.4

60.2

521.

00PA

CS-

SM

1441

1342

2707

8724

5640

6.23

868

160.

0060

.149

3.07

02.

5829

2.89

31−2

0.4

60.2

311.

00PA

CS-

SM

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1244

1342

2528

7024

5621

0.05

597

160.

0095

.488

5.04

32.

7180

2.28

3821

.096

.758

0.99

PAC

S-SM

1244

1342

2528

7124

5621

0.06

001

160.

0098

.945

5.40

32.

7180

2.28

3821

.096

.760

1.02

PAC

S-SM

1244

1342

2528

7324

5621

0.06

666

160.

0094

.444

5.22

82.

7180

2.28

3721

.096

.753

0.98

PAC

S-SM

1244

1342

2528

7424

5621

0.07

069

160.

0010

0.21

05.

355

2.71

802.

2836

21.0

96.7

631.

04PA

CS-

SM

1237

1342

2520

5824

5620

2.72

458

160.

0090

.929

4.63

82.

7240

2.38

6121

.588

.330

1.03

PAC

S-SM

1237

1342

2520

5924

5620

2.72

862

160.

0091

.166

4.64

92.

7240

2.38

6121

.588

.340

1.03

PAC

S-SM

1237

1342

2520

6124

5620

2.73

527

160.

0090

.923

4.63

72.

7240

2.38

6021

.588

.392

1.03

PAC

S-SM

1237

1342

2520

6224

5620

2.73

931

160.

0091

.179

4.65

02.

7240

2.38

5921

.588

.359

1.03

PAC

S-SM

947

1342

2344

6724

5591

2.52

418

160.

0058

.727

2.99

62.

9324

2.82

35−1

9.8

58.5

081.

00PA

CS-

SM

947

1342

2344

6824

5591

2.52

822

160.

0058

.633

2.99

12.

9324

2.82

35−1

9.8

58.4

991.

00PA

CS-

SM

947

1342

2344

7024

5591

2.53

486

160.

0058

.690

2.99

42.

9324

2.82

36−1

9.8

58.4

961.

00PA

CS-

SM

947

1342

2344

7124

5591

2.53

890

160.

0058

.550

2.98

82.

9324

2.82

37−1

9.8

58.4

961.

00PA

CS-

SM

782

1342

2236

9924

5574

7.61

557

160.

0074

.612

3.80

52.

9825

2.58

5219

.671

.781

1.04

PAC

S-SM

782

1342

2237

0024

5574

7.61

961

160.

0074

.685

3.81

22.

9825

2.58

5219

.671

.816

1.04

PAC

S-SM

782

1342

2237

0424

5574

7.65

213

160.

0074

.645

3.80

72.

9824

2.58

4719

.671

.832

1.04

PAC

S-SM

782

1342

2237

0524

5574

7.65

617

160.

0074

.359

3.79

52.

9824

2.58

4719

.671

.824

1.04

PAC

S-SM

782

1342

2237

0124

5574

7.62

365

160.

0073

.985

3.77

52.

9824

2.58

5119

.671

.792

1.03

PAC

S-SM

782

1342

2237

0224

5574

7.63

659

160.

0074

.931

3.82

32.

9824

2.58

4919

.671

.790

1.04

PAC

S-SM

782

1342

2237

0624

5574

7.66

021

160.

0074

.537

3.80

12.

9824

2.58

4619

.671

.827

1.04

PAC

S-SM

782

1342

2237

0724

5574

7.67

315

160.

0074

.503

3.80

02.

9824

2.58

4519

.671

.836

1.04

PAC

S-SM

769

1342

2229

3824

5573

5.09

039

160.

0066

.109

3.37

22.

9834

2.75

2220

.163

.215

1.05

PAC

S-SM

769

1342

2229

3924

5573

5.09

443

160.

0066

.156

3.37

52.

9834

2.75

2120

.163

.223

1.05

PAC

S-SM

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

769

1342

2229

4124

5573

5.10

108

160.

0065

.983

3.36

62.

9834

2.75

2020

.163

.224

1.04

PAC

S-SM

769

1342

2229

4224

5573

5.10

512

160.

0065

.667

3.35

22.

9834

2.75

2020

.163

.222

1.04

PAC

S-SM

759

1342

2225

6624

5572

4.80

409

160.

0059

.187

3.02

02.

9839

2.89

0420

.057

.321

1.03

PAC

S-SM

759

1342

2225

6724

5572

4.80

813

160.

0059

.078

3.01

52.

9839

2.89

0420

.057

.321

1.03

PAC

S-SM

759

1342

2225

6924

5572

4.81

477

160.

0059

.147

3.01

82.

9839

2.89

0320

.057

.319

1.03

PAC

S-SM

759

1342

2225

7024

5572

4.81

881

160.

0058

.846

3.00

42.

9839

2.89

0220

.057

.332

1.03

PAC

S-SM

743

1342

2217

3824

5570

8.75

326

160.

0051

.879

2.64

62.

9842

3.10

1919

.349

.886

1.04

PAC

S-SM

743

1342

2217

3924

5570

8.75

730

160.

0051

.816

2.64

42.

9842

3.10

1919

.349

.918

1.04

PAC

S-SM

743

1342

2217

4124

5570

8.76

395

160.

0051

.923

2.64

92.

9842

3.10

1819

.349

.912

1.04

PAC

S-SM

743

1342

2217

4224

5570

8.76

799

160.

0051

.824

2.64

52.

9842

3.10

1719

.349

.905

1.04

PAC

S-SM

734

1342

2213

5224

5569

9.99

941

160.

0047

.524

2.42

52.

9840

3.21

2718

.546

.639

1.02

PAC

S-SM

734

1342

2213

5324

5570

0.01

235

160.

0048

.043

2.45

12.

9840

3.21

2518

.546

.641

1.03

PAC

S-SM

726

1342

2202

9324

5569

1.61

455

160.

0045

.439

2.31

82.

9837

3.31

4417

.743

.941

1.03

PAC

S-SM

726

1342

2202

9424

5569

1.61

859

160.

0045

.325

2.31

22.

9837

3.31

4417

.743

.940

1.03

PAC

S-SM

726

1342

2202

9624

5569

1.62

523

160.

0045

.257

2.30

92.

9837

3.31

4317

.743

.944

1.03

PAC

S-SM

726

1342

2202

9724

5569

1.62

927

160.

0045

.084

2.30

22.

9837

3.31

4217

.743

.947

1.03

PAC

S-SM

485

1342

2043

2424

5545

0.42

484

160.

0068

.744

3.50

62.

8992

2.62

37−2

0.4

68.0

431.

01PA

CS-

SM

485

1342

2043

2524

5545

0.42

888

160.

0068

.675

3.50

52.

8992

2.62

38−2

0.4

68.0

451.

01PA

CS-

SM

485

1342

2043

2724

5545

0.43

552

160.

0068

.639

3.50

12.

8992

2.62

39−2

0.4

68.0

451.

01PA

CS-

SM

485

1342

2043

2824

5545

0.43

956

160.

0068

.535

3.49

62.

8992

2.62

39−2

0.4

68.0

361.

01PA

CS-

SM

286

1342

1911

3024

5525

1.66

015

160.

0061

.271

3.12

62.

7502

2.90

2620

.159

.641

1.03

PAC

S-SM

286

1342

1911

3124

5525

1.66

407

160.

0061

.397

3.13

22.

7502

2.90

2520

.159

.659

1.03

PAC

S-SM

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

286

1342

1911

3324

5525

1.67

060

160.

0061

.323

3.12

92.

7502

2.90

2520

.159

.644

1.03

PAC

S-SM

286

1342

1911

3424

5525

1.67

453

160.

0061

.338

3.13

12.

7502

2.90

2420

.159

.617

1.03

PAC

S-SM

286

1342

1911

3224

5525

1.66

822

100.

0013

9.22

37.

104

2.75

022.

9025

20.1

139.

530

1.00

PAC

S-C

N

286

1342

1911

3224

5525

1.66

822

160.

0060

.209

3.17

32.

7502

2.90

2520

.159

.612

1.01

PAC

S-C

N

286

1342

1911

2924

5525

1.65

777

70.0

023

6.58

712

.070

2.75

022.

9026

20.1

242.

625

0.98

PAC

S-C

N

286

1342

1911

2924

5525

1.65

777

160.

0059

.689

3.18

22.

7502

2.90

2620

.159

.639

1.00

PAC

S-C

N

485

1342

2043

2624

5545

0.43

314

100.

0015

4.92

47.

905

2.89

922.

6238

−20.

415

8.01

60.

98PA

CS-

CN

485

1342

2043

2624

5545

0.43

314

160.

0067

.533

3.51

82.

8992

2.62

38−2

0.4

68.0

430.

99PA

CS-

CN

485

1342

2043

2324

5545

0.42

245

70.0

027

5.81

714

.072

2.89

922.

6237

−20.

427

2.22

31.

01PA

CS-

CN

485

1342

2043

2324

5545

0.42

245

160.

0067

.238

3.51

12.

8992

2.62

37−2

0.4

68.0

400.

99PA

CS-

CN

743

1342

2217

4024

5570

8.76

156

100.

0011

6.39

45.

940

2.98

423.

1018

19.3

116.

125

1.00

PAC

S-C

N

743

1342

2217

4024

5570

8.76

156

160.

0050

.873

2.66

72.

9842

3.10

1819

.349

.888

1.02

PAC

S-C

N

743

1342

2217

3724

5570

8.75

088

70.0

019

4.24

09.

910

2.98

423.

1019

19.3

200.

491

0.97

PAC

S-C

N

743

1342

2217

3724

5570

8.75

088

160.

0050

.245

2.63

52.

9842

3.10

1919

.349

.894

1.01

PAC

S-C

N

726

1342

2202

9524

5569

1.62

285

100.

0010

2.94

85.

253

2.98

373.

3143

17.7

102.

341

1.01

PAC

S-C

N

726

1342

2202

9524

5569

1.62

285

160.

0044

.657

2.35

92.

9837

3.31

4317

.743

.939

1.02

PAC

S-C

N

726

1342

2202

9224

5569

1.61

216

70.0

018

2.22

59.

296

2.98

373.

3145

17.7

176.

785

1.03

PAC

S-C

N

726

1342

2202

9224

5569

1.61

216

160.

0044

.698

2.35

32.

9837

3.31

4517

.743

.938

1.02

PAC

S-C

N

759

1342

2225

6524

5572

4.80

170

70.0

023

1.07

411

.789

2.98

392.

8904

20.0

230.

127

1.00

PAC

S-C

N

759

1342

2225

6524

5572

4.80

170

160.

0058

.747

3.08

32.

9839

2.89

0420

.057

.306

1.03

PAC

S-C

N

759

1342

2225

6824

5572

4.81

238

100.

0013

3.03

66.

788

2.98

392.

8903

20.0

133.

395

1.00

PAC

S-C

N

759

1342

2225

6824

5572

4.81

238

160.

0058

.804

3.09

92.

9839

2.89

0320

.057

.325

1.03

PAC

S-C

N

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

769

1342

2229

4024

5573

5.09

869

100.

0014

7.94

37.

550

2.98

342.

7520

20.1

147.

111

1.01

PAC

S-C

N

769

1342

2229

4024

5573

5.09

869

160.

0064

.721

3.39

02.

9834

2.75

2020

.163

.221

1.02

PAC

S-C

N

769

1342

2229

3724

5573

5.08

801

70.0

026

1.35

413

.333

2.98

342.

7522

20.1

253.

868

1.03

PAC

S-C

N

769

1342

2229

3724

5573

5.08

801

160.

0064

.849

3.39

72.

9834

2.75

2220

.163

.220

1.03

PAC

S-C

N

782

1342

2237

0324

5574

7.64

975

100.

0017

0.31

08.

693

2.98

242.

5848

19.6

167.

160

1.02

PAC

S-C

N

782

1342

2237

0324

5574

7.64

975

160.

0073

.841

3.92

22.

9824

2.58

4819

.671

.822

1.03

PAC

S-C

N

782

1342

2236

9824

5574

7.61

318

70.0

029

3.90

114

.993

2.98

252.

5853

19.6

288.

456

1.02

PAC

S-C

N

782

1342

2236

9824

5574

7.61

318

160.

0073

.813

3.89

42.

9825

2.58

5319

.671

.799

1.03

PAC

S-C

N

947

1342

2344

6924

5591

2.53

248

100.

0013

5.80

76.

930

2.93

242.

8236

−19.

813

5.77

81.

00PA

CS-

CN

947

1342

2344

6924

5591

2.53

248

160.

0058

.072

3.06

22.

9324

2.82

36−1

9.8

58.5

010.

99PA

CS-

CN

947

1342

2344

6624

5591

2.52

179

70.0

023

9.26

812

.205

2.93

242.

8235

−19.

823

3.79

71.

02PA

CS-

CN

947

1342

2344

6624

5591

2.52

179

160.

0058

.096

3.06

12.

9324

2.82

35−1

9.8

58.5

150.

99PA

CS-

CN

1237

1342

2520

6024

5620

2.73

288

100.

0020

7.61

210

.593

2.72

402.

3860

21.5

206.

784

1.00

PAC

S-C

N

1237

1342

2520

6024

5620

2.73

288

160.

0090

.059

4.69

42.

7240

2.38

6021

.588

.333

1.02

PAC

S-C

N

1237

1342

2520

5724

5620

2.72

220

70.0

036

5.88

718

.666

2.72

402.

3861

21.5

359.

522

1.02

PAC

S-C

N

1237

1342

2520

5724

5620

2.72

220

160.

0090

.584

4.74

02.

7240

2.38

6121

.588

.331

1.03

PAC

S-C

N

1244

1342

2528

7224

5621

0.06

427

100.

0022

8.25

011

.659

2.71

802.

2837

21.0

226.

608

1.01

PAC

S-C

N

1244

1342

2528

7224

5621

0.06

427

160.

0096

.103

5.91

22.

7180

2.28

3721

.096

.763

0.99

PAC

S-C

N

1244

1342

2528

6924

5621

0.05

359

70.0

040

5.17

720

.673

2.71

802.

2838

21.0

394.

058

1.03

PAC

S-C

N

1244

1342

2528

6924

5621

0.05

359

160.

0095

.938

5.41

52.

7180

2.28

3821

.096

.740

0.99

PAC

S-C

N

1420

1342

2692

7724

5638

5.50

509

100.

0016

2.24

48.

279

2.59

362.

6520

−22.

216

5.68

20.

98PA

CS-

CN

1420

1342

2692

7724

5638

5.50

509

160.

0070

.697

3.75

52.

5936

2.65

20−2

2.2

70.8

041.

00PA

CS-

CN

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1420

1342

2692

7424

5638

5.49

441

70.0

028

8.31

514

.708

2.59

362.

6519

−22.

228

8.18

51.

00PA

CS-

CN

1420

1342

2692

7424

5638

5.49

441

160.

0070

.291

3.75

12.

5936

2.65

19−2

2.2

70.8

150.

99PA

CS-

CN

1434

1342

2703

2524

5639

9.97

551

250.

0026

.650

1.43

52.

5860

2.82

31−2

1.0

26.5

081.

01SP

IRE

-SM

1434

1342

2703

2524

5639

9.97

551

350.

0013

.841

0.74

52.

5860

2.82

31−2

1.0

13.7

931.

00SP

IRE

-SM

1434

1342

2703

2524

5639

9.97

551

500.

006.

810

0.36

72.

5860

2.82

31−2

1.0

6.94

00.

98SP

IRE

-SM

1411

1342

2683

4424

5637

6.61

704

250.

0032

.830

1.76

82.

5985

2.54

20−2

2.5

32.3

441.

02SP

IRE

-SM

1411

1342

2683

4424

5637

6.61

704

350.

0017

.033

0.91

72.

5985

2.54

20−2

2.5

16.8

361.

01SP

IRE

-SM

1411

1342

2683

4424

5637

6.61

704

500.

008.

326

0.44

82.

5985

2.54

20−2

2.5

8.47

40.

98SP

IRE

-SM

1403

1342

2677

4824

5636

8.71

267

250.

0035

.380

1.90

52.

6030

2.44

20−2

2.7

34.9

881.

01SP

IRE

-SM

1403

1342

2677

4824

5636

8.71

267

350.

0018

.383

0.99

02.

6030

2.44

20−2

2.7

18.2

131.

01SP

IRE

-SM

1403

1342

2677

4824

5636

8.71

267

500.

009.

008

0.48

52.

6030

2.44

20−2

2.7

9.16

70.

98SP

IRE

-SM

1249

1342

2533

8824

5621

4.44

337

250.

0045

.300

2.44

02.

7144

2.22

3920

.643

.025

1.05

SPIR

E-S

M

1249

1342

2533

8824

5621

4.44

337

350.

0023

.523

1.26

72.

7144

2.22

3920

.622

.383

1.05

SPIR

E-S

M

1249

1342

2533

8824

5621

4.44

337

500.

0011

.662

0.62

82.

7144

2.22

3920

.611

.261

1.04

SPIR

E-S

M

1235

1342

2516

8724

5620

0.44

690

250.

0038

.035

2.04

82.

7258

2.41

8221

.636

.162

1.05

SPIR

E-S

M

1235

1342

2516

8724

5620

0.44

690

350.

0019

.920

1.07

32.

7258

2.41

8221

.618

.816

1.06

SPIR

E-S

M

1235

1342

2516

8724

5620

0.44

690

500.

009.

884

0.53

22.

7258

2.41

8221

.69.

468

1.04

SPIR

E-S

M

1215

1342

2508

0324

5618

1.03

425

250.

0030

.615

1.64

92.

7417

2.69

4821

.529

.033

1.05

SPIR

E-S

M

1215

1342

2508

0324

5618

1.03

425

350.

0015

.947

0.85

92.

7417

2.69

4821

.515

.109

1.06

SPIR

E-S

M

1215

1342

2508

0324

5618

1.03

425

500.

007.

905

0.42

62.

7417

2.69

4821

.57.

603

1.04

SPIR

E-S

M

1201

1342

2503

2524

5616

6.20

801

250.

0026

.450

1.42

42.

7539

2.90

2020

.525

.052

1.06

SPIR

E-S

M

1201

1342

2503

2524

5616

6.20

801

350.

0013

.747

0.74

02.

7539

2.90

2020

.513

.037

1.05

SPIR

E-S

M

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1201

1342

2503

2524

5616

6.20

801

500.

006.

816

0.36

72.

7539

2.90

2020

.56.

560

1.04

SPIR

E-S

M

1197

1342

2506

4324

5616

2.18

140

250.

0025

.110

1.35

22.

7572

2.95

6620

.224

.155

1.04

SPIR

E-S

M

1197

1342

2506

4324

5616

2.18

140

350.

0013

.162

0.70

92.

7572

2.95

6620

.212

.570

1.05

SPIR

E-S

M

1197

1342

2506

4324

5616

2.18

140

500.

006.

616

0.35

62.

7572

2.95

6620

.26.

325

1.05

SPIR

E-S

M

964

1342

2362

3624

5592

9.21

517

250.

0021

.667

1.16

72.

9238

3.04

48−1

9.0

21.3

931.

01SP

IRE

-SM

964

1342

2362

3624

5592

9.21

517

350.

0011

.319

0.61

02.

9238

3.04

48−1

9.0

11.1

581.

01SP

IRE

-SM

964

1342

2362

3624

5592

9.21

517

500.

005.

557

0.29

92.

9238

3.04

48−1

9.0

5.62

40.

99SP

IRE

-SM

964

1342

2362

3524

5592

9.20

786

250.

0021

.979

1.18

42.

9238

3.04

47−1

9.0

21.4

061.

03SP

IRE

-SM

964

1342

2362

3524

5592

9.20

786

350.

0011

.366

0.61

22.

9238

3.04

47−1

9.0

11.1

641.

02SP

IRE

-SM

964

1342

2362

3524

5592

9.20

786

500.

005.

559

0.30

02.

9238

3.04

47−1

9.0

5.62

70.

99SP

IRE

-SM

948

1342

2349

3124

5591

3.98

852

250.

0024

.660

1.32

82.

9317

2.84

32−1

9.7

24.4

301.

01SP

IRE

-SM

948

1342

2349

3124

5591

3.98

852

350.

0012

.880

0.69

42.

9317

2.84

32−1

9.7

12.7

441.

01SP

IRE

-SM

948

1342

2349

3124

5591

3.98

852

500.

006.

362

0.34

32.

9317

2.84

32−1

9.7

6.42

40.

99SP

IRE

-SM

775

1342

2232

2124

5574

1.08

499

250.

0029

.967

1.61

42.

9830

2.67

1720

.028

.338

1.06

SPIR

E-S

M

775

1342

2232

2124

5574

1.08

499

350.

0015

.709

0.84

62.

9830

2.67

1720

.014

.769

1.06

SPIR

E-S

M

775

1342

2232

2124

5574

1.08

499

500.

007.

758

0.41

82.

9830

2.67

1720

.07.

441

1.04

SPIR

E-S

M

725

1342

2206

4224

5569

0.46

241

250.

0019

.396

1.04

52.

9836

3.32

8017

.518

.400

1.05

SPIR

E-S

M

725

1342

2206

4224

5569

0.46

241

350.

0010

.123

0.54

52.

9836

3.32

8017

.59.

587

1.06

SPIR

E-S

M

725

1342

2206

4224

5569

0.46

241

500.

005.

004

0.27

02.

9836

3.32

8017

.54.

829

1.04

SPIR

E-S

M

529

1342

2070

5024

5549

4.45

545

250.

0019

.442

1.04

72.

9245

3.24

15−1

7.8

18.9

921.

02SP

IRE

-SM

529

1342

2070

5024

5549

4.45

545

350.

0010

.142

0.54

62.

9245

3.24

15−1

7.8

9.90

31.

02SP

IRE

-SM

529

1342

2070

5024

5549

4.45

545

500.

004.

954

0.26

72.

9245

3.24

15−1

7.8

4.99

10.

99SP

IRE

-SM

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

521

1342

2066

8224

5548

7.09

628

250.

0020

.576

1.10

82.

9205

3.14

48−1

8.6

20.1

141.

02SP

IRE

-SM

521

1342

2066

8224

5548

7.09

628

350.

0010

.706

0.57

72.

9205

3.14

48−1

8.6

10.4

891.

02SP

IRE

-SM

521

1342

2066

8224

5548

7.09

628

500.

005.

255

0.28

32.

9205

3.14

48−1

8.6

5.28

70.

99SP

IRE

-SM

515

1342

2062

0424

5548

0.89

981

250.

0021

.708

1.16

92.

9171

3.06

04−1

9.2

21.1

881.

02SP

IRE

-SM

515

1342

2062

0424

5548

0.89

981

350.

0011

.356

0.61

22.

9171

3.06

04−1

9.2

11.0

501.

03SP

IRE

-SM

515

1342

2062

0424

5548

0.89

981

500.

005.

520

0.29

72.

9171

3.06

04−1

9.2

5.57

00.

99SP

IRE

-SM

499

1342

2050

9624

5546

5.15

714

250.

0025

.268

1.36

32.

9081

2.83

76−2

0.2

24.5

681.

03SP

IRE

-SM

499

1342

2050

9624

5546

5.15

714

350.

0013

.206

0.71

32.

9081

2.83

76−2

0.2

12.8

141.

03SP

IRE

-SM

499

1342

2050

9624

5546

5.15

714

500.

006.

519

0.35

32.

9081

2.83

76−2

0.2

6.45

91.

01SP

IRE

-SM

486

1342

2043

7124

5545

2.12

485

250.

0029

.081

1.56

62.

9002

2.64

87−2

0.4

28.2

171.

03SP

IRE

-LM

486

1342

2043

7124

5545

2.12

485

350.

0015

.384

0.82

92.

9002

2.64

87−2

0.4

14.7

171.

05SP

IRE

-LM

486

1342

2043

7124

5545

2.12

485

500.

007.

376

0.39

72.

9002

2.64

87−2

0.4

7.41

80.

99SP

IRE

-LM

479

1342

2040

6124

5544

5.08

675

250.

0031

.222

1.68

12.

8958

2.54

67−2

0.2

30.6

011.

02SP

IRE

-SM

479

1342

2040

6124

5544

5.08

675

350.

0016

.217

0.87

32.

8958

2.54

67−2

0.2

15.9

591.

02SP

IRE

-SM

479

1342

2040

6124

5544

5.08

675

500.

008.

005

0.43

12.

8958

2.54

67−2

0.2

8.04

41.

00SP

IRE

-SM

326

1342

1937

9024

5529

1.64

229

250.

0039

.011

2.10

12.

7829

2.38

5920

.736

.808

1.06

SPIR

E-L

M

326

1342

1937

9024

5529

1.64

229

350.

0020

.240

1.09

02.

7829

2.38

5920

.719

.159

1.06

SPIR

E-L

M

326

1342

1937

9024

5529

1.64

229

500.

0010

.115

0.54

52.

7829

2.38

5920

.79.

643

1.05

SPIR

E-L

M

326

1342

1937

8824

5529

1.61

907

250.

0038

.602

2.07

92.

7829

2.38

6320

.736

.792

1.05

SPIR

E-S

M

326

1342

1937

8824

5529

1.61

907

350.

0020

.372

1.09

82.

7829

2.38

6320

.719

.151

1.06

SPIR

E-S

M

326

1342

1937

8824

5529

1.61

907

500.

0010

.064

0.54

32.

7829

2.38

6320

.79.

639

1.04

SPIR

E-S

M

287

1342

1911

9324

5525

3.20

392

250.

0027

.183

1.46

42.

7515

2.88

3320

.225

.420

1.07

SPIR

E-L

M

Exp Astron

Tabl

e16

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

287

1342

1911

9324

5525

3.20

392

350.

0014

.243

0.76

72.

7515

2.88

3320

.213

.228

1.08

SPIR

E-L

M

287

1342

1911

9324

5525

3.20

392

500.

006.

936

0.37

42.

7515

2.88

3320

.26.

656

1.04

SPIR

E-L

M

275

1342

1906

7024

5524

0.99

403

250.

0024

.514

1.32

02.

7415

3.03

1119

.023

.147

1.06

SPIR

E-S

M

275

1342

1906

7024

5524

0.99

403

350.

0012

.756

0.68

72.

7415

3.03

1119

.012

.042

1.06

SPIR

E-S

M

275

1342

1906

7024

5524

0.99

403

500.

006.

298

0.33

92.

7415

3.03

1119

.06.

059

1.04

SPIR

E-S

M

275

1342

1906

6924

5524

0.97

800

250.

0024

.588

1.32

42.

7414

3.03

1219

.023

.149

1.06

SPIR

E-L

M

275

1342

1906

6924

5524

0.97

800

350.

0012

.926

0.69

62.

7414

3.03

1219

.012

.043

1.07

SPIR

E-L

M

275

1342

1906

6924

5524

0.97

800

500.

006.

294

0.33

92.

7414

3.03

1219

.06.

059

1.04

SPIR

E-L

M

923

1342

2326

9424

5588

9.00

330

530.

707.

240

0.65

02.

9436

2.51

08−1

9.1

7.34

70.

99H

IFI

1247

1342

2531

2224

5621

2.37

674

530.

708.

710

1.16

02.

7161

2.25

2020

.89.

778

0.89

HIF

I

1260

1342

2544

2824

5622

5.38

605

530.

7011

.480

0.72

02.

7056

2.08

0919

.111

.541

0.99

HIF

I

1392

1342

2660

18

1392

...19

/20/

2124

5635

7.83

605

544.

608.

610

0.62

02.

6095

2.30

30−2

2.4

8.73

70.

99H

IFI

The

inst

rum

ent

obse

rvin

gm

odes

are:

PAC

S-SM

/-C

Nar

ePA

CS

phot

omet

ersc

an-m

apan

dch

op-n

odob

serv

atio

ns,S

PIR

E-L

M/-

SMar

eSP

IRE

phot

omet

erla

rge

and

smal

lm

apm

odes

.The

last

entr

yfo

rH

IFI

isan

aver

age

offo

urin

divi

dual

obse

rvat

ions

.The

HIF

Im

easu

rem

ento

nO

D12

47(O

BSI

D13

4225

3122

)ha

dso

me

prob

lem

s:th

eH

-an

dV

-ban

dre

sult

sw

ere

syst

emat

ical

lydi

ffer

entb

yab

out1

6%

Exp Astron

Tabl

e17

Phot

omet

ric

Her

sche

ldat

aof

(2)

Pall

as

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1295

1342

2562

3624

5626

0.76

741

70.0

011

5.16

75.

873

2.80

972.

3896

−20.

111

9.15

30.

97PA

CS-

SM

1295

1342

2562

3724

5626

0.77

145

70.0

011

5.26

35.

878

2.80

972.

3897

−20.

111

8.96

70.

97PA

CS-

SM

1139

1342

2474

3624

5610

4.37

881

70.0

067

.342

3.43

43.

1345

3.03

6819

.170

.565

0.95

PAC

S-SM

1139

1342

2474

3724

5610

4.38

285

70.0

067

.727

3.45

43.

1345

3.03

6719

.170

.799

0.96

PAC

S-SM

889

1342

2312

6424

5585

4.68

071

70.0

052

.862

2.69

63.

4014

3.21

50−1

7.2

52.4

561.

01PA

CS-

SM

889

1342

2312

6524

5585

4.68

475

70.0

052

.788

2.69

23.

4014

3.21

51−1

7.2

52.4

621.

01PA

CS-

SM

720

1342

2205

8824

5568

5.97

934

70.0

047

.622

2.42

83.

3789

3.22

1317

.646

.733

1.02

PAC

S-SM

720

1342

2205

8924

5568

5.98

338

70.0

047

.920

2.44

43.

3789

3.22

1317

.646

.816

1.02

PAC

S-SM

686

1342

2177

8124

5565

2.04

640

70.0

043

.063

2.19

63.

3543

3.60

2116

.243

.658

0.99

PAC

S-SM

686

1342

2177

8224

5565

2.05

044

70.0

043

.136

2.20

03.

3543

3.60

2116

.243

.643

0.99

PAC

S-SM

446

1342

2020

7624

5541

1.26

149

70.0

082

.093

4.18

62.

9997

2.83

99−1

9.9

82.8

600.

99PA

CS-

SM

446

1342

2020

7724

5541

1.26

553

70.0

082

.240

4.19

42.

9997

2.83

99−1

9.9

82.7

130.

99PA

CS-

SM

245

1342

1892

6424

5521

0.82

409

70.0

010

9.80

85.

599

2.53

132.

6530

21.9

109.

941

1.00

PAC

S-SM

245

1342

1892

6524

5521

0.82

775

70.0

010

9.96

25.

607

2.53

132.

6529

21.9

109.

942

1.00

PAC

S-SM

1295

1342

2562

3324

5626

0.75

672

100.

0066

.457

3.38

92.

8097

2.38

95−2

0.1

68.8

520.

97PA

CS-

SM

1295

1342

2562

3424

5626

0.76

076

100.

0065

.948

3.36

32.

8097

2.38

95−2

0.1

68.6

540.

96PA

CS-

SM

1139

1342

2474

3324

5610

4.36

813

100.

0038

.779

1.97

73.

1345

3.03

6919

.140

.661

0.95

PAC

S-SM

1139

1342

2474

3424

5610

4.37

216

100.

0038

.889

1.98

33.

1345

3.03

6919

.140

.830

0.95

PAC

S-SM

889

1342

2312

6724

5585

4.69

139

100.

0030

.892

1.57

53.

4014

3.21

52−1

7.2

30.7

801.

00PA

CS-

SM

889

1342

2312

6824

5585

4.69

543

100.

0030

.711

1.56

63.

4014

3.21

52−1

7.2

30.7

211.

00PA

CS-

SM

720

1342

2205

9024

5568

5.98

742

100.

0028

.362

1.44

63.

3789

3.22

1217

.627

.713

1.02

PAC

S-SM

720

1342

2205

9124

5568

5.99

146

100.

0028

.394

1.44

83.

3789

3.22

1217

.627

.853

1.02

PAC

S-SM

Exp Astron

Tabl

e17

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

686

1342

2177

8424

5565

2.05

708

100.

0025

.245

1.28

73.

3543

3.60

2016

.225

.476

0.99

PAC

S-SM

686

1342

2177

8524

5565

2.06

112

100.

0025

.031

1.27

63.

3543

3.60

1916

.225

.373

0.99

PAC

S-SM

446

1342

2020

7924

5541

1.27

218

100.

0047

.333

2.41

42.

9998

2.84

00−1

9.9

47.7

880.

99PA

CS-

SM

446

1342

2020

8024

5541

1.27

622

100.

0047

.081

2.40

12.

9998

2.84

01−1

9.9

47.7

060.

99PA

CS-

SM

245

1342

1892

6624

5521

0.83

142

100.

0061

.788

3.15

12.

5313

2.65

2921

.962

.617

0.99

PAC

S-SM

245

1342

1892

6724

5521

0.83

509

100.

0061

.420

3.13

22.

5313

2.65

2921

.962

.613

0.98

PAC

S-SM

1295

1342

2562

3324

5626

0.75

672

160.

0028

.975

1.47

82.

8097

2.38

95−2

0.1

29.3

980.

99PA

CS-

SM

1295

1342

2562

3424

5626

0.76

076

160.

0028

.794

1.47

32.

8097

2.38

95−2

0.1

29.3

110.

98PA

CS-

SM

1295

1342

2562

3624

5626

0.76

741

160.

0028

.786

1.46

92.

8097

2.38

96−2

0.1

29.1

770.

99PA

CS-

SM

1295

1342

2562

3724

5626

0.77

145

160.

0028

.701

1.46

42.

8097

2.38

97−2

0.1

29.1

300.

99PA

CS-

SM

1139

1342

2474

3324

5610

4.36

813

160.

0016

.989

0.86

93.

1345

3.03

6919

.117

.566

0.97

PAC

S-SM

1139

1342

2474

3424

5610

4.37

216

160.

0017

.029

0.87

03.

1345

3.03

6919

.117

.636

0.97

PAC

S-SM

1139

1342

2474

3624

5610

4.37

881

160.

0017

.293

0.88

33.

1345

3.03

6819

.117

.735

0.98

PAC

S-SM

1139

1342

2474

3724

5610

4.38

285

160.

0017

.199

0.88

03.

1345

3.03

6719

.117

.789

0.97

PAC

S-SM

889

1342

2312

6424

5585

4.68

071

160.

0013

.649

0.69

73.

4014

3.21

50−1

7.2

13.4

401.

02PA

CS-

SM

889

1342

2312

6524

5585

4.68

475

160.

0013

.564

0.69

33.

4014

3.21

51−1

7.2

13.4

361.

01PA

CS-

SM

889

1342

2312

6724

5585

4.69

139

160.

0013

.520

0.69

03.

4014

3.21

52−1

7.2

13.4

021.

01PA

CS-

SM

889

1342

2312

6824

5585

4.69

543

160.

0013

.443

0.68

73.

4014

3.21

52−1

7.2

13.3

771.

00PA

CS-

SM

720

1342

2205

8824

5568

5.97

934

160.

0012

.312

0.62

83.

3789

3.22

1317

.612

.016

1.02

PAC

S-SM

720

1342

2205

8924

5568

5.98

338

160.

0012

.294

0.62

93.

3789

3.22

1317

.612

.043

1.02

PAC

S-SM

720

1342

2205

9024

5568

5.98

742

160.

0012

.372

0.63

23.

3789

3.22

1217

.612

.085

1.02

PAC

S-SM

720

1342

2205

9124

5568

5.99

146

160.

0012

.402

0.63

33.

3789

3.22

1217

.612

.149

1.02

PAC

S-SM

Exp Astron

Tabl

e17

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

686

1342

2177

8124

5565

2.04

640

160.

0011

.037

0.56

43.

3543

3.60

2116

.211

.094

0.99

PAC

S-SM

686

1342

2177

8224

5565

2.05

044

160.

0010

.975

0.56

03.

3543

3.60

2116

.211

.086

0.99

PAC

S-SM

686

1342

2177

8424

5565

2.05

708

160.

0010

.997

0.56

23.

3543

3.60

2016

.211

.050

1.00

PAC

S-SM

686

1342

2177

8524

5565

2.06

112

160.

0010

.927

0.55

73.

3543

3.60

1916

.211

.006

0.99

PAC

S-SM

446

1342

2020

7624

5541

1.26

149

160.

0020

.825

1.06

42.

9997

2.83

99−1

9.9

20.6

321.

01PA

CS-

SM

446

1342

2020

7724

5541

1.26

553

160.

0020

.792

1.06

12.

9997

2.83

99−1

9.9

20.6

001.

01PA

CS-

SM

446

1342

2020

7924

5541

1.27

218

160.

0020

.843

1.06

42.

9998

2.84

00−1

9.9

20.5

451.

01PA

CS-

SM

446

1342

2020

8024

5541

1.27

622

160.

0020

.748

1.05

82.

9998

2.84

01−1

9.9

20.5

101.

01PA

CS-

SM

245

1342

1892

6424

5521

0.82

409

160.

0026

.771

1.36

72.

5313

2.65

3021

.926

.560

1.01

PAC

S-SM

245

1342

1892

6524

5521

0.82

775

160.

0026

.774

1.36

62.

5313

2.65

2921

.926

.559

1.01

PAC

S-SM

245

1342

1892

6624

5521

0.83

142

160.

0026

.748

1.36

42.

5313

2.65

2921

.926

.557

1.01

PAC

S-SM

245

1342

1892

6724

5521

0.83

509

160.

0026

.755

1.36

42.

5313

2.65

2921

.926

.556

1.01

PAC

S-SM

245

1342

1892

6224

5521

0.81

910

70.0

010

9.68

15.

595

2.53

132.

6530

21.9

109.

936

1.00

PAC

S-C

N

245

1342

1892

6224

5521

0.81

910

160.

0026

.141

1.38

22.

5313

2.65

3021

.926

.560

0.98

PAC

S-C

N

245

1342

1892

6324

5521

0.82

170

100.

0061

.250

3.12

62.

5313

2.65

3021

.962

.623

0.98

PAC

S-C

N

245

1342

1892

6324

5521

0.82

170

160.

0026

.117

1.39

02.

5313

2.65

3021

.926

.560

0.98

PAC

S-C

N

446

1342

2020

7824

5541

1.26

979

100.

0046

.463

2.37

12.

9998

2.84

00−1

9.9

47.8

350.

97PA

CS-

CN

446

1342

2020

7824

5541

1.26

979

160.

0020

.230

1.07

42.

9998

2.84

00−1

9.9

20.5

650.

98PA

CS-

CN

446

1342

2020

7524

5541

1.25

911

70.0

082

.115

4.18

92.

9997

2.83

98−1

9.9

82.9

420.

99PA

CS-

CN

446

1342

2020

7524

5541

1.25

911

160.

0020

.337

1.07

52.

9997

2.83

98−1

9.9

20.6

490.

98PA

CS-

CN

1295

1342

2562

3224

5626

0.75

434

100.

0065

.818

3.35

92.

8098

2.38

95−2

0.1

69.0

000.

95PA

CS-

CN

1295

1342

2562

3224

5626

0.75

434

160.

0028

.695

1.51

92.

8098

2.38

95−2

0.1

29.4

630.

97PA

CS-

CN

Exp Astron

Tabl

e17

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1295

1342

2562

3524

5626

0.76

502

70.0

011

6.24

45.

930

2.80

972.

3896

−20.

111

9.30

00.

97PA

CS-

CN

1295

1342

2562

3524

5626

0.76

502

160.

0028

.554

1.50

42.

8097

2.38

96−2

0.1

29.2

140.

98PA

CS-

CN

686

1342

2177

8324

5565

2.05

470

100.

0025

.339

1.29

33.

3543

3.60

2016

.225

.514

0.99

PAC

S-C

N

686

1342

2177

8324

5565

2.05

470

160.

0010

.861

0.56

63.

3543

3.60

2016

.211

.067

0.98

PAC

S-C

N

686

1342

2177

8024

5565

2.04

402

70.0

043

.842

2.23

73.

3543

3.60

2116

.243

.633

1.00

PAC

S-C

N

686

1342

2177

8024

5565

2.04

402

160.

0010

.888

0.56

93.

3543

3.60

2116

.211

.089

0.98

PAC

S-C

N

889

1342

2312

6624

5585

4.68

900

100.

0031

.301

1.59

73.

4014

3.21

51−1

7.2

30.8

311.

02PA

CS-

CN

889

1342

2312

6624

5585

4.68

900

160.

0013

.555

0.72

23.

4014

3.21

51−1

7.2

13.4

231.

01PA

CS-

CN

889

1342

2312

6324

5585

4.67

832

70.0

053

.636

2.73

63.

4014

3.21

50−1

7.2

52.3

911.

02PA

CS-

CN

889

1342

2312

6324

5585

4.67

832

160.

0013

.571

0.71

53.

4014

3.21

50−1

7.2

13.4

281.

01PA

CS-

CN

1139

1342

2474

3524

5610

4.37

642

70.0

067

.809

3.46

03.

1345

3.03

6819

.170

.427

0.96

PAC

S-C

N

1139

1342

2474

3524

5610

4.37

642

160.

0016

.941

0.89

73.

1345

3.03

6819

.117

.703

0.96

PAC

S-C

N

1139

1342

2474

3224

5610

4.36

574

100.

0037

.960

1.93

83.

1345

3.03

7019

.140

.548

0.94

PAC

S-C

N

1139

1342

2474

3224

5610

4.36

574

160.

0016

.720

0.89

33.

1345

3.03

7019

.117

.519

0.95

PAC

S-C

N

1348

1342

2615

9724

5631

3.20

672

250.

008.

488

0.45

72.

6837

2.97

69−1

9.3

8.39

71.

01SP

IRE

-SM

1348

1342

2615

9724

5631

3.20

672

350.

004.

454

0.24

02.

6837

2.97

69−1

9.3

4.36

41.

02SP

IRE

-SM

1348

1342

2615

9724

5631

3.20

672

500.

002.

228

0.12

02.

6837

2.97

69−1

9.3

2.19

31.

02SP

IRE

-SM

1330

1342

2583

7824

5629

5.65

890

250.

009.

481

0.51

12.

7264

2.79

47−2

0.7

9.36

51.

01SP

IRE

-SM

1330

1342

2583

7824

5629

5.65

890

350.

004.

965

0.26

72.

7264

2.79

47−2

0.7

4.86

91.

02SP

IRE

-SM

1330

1342

2583

7824

5629

5.65

890

500.

002.

453

0.13

22.

7264

2.79

47−2

0.7

2.44

81.

00SP

IRE

-SM

1314

1342

2573

6124

5627

9.28

441

250.

0010

.926

0.58

82.

7658

2.60

72−2

1.1

10.7

581.

02SP

IRE

-SM

1314

1342

2573

6124

5627

9.28

441

350.

005.

715

0.30

82.

7658

2.60

72−2

1.1

5.59

81.

02SP

IRE

-SM

Exp Astron

Tabl

e17

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1314

1342

2573

6124

5627

9.28

441

500.

002.

853

0.15

42.

7658

2.60

72−2

1.1

2.81

61.

01SP

IRE

-SM

1156

1342

2479

8724

5612

1.38

941

250.

009.

082

0.48

93.

1042

2.75

9619

.08.

967

1.01

SPIR

E-S

M

1156

1342

2479

8724

5612

1.38

941

350.

004.

803

0.25

93.

1042

2.75

9619

.04.

678

1.03

SPIR

E-S

M

1156

1342

2479

8724

5612

1.38

941

500.

002.

405

0.13

03.

1042

2.75

9619

.02.

358

1.02

SPIR

E-S

M

1116

1342

2465

7624

5608

1.35

549

250.

005.

712

0.30

83.

1732

3.39

9917

.55.

749

0.99

SPIR

E-S

M

1116

1342

2465

7624

5608

1.35

549

350.

003.

007

0.16

23.

1732

3.39

9917

.53.

001

1.00

SPIR

E-S

M

1116

1342

2465

7624

5608

1.35

549

500.

001.

510

0.08

13.

1732

3.39

9917

.51.

513

1.00

SPIR

E-S

M

880

1342

2308

8124

5584

6.05

779

250.

006.

455

0.34

83.

4043

3.10

21−1

7.0

6.20

01.

04SP

IRE

-SM

880

1342

2308

8124

5584

6.05

779

350.

003.

393

0.18

33.

4043

3.10

21−1

7.0

3.24

51.

05SP

IRE

-SM

880

1342

2308

8124

5584

6.05

779

500.

001.

673

0.09

03.

4043

3.10

21−1

7.0

1.64

01.

02SP

IRE

-SM

718

1342

2198

1924

5568

4.42

266

250.

005.

795

0.31

23.

3779

3.23

9217

.55.

544

1.05

SPIR

E-L

M

718

1342

2198

1924

5568

4.42

266

350.

003.

106

0.16

73.

3779

3.23

9217

.52.

901

1.07

SPIR

E-L

M

718

1342

2198

1924

5568

4.42

266

500.

001.

525

0.08

23.

3779

3.23

9217

.51.

466

1.04

SPIR

E-L

M

683

1342

2169

5724

5564

9.46

441

250.

004.

677

0.25

23.

3522

3.62

8816

.04.

574

1.02

SPIR

E-S

M

683

1342

2169

5724

5564

9.46

441

350.

002.

463

0.13

33.

3522

3.62

8816

.02.

390

1.03

SPIR

E-S

M

683

1342

2169

5724

5564

9.46

441

500.

001.

226

0.06

63.

3522

3.62

8816

.01.

207

1.02

SPIR

E-S

M

467

1342

2035

8424

5543

2.33

449

250.

007.

549

0.40

73.

0422

3.11

55−1

9.0

7.28

51.

04SP

IRE

-SM

467

1342

2035

8424

5543

2.33

449

350.

003.

963

0.21

33.

0422

3.11

55−1

9.0

3.79

81.

04SP

IRE

-SM

467

1342

2035

8424

5543

2.33

449

500.

001.

989

0.10

73.

0422

3.11

55−1

9.0

1.91

31.

04SP

IRE

-SM

458

1342

2030

7624

5542

4.05

120

250.

008.

030

0.43

23.

0258

3.00

78−1

9.5

7.58

61.

06SP

IRE

-SM

458

1342

2030

7624

5542

4.05

120

350.

004.

240

0.22

83.

0258

3.00

78−1

9.5

3.95

61.

07SP

IRE

-SM

458

1342

2030

7624

5542

4.05

120

500.

002.

094

0.11

33.

0258

3.00

78−1

9.5

1.99

41.

05SP

IRE

-SM

Exp Astron

Tabl

e17

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

447

1342

2022

0724

5541

2.99

738

250.

009.

040

0.48

73.

0033

2.86

29−1

9.9

8.49

01.

06SP

IRE

-LM

447

1342

2022

0724

5541

2.99

738

350.

004.

804

0.25

93.

0033

2.86

29−1

9.9

4.42

71.

09SP

IRE

-LM

447

1342

2022

0724

5541

2.99

738

500.

002.

366

0.12

73.

0033

2.86

29−1

9.9

2.23

11.

06SP

IRE

-LM

423

1342

2002

0224

5538

8.80

251

250.

0011

.245

0.60

62.

9524

2.55

09−1

9.8

10.8

331.

04SP

IRE

-LM

423

1342

2002

0224

5538

8.80

251

350.

005.

984

0.32

22.

9524

2.55

09−1

9.8

5.64

41.

06SP

IRE

-LM

423

1342

2002

0224

5538

8.80

251

500.

002.

955

0.15

92.

9524

2.55

09−1

9.8

2.84

31.

04SP

IRE

-LM

417

1342

1997

8424

5538

2.98

106

250.

0011

.891

0.64

02.

9398

2.47

94−1

9.6

11.3

571.

05SP

IRE

-LM

417

1342

1997

8424

5538

2.98

106

350.

006.

343

0.34

22.

9398

2.47

94−1

9.6

5.91

71.

07SP

IRE

-LM

417

1342

1997

8424

5538

2.98

106

500.

003.

089

0.16

62.

9398

2.47

94−1

9.6

2.98

01.

04SP

IRE

-LM

Exp Astron

Tabl

e18

Phot

omet

ric

Her

sche

ldat

aof

(4)

Ves

ta

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1377

1342

2639

2424

5634

2.87

696

70.0

011

6.56

55.

944

2.55

632.

1799

−22.

511

6.71

71.

00PA

CS-

SM

1377

1342

2639

2524

5634

2.88

100

70.0

011

7.41

45.

987

2.55

632.

1800

−22.

511

6.79

41.

01PA

CS-

SM

1202

1342

2502

9824

5616

7.66

639

70.0

091

.754

4.67

92.

5560

2.55

8423

.091

.318

1.00

PAC

S-SM

1202

1342

2502

9924

5616

7.67

043

70.0

091

.668

4.67

42.

5560

2.55

8323

.090

.840

1.01

PAC

S-SM

900

1342

2316

8924

5586

5.63

354

70.0

015

8.58

08.

087

2.32

232.

0156

−25.

515

8.55

31.

00PA

CS-

SM

900

1342

2316

9024

5586

5.63

758

70.0

015

7.71

78.

042

2.32

232.

0157

−25.

515

8.29

71.

00PA

CS-

SM

743

1342

2217

2424

5570

8.58

932

70.0

027

6.33

014

.091

2.18

901.

6460

26.5

259.

573

1.06

PAC

S-SM

743

1342

2217

2524

5570

8.59

336

70.0

027

6.76

414

.113

2.18

901.

6460

26.5

259.

100

1.07

PAC

S-SM

726

1342

2202

8724

5569

1.58

957

70.0

021

5.62

410

.995

2.17

941.

8280

27.8

206.

579

1.04

PAC

S-SM

726

1342

2202

8824

5569

1.59

361

70.0

021

5.39

210

.983

2.17

941.

8280

27.8

206.

104

1.05

PAC

S-SM

720

1342

2205

8324

5568

5.95

713

70.0

020

6.61

110

.535

2.17

651.

8900

27.9

197.

115

1.05

PAC

S-SM

720

1342

2205

8424

5568

5.96

117

70.0

020

7.58

810

.585

2.17

651.

8900

27.9

197.

456

1.05

PAC

S-SM

703

1342

2187

4424

5566

9.08

336

70.0

016

8.82

18.

608

2.16

882.

0770

27.5

164.

326

1.03

PAC

S-SM

703

1342

2187

4524

5566

9.08

740

70.0

016

9.16

28.

626

2.16

882.

0769

27.5

163.

512

1.03

PAC

S-SM

686

1342

2177

7824

5565

2.03

242

70.0

014

3.69

97.

327

2.16

242.

2633

26.2

138.

529

1.04

PAC

S-SM

686

1342

2177

7924

5565

2.03

646

70.0

014

4.62

57.

375

2.16

242.

2632

26.2

138.

387

1.05

PAC

S-SM

677

1342

2166

1024

5564

2.92

424

70.0

011

8.58

26.

047

2.15

972.

3600

25.2

126.

596

0.94

PAC

S-SM

677

1342

2166

1124

5564

2.93

718

70.0

013

0.81

26.

671

2.15

972.

3598

25.2

125.

608

1.04

PAC

S-SM

677

1342

2166

0824

5564

2.91

616

70.0

013

2.07

86.

735

2.15

972.

3600

25.2

127.

223

1.04

PAC

S-SM

677

1342

2166

0924

5564

2.92

020

70.0

013

1.62

46.

712

2.15

972.

3600

25.2

126.

915

1.04

PAC

S-SM

348

1342

1956

2424

5531

3.63

307

70.0

019

3.32

29.

858

2.32

841.

8378

−24.

918

8.41

81.

03PA

CS-

SM

348

1342

1956

2524

5531

3.63

699

70.0

019

2.25

19.

804

2.32

841.

8378

−24.

918

8.25

71.

02PA

CS-

SM

Exp Astron

Tabl

e18

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

345

1342

1954

7024

5531

0.51

046

70.0

020

2.92

910

.348

2.33

151.

8047

−24.

419

5.86

51.

04PA

CS-

SM

345

1342

1954

7124

5531

0.51

933

70.0

020

0.25

710

.212

2.33

151.

8048

−24.

419

5.62

21.

02PA

CS-

SM

345

1342

1954

7224

5531

0.52

819

70.0

019

3.81

69.

884

2.33

151.

8049

−24.

419

4.72

31.

00PA

CS-

SM

345

1342

1954

7324

5531

0.53

750

70.0

019

4.58

29.

922

2.33

151.

8050

−24.

419

2.83

21.

01PA

CS-

SM

160

1342

1861

3524

5512

5.58

284

70.0

093

.395

4.76

22.

4984

2.71

2921

.788

.365

1.06

PAC

S-SM

160

1342

1861

3624

5512

5.59

777

70.0

094

.994

4.84

42.

4984

2.71

2721

.788

.724

1.07

PAC

S-SM

160

1342

1861

3724

5512

5.60

851

70.0

095

.968

4.89

42.

4984

2.71

2521

.789

.183

1.08

PAC

S-SM

1377

1342

2639

2124

5634

2.86

627

100.

0064

.052

3.26

62.

5563

2.17

98−2

2.5

67.8

040.

94PA

CS-

SM

1377

1342

2639

2224

5634

2.87

031

100.

0063

.734

3.25

02.

5563

2.17

98−2

2.5

67.5

230.

94PA

CS-

SM

900

1342

2316

9224

5586

5.64

422

100.

0085

.552

4.36

22.

3223

2.01

58−2

5.5

90.1

410.

95PA

CS-

SM

900

1342

2316

9324

5586

5.64

826

100.

0084

.922

4.33

02.

3223

2.01

58−2

5.5

89.5

650.

95PA

CS-

SM

743

1342

2217

2724

5570

8.60

000

100.

0015

0.59

67.

679

2.18

901.

6459

26.5

146.

877

1.03

PAC

S-SM

743

1342

2217

2824

5570

8.60

404

100.

0014

9.65

87.

631

2.18

901.

6459

26.4

146.

551

1.02

PAC

S-SM

726

1342

2202

9024

5569

1.60

025

100.

0011

7.08

45.

970

2.17

941.

8279

27.8

117.

231

1.00

PAC

S-SM

726

1342

2202

9124

5569

1.60

429

100.

0011

6.79

85.

956

2.17

941.

8278

27.8

117.

162

1.00

PAC

S-SM

720

1342

2205

8624

5568

5.96

781

100.

0011

3.14

45.

769

2.17

651.

8899

27.9

112.

752

1.00

PAC

S-SM

720

1342

2205

8724

5568

5.97

185

100.

0011

2.40

05.

731

2.17

651.

8898

27.9

113.

067

0.99

PAC

S-SM

703

1342

2187

4724

5566

9.09

404

100.

0091

.262

4.65

32.

1688

2.07

6927

.592

.294

0.99

PAC

S-SM

703

1342

2187

4824

5566

9.09

808

100.

0090

.485

4.61

42.

1688

2.07

6827

.591

.872

0.98

PAC

S-SM

677

1342

2166

1224

5564

2.95

012

100.

0070

.831

3.61

22.

1597

2.35

9725

.271

.210

0.99

PAC

S-SM

677

1342

2166

1324

5564

2.96

306

100.

0070

.676

3.60

42.

1597

2.35

9625

.271

.535

0.99

PAC

S-SM

348

1342

1956

2724

5531

3.64

352

100.

0010

3.75

25.

290

2.32

841.

8379

−24.

910

7.50

40.

97PA

CS-

SM

Exp Astron

Tabl

e18

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

348

1342

1956

2824

5531

3.64

744

100.

0010

2.94

55.

249

2.32

841.

8379

−24.

910

7.13

60.

96PA

CS-

SM

348

1342

1956

2224

5531

3.58

429

100.

0010

5.13

55.

361

2.32

851.

8372

−24.

810

7.95

10.

97PA

CS-

SM

345

1342

1954

7424

5531

0.54

681

100.

0010

7.22

65.

468

2.33

151.

8051

−24.

410

9.39

70.

98PA

CS-

SM

345

1342

1954

7524

5531

0.55

567

100.

0010

7.57

35.

485

2.33

151.

8052

−24.

410

8.93

10.

99PA

CS-

SM

345

1342

1954

7624

5531

0.56

454

100.

0010

8.38

25.

526

2.33

151.

8052

−24.

410

9.28

20.

99PA

CS-

SM

345

1342

1954

7724

5531

0.57

384

100.

0010

8.33

95.

524

2.33

151.

8053

−24.

411

0.08

30.

98PA

CS-

SM

160

1342

1861

3224

5512

5.54

682

100.

0051

.085

2.60

52.

4984

2.71

3321

.751

.635

0.99

PAC

S-SM

160

1342

1861

3324

5512

5.56

175

100.

0050

.999

2.60

12.

4984

2.71

3121

.751

.125

1.00

PAC

S-SM

160

1342

1861

3424

5512

5.57

249

100.

0051

.702

2.63

62.

4984

2.71

3021

.750

.708

1.02

PAC

S-SM

1377

1342

2639

2124

5634

2.86

627

160.

0027

.116

1.38

42.

5563

2.17

98−2

2.5

28.6

250.

95PA

CS-

SM

1377

1342

2639

2224

5634

2.87

031

160.

0027

.177

1.38

72.

5563

2.17

98−2

2.5

28.5

180.

95PA

CS-

SM

1377

1342

2639

2424

5634

2.87

696

160.

0027

.434

1.40

02.

5563

2.17

99−2

2.5

28.4

860.

96PA

CS-

SM

1377

1342

2639

2524

5634

2.88

100

160.

0027

.578

1.40

82.

5563

2.18

00−2

2.5

28.5

270.

97PA

CS-

SM

1202

1342

2502

9824

5616

7.66

639

160.

0021

.610

1.10

32.

5560

2.55

8423

.022

.228

0.97

PAC

S-SM

1202

1342

2502

9924

5616

7.67

043

160.

0021

.463

1.09

52.

5560

2.55

8323

.022

.114

0.97

PAC

S-SM

900

1342

2316

8924

5586

5.63

354

160.

0036

.283

1.85

12.

3223

2.01

56−2

5.5

38.1

370.

95PA

CS-

SM

900

1342

2316

9024

5586

5.63

758

160.

0035

.952

1.83

52.

3223

2.01

57−2

5.5

38.0

630.

94PA

CS-

SM

900

1342

2316

9224

5586

5.64

422

160.

0035

.656

1.81

92.

3223

2.01

58−2

5.5

37.8

130.

94PA

CS-

SM

900

1342

2316

9324

5586

5.64

826

160.

0035

.440

1.81

02.

3223

2.01

58−2

5.5

37.5

730.

94PA

CS-

SM

743

1342

2217

2424

5570

8.58

932

160.

0064

.068

3.26

72.

1890

1.64

6026

.561

.553

1.04

PAC

S-SM

743

1342

2217

2524

5570

8.59

336

160.

0063

.969

3.26

42.

1890

1.64

6026

.561

.461

1.04

PAC

S-SM

743

1342

2217

2724

5570

8.60

000

160.

0063

.779

3.25

22.

1890

1.64

5926

.561

.259

1.04

PAC

S-SM

Exp Astron

Tabl

e18

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

743

1342

2217

2824

5570

8.60

404

160.

0063

.571

3.24

32.

1890

1.64

5926

.461

.124

1.04

PAC

S-SM

726

1342

2202

8724

5569

1.58

957

160.

0049

.397

2.51

92.

1794

1.82

8027

.849

.147

1.01

PAC

S-SM

726

1342

2202

8824

5569

1.59

361

160.

0049

.105

2.50

42.

1794

1.82

8027

.849

.028

1.00

PAC

S-SM

726

1342

2202

9024

5569

1.60

025

160.

0049

.250

2.51

22.

1794

1.82

7927

.848

.920

1.01

PAC

S-SM

726

1342

2202

9124

5569

1.60

429

160.

0049

.161

2.50

82.

1794

1.82

7827

.848

.886

1.01

PAC

S-SM

720

1342

2205

8324

5568

5.95

713

160.

0047

.438

2.42

02.

1765

1.89

0027

.946

.799

1.01

PAC

S-SM

720

1342

2205

8424

5568

5.96

117

160.

0047

.412

2.41

92.

1765

1.89

0027

.946

.875

1.01

PAC

S-SM

720

1342

2205

8624

5568

5.96

781

160.

0047

.495

2.42

22.

1765

1.88

9927

.947

.031

1.01

PAC

S-SM

720

1342

2205

8724

5568

5.97

185

160.

0047

.172

2.40

62.

1765

1.88

9827

.947

.159

1.00

PAC

S-SM

703

1342

2187

4424

5566

9.08

336

160.

0038

.461

1.96

22.

1688

2.07

7027

.539

.037

0.99

PAC

S-SM

703

1342

2187

4524

5566

9.08

740

160.

0038

.190

1.95

02.

1688

2.07

6927

.538

.863

0.98

PAC

S-SM

703

1342

2187

4724

5566

9.09

404

160.

0038

.017

1.93

92.

1688

2.07

6927

.538

.531

0.99

PAC

S-SM

703

1342

2187

4824

5566

9.09

808

160.

0037

.672

1.92

22.

1688

2.07

6827

.538

.355

0.98

PAC

S-SM

686

1342

2177

7824

5565

2.03

242

160.

0032

.920

1.68

02.

1624

2.26

3326

.232

.819

1.00

PAC

S-SM

686

1342

2177

7924

5565

2.03

646

160.

0032

.807

1.67

42.

1624

2.26

3226

.232

.785

1.00

PAC

S-SM

677

1342

2166

1024

5564

2.92

424

160.

0029

.065

1.51

52.

1597

2.36

0025

.229

.998

0.97

PAC

S-SM

677

1342

2166

1124

5564

2.93

718

160.

0030

.297

1.54

82.

1597

2.35

9825

.229

.773

1.02

PAC

S-SM

677

1342

2166

1224

5564

2.95

012

160.

0029

.973

1.52

92.

1597

2.35

9725

.229

.672

1.01

PAC

S-SM

677

1342

2166

1324

5564

2.96

306

160.

0029

.970

1.52

82.

1597

2.35

9625

.229

.806

1.01

PAC

S-SM

677

1342

2166

0824

5564

2.91

616

160.

0030

.328

1.54

72.

1597

2.36

0025

.230

.126

1.01

PAC

S-SM

677

1342

2166

0924

5564

2.92

020

160.

0030

.138

1.53

72.

1597

2.36

0025

.230

.063

1.00

PAC

S-SM

348

1342

1956

2424

5531

3.63

307

160.

0044

.240

2.25

72.

3284

1.83

78−2

4.9

45.3

650.

98PA

CS-

SM

Exp Astron

Tabl

e18

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

348

1342

1956

2524

5531

3.63

699

160.

0043

.826

2.23

52.

3284

1.83

78−2

4.9

45.3

040.

97PA

CS-

SM

348

1342

1956

2724

5531

3.64

352

160.

0043

.496

2.21

82.

3284

1.83

79−2

4.9

45.1

330.

96PA

CS-

SM

348

1342

1956

2824

5531

3.64

744

160.

0043

.267

2.20

72.

3284

1.83

79−2

4.9

44.9

750.

96PA

CS-

SM

348

1342

1956

2224

5531

3.58

429

160.

0043

.976

2.24

32.

3285

1.83

72−2

4.8

45.3

590.

97PA

CS-

SM

345

1342

1954

7024

5531

0.51

046

160.

0045

.466

2.31

92.

3315

1.80

47−2

4.4

47.1

660.

96PA

CS-

SM

345

1342

1954

7124

5531

0.51

933

160.

0045

.071

2.29

82.

3315

1.80

48−2

4.4

47.0

630.

96PA

CS-

SM

345

1342

1954

7424

5531

0.54

681

160.

0044

.840

2.28

72.

3315

1.80

51−2

4.4

45.9

420.

98PA

CS-

SM

345

1342

1954

7524

5531

0.55

567

160.

0045

.339

2.31

22.

3315

1.80

52−2

4.4

45.7

780.

99PA

CS-

SM

345

1342

1954

7224

5531

0.52

819

160.

0044

.769

2.28

32.

3315

1.80

49−2

4.4

46.8

080.

96PA

CS-

SM

345

1342

1954

7324

5531

0.53

750

160.

0044

.775

2.28

32.

3315

1.80

50−2

4.4

46.3

540.

97PA

CS-

SM

345

1342

1954

7624

5531

0.56

454

160.

0045

.839

2.33

82.

3315

1.80

52−2

4.4

45.9

381.

00PA

CS-

SM

345

1342

1954

7724

5531

0.57

384

160.

0045

.937

2.34

32.

3315

1.80

53−2

4.4

46.2

740.

99PA

CS-

SM

160

1342

1861

3224

5512

5.54

682

160.

0021

.544

1.09

92.

4984

2.71

3321

.721

.682

0.99

PAC

S-SM

160

1342

1861

3524

5512

5.58

284

160.

0021

.997

1.12

22.

4984

2.71

2921

.721

.272

1.03

PAC

S-SM

160

1342

1861

3324

5512

5.56

175

160.

0021

.456

1.09

52.

4984

2.71

3121

.721

.472

1.00

PAC

S-SM

160

1342

1861

3624

5512

5.59

777

160.

0022

.211

1.13

32.

4984

2.71

2721

.721

.355

1.04

PAC

S-SM

160

1342

1861

3424

5512

5.57

249

160.

0021

.761

1.11

02.

4984

2.71

3021

.721

.297

1.02

PAC

S-SM

160

1342

1861

3724

5512

5.60

851

160.

0021

.943

1.11

92.

4984

2.71

2521

.721

.464

1.02

PAC

S-SM

348

1342

1956

2324

5531

3.63

068

70.0

018

8.28

69.

605

2.32

841.

8377

−24.

918

8.49

31.

00PA

CS-

CN

348

1342

1956

2324

5531

3.63

068

160.

0043

.230

2.28

92.

3284

1.83

77−2

4.9

45.3

950.

95PA

CS-

CN

348

1342

1956

2624

5531

3.64

113

100.

0010

2.34

85.

224

2.32

841.

8379

−24.

910

7.66

60.

95PA

CS-

CN

348

1342

1956

2624

5531

3.64

113

160.

0042

.787

2.27

72.

3284

1.83

79−2

4.9

45.2

050.

95PA

CS-

CN

Exp Astron

Tabl

e18

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

677

1342

2166

0724

5564

2.91

377

70.0

012

5.06

46.

380

2.15

972.

3601

25.2

127.

336

0.98

PAC

S-C

N

677

1342

2166

0724

5564

2.91

377

160.

0029

.649

1.56

72.

1597

2.36

0125

.230

.147

0.98

PAC

S-C

N

686

1342

2177

7724

5565

2.03

003

70.0

014

6.26

67.

466

2.16

242.

2633

26.2

138.

521

1.06

PAC

S-C

N

686

1342

2177

7724

5565

2.03

003

160.

0032

.604

1.70

12.

1624

2.26

3326

.232

.819

0.99

PAC

S-C

N

703

1342

2187

4624

5566

9.09

166

100.

0091

.008

4.64

42.

1688

2.07

6927

.592

.577

0.98

PAC

S-C

N

703

1342

2187

4624

5566

9.09

166

160.

0037

.926

1.99

52.

1688

2.07

6927

.538

.647

0.98

PAC

S-C

N

703

1342

2187

4324

5566

9.08

097

70.0

017

0.01

58.

674

2.16

882.

0770

27.5

164.

767

1.03

PAC

S-C

N

703

1342

2187

4324

5566

9.08

097

160.

0038

.333

2.01

82.

1688

2.07

7027

.539

.131

0.98

PAC

S-C

N

743

1342

2217

2624

5570

8.59

762

100.

0014

8.87

07.

596

2.18

901.

6459

26.5

147.

039

1.01

PAC

S-C

N

743

1342

2217

2624

5570

8.59

762

160.

0063

.044

3.29

42.

1890

1.64

5926

.561

.325

1.03

PAC

S-C

N

743

1342

2217

2324

5570

8.58

693

70.0

027

5.62

914

.062

2.18

901.

6461

26.5

259.

825

1.06

PAC

S-C

N

743

1342

2217

2324

5570

8.58

693

160.

0063

.173

3.31

12.

1890

1.64

6126

.561

.603

1.03

PAC

S-C

N

726

1342

2202

8924

5569

1.59

787

100.

0011

5.63

85.

900

2.17

941.

8279

27.8

117.

283

0.99

PAC

S-C

N

726

1342

2202

8924

5569

1.59

787

160.

0048

.637

2.56

42.

1794

1.82

7927

.848

.946

0.99

PAC

S-C

N

726

1342

2202

8624

5569

1.58

719

70.0

021

4.16

310

.926

2.17

941.

8280

27.8

206.

952

1.03

PAC

S-C

N

726

1342

2202

8624

5569

1.58

719

160.

0049

.079

2.57

72.

1794

1.82

8027

.849

.237

1.00

PAC

S-C

N

720

1342

2205

8524

5568

5.96

543

100.

0011

1.36

95.

683

2.17

651.

8899

27.9

112.

599

0.99

PAC

S-C

N

720

1342

2205

8524

5568

5.96

543

160.

0047

.085

2.47

12.

1765

1.88

9927

.946

.968

1.00

PAC

S-C

N

720

1342

2205

8224

5568

5.95

475

70.0

020

4.07

910

.410

2.17

651.

8900

27.9

196.

897

1.04

PAC

S-C

N

720

1342

2205

8224

5568

5.95

475

160.

0046

.909

2.47

12.

1765

1.89

0027

.946

.751

1.00

PAC

S-C

N

900

1342

2316

8824

5586

5.63

116

70.0

016

0.24

08.

175

2.32

232.

0156

−25.

515

8.57

51.

01PA

CS-

CN

900

1342

2316

8824

5586

5.63

116

160.

0035

.876

1.87

82.

3223

2.01

56−2

5.5

38.1

540.

94PA

CS-

CN

Exp Astron

Tabl

e18

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

900

1342

2316

9124

5586

5.64

184

100.

0085

.598

4.36

72.

3223

2.01

57−2

5.5

90.3

920.

95PA

CS-

CN

900

1342

2316

9124

5586

5.64

184

160.

0035

.410

1.86

52.

3223

2.01

57−2

5.5

37.9

190.

93PA

CS-

CN

1181

1342

2491

9224

5614

6.62

035

100.

0042

.930

2.19

12.

5479

2.81

3221

.243

.936

0.98

PAC

S-C

N

1181

1342

2491

9224

5614

6.62

035

160.

0017

.909

0.94

22.

5479

2.81

3221

.218

.509

0.97

PAC

S-C

N

1181

1342

2491

9324

5614

6.62

295

70.0

078

.925

4.02

62.

5479

2.81

3221

.276

.103

1.04

PAC

S-C

N

1181

1342

2491

9324

5614

6.62

295

160.

0017

.795

0.93

92.

5479

2.81

3221

.218

.476

0.96

PAC

S-C

N

1202

1342

2502

9724

5616

7.66

400

70.0

090

.450

4.61

52.

5560

2.55

8423

.091

.542

0.99

PAC

S-C

N

1202

1342

2502

9724

5616

7.66

400

160.

0021

.496

1.13

72.

5560

2.55

8423

.022

.279

0.96

PAC

S-C

N

1377

1342

2639

2024

5634

2.86

389

100.

0063

.413

3.23

62.

5563

2.17

98−2

2.5

67.9

920.

93PA

CS-

CN

1377

1342

2639

2024

5634

2.86

389

160.

0027

.137

1.45

02.

5563

2.17

98−2

2.5

28.6

980.

95PA

CS-

CN

1377

1342

2639

2324

5634

2.87

457

70.0

011

6.73

85.

956

2.55

632.

1799

−22.

511

6.72

11.

00PA

CS-

CN

1377

1342

2639

2324

5634

2.87

457

160.

0027

.244

1.46

72.

5563

2.17

99−2

2.5

28.4

740.

96PA

CS-

CN

1403

1342

2677

4724

5636

8.70

388

250.

008.

732

0.47

02.

5462

2.52

01−2

2.8

8.65

41.

01SP

IRE

-SM

1403

1342

2677

4724

5636

8.70

388

350.

004.

314

0.23

22.

5462

2.52

01−2

2.8

4.27

91.

01SP

IRE

-SM

1403

1342

2677

4724

5636

8.70

388

500.

002.

061

0.11

12.

5462

2.52

01−2

2.8

2.05

51.

00SP

IRE

-SM

1388

1342

2653

8524

5635

3.78

877

250.

0010

.206

0.55

02.

5523

2.32

44−2

3.0

10.0

871.

01SP

IRE

-SM

1388

1342

2653

8524

5635

3.78

877

350.

005.

042

0.27

22.

5523

2.32

44−2

3.0

4.98

81.

01SP

IRE

-SM

1388

1342

2653

8524

5635

3.78

877

500.

002.

423

0.13

12.

5523

2.32

44−2

3.0

2.39

61.

01SP

IRE

-SM

1375

1342

2638

1124

5634

0.51

600

250.

0011

.703

0.63

02.

5571

2.14

90−2

2.3

11.9

980.

98SP

IRE

-SM

1375

1342

2638

1124

5634

0.51

600

350.

005.

735

0.30

92.

5571

2.14

90−2

2.3

5.93

00.

97SP

IRE

-SM

1375

1342

2638

1124

5634

0.51

600

500.

002.

722

0.14

72.

5571

2.14

90−2

2.3

2.84

70.

96SP

IRE

-SM

1201

1342

2503

2424

5616

6.19

958

250.

009.

073

0.48

92.

5555

2.57

6822

.98.

867

1.02

SPIR

E-S

M

Exp Astron

Tabl

e18

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1201

1342

2503

2424

5616

6.19

958

350.

004.

447

0.24

02.

5555

2.57

6822

.94.

381

1.02

SPIR

E-S

M

1201

1342

2503

2424

5616

6.19

958

500.

002.

147

0.11

62.

5555

2.57

6822

.92.

102

1.02

SPIR

E-S

M

1179

1342

2490

9024

5614

5.01

874

250.

007.

585

0.40

82.

5473

2.83

1421

.17.

252

1.05

SPIR

E-S

M

1179

1342

2490

9024

5614

5.01

874

350.

003.

751

0.20

22.

5473

2.83

1421

.13.

581

1.05

SPIR

E-S

M

1179

1342

2490

9024

5614

5.01

874

500.

001.

796

0.09

72.

5473

2.83

1421

.11.

718

1.05

SPIR

E-S

M

916

1342

2323

6924

5588

2.00

303

250.

0012

.440

0.67

02.

3385

2.23

40−2

5.1

12.2

031.

02SP

IRE

-SM

916

1342

2323

6924

5588

2.00

303

350.

006.

177

0.33

32.

3385

2.23

40−2

5.1

6.02

11.

03SP

IRE

-SM

916

1342

2323

6924

5588

2.00

303

500.

002.

972

0.16

02.

3385

2.23

40−2

5.1

2.88

71.

03SP

IRE

-SM

892

1342

2313

4724

5585

8.07

191

250.

0016

.451

0.88

62.

3148

1.91

59−2

5.3

16.8

110.

98SP

IRE

-SM

892

1342

2313

4724

5585

8.07

191

350.

008.

087

0.43

62.

3148

1.91

59−2

5.3

8.29

00.

98SP

IRE

-SM

892

1342

2313

4724

5585

8.07

191

500.

003.

897

0.21

02.

3148

1.91

59−2

5.3

3.97

40.

98SP

IRE

-SM

702

1342

2186

8824

5566

7.55

980

250.

0015

.521

0.83

62.

1682

2.09

3727

.414

.873

1.04

SPIR

E-S

M

702

1342

2186

8824

5566

7.55

980

350.

007.

676

0.41

32.

1682

2.09

3727

.47.

323

1.05

SPIR

E-S

M

702

1342

2186

8824

5566

7.55

980

500.

003.

695

0.19

92.

1682

2.09

3727

.43.

506

1.05

SPIR

E-S

M

669

1342

2159

9424

5563

4.38

330

250.

0011

.246

0.60

62.

1575

2.44

8024

.110

.902

1.03

SPIR

E-S

M

669

1342

2159

9424

5563

4.38

330

350.

005.

579

0.30

02.

1575

2.44

8024

.15.

366

1.04

SPIR

E-S

M

669

1342

2159

9424

5563

4.38

330

500.

002.

648

0.14

32.

1575

2.44

8024

.12.

568

1.03

SPIR

E-S

M

402

1342

1985

7524

5536

7.16

860

250.

0010

.810

0.58

22.

2764

2.41

31−2

5.1

10.5

381.

03SP

IRE

-LM

402

1342

1985

7524

5536

7.16

860

350.

005.

367

0.28

92.

2764

2.41

31−2

5.1

5.20

21.

03SP

IRE

-LM

402

1342

1985

7524

5536

7.16

860

500.

002.

545

0.13

72.

2764

2.41

31−2

5.1

2.49

51.

02SP

IRE

-LM

393

1342

1981

4224

5535

8.16

957

250.

0011

.444

0.61

62.

2849

2.32

05−2

5.7

11.3

671.

01SP

IRE

-LM

393

1342

1981

4224

5535

8.16

957

350.

005.

680

0.30

62.

2849

2.32

05−2

5.7

5.61

31.

01SP

IRE

-LM

Exp Astron

Tabl

e18

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

393

1342

1981

4224

5535

8.16

957

500.

002.

681

0.14

42.

2849

2.32

05−2

5.7

2.69

31.

00SP

IRE

-LM

381

1342

1973

1724

5534

7.15

618

250.

0011

.610

0.62

52.

2955

2.20

34−2

6.2

12.3

830.

94SP

IRE

-LM

381

1342

1973

1724

5534

7.15

618

350.

005.

996

0.32

32.

2955

2.20

34−2

6.2

6.11

40.

98SP

IRE

-LM

381

1342

1973

1724

5534

7.15

618

500.

002.

884

0.15

52.

2955

2.20

34−2

6.2

2.93

30.

98SP

IRE

-LM

381

1342

1973

1624

5534

7.14

027

250.

0012

.285

0.66

22.

2955

2.20

33−2

6.2

12.4

960.

98SP

IRE

-LM

381

1342

1973

1624

5534

7.14

027

350.

006.

265

0.33

72.

2955

2.20

33−2

6.2

6.17

01.

02SP

IRE

-LM

381

1342

1973

1624

5534

7.14

027

500.

002.

996

0.16

12.

2955

2.20

33−2

6.2

2.96

01.

01SP

IRE

-LM

369

1342

1966

6724

5533

5.10

704

250.

0014

.413

0.77

62.

3072

2.07

21−2

6.3

14.1

601.

02SP

IRE

-LM

369

1342

1966

6724

5533

5.10

704

350.

007.

121

0.38

32.

3072

2.07

21−2

6.3

6.99

31.

02SP

IRE

-LM

369

1342

1966

6724

5533

5.10

704

500.

003.

402

0.18

32.

3072

2.07

21−2

6.3

3.35

51.

01SP

IRE

-LM

354

1342

1957

5024

5531

9.94

391

250.

0016

.889

0.91

02.

3222

1.90

59−2

5.5

16.7

961.

01SP

IRE

-LM

354

1342

1957

5024

5531

9.94

391

350.

008.

487

0.45

72.

3222

1.90

59−2

5.5

8.29

41.

02SP

IRE

-LM

354

1342

1957

5024

5531

9.94

391

500.

004.

161

0.22

42.

3222

1.90

59−2

5.5

3.97

91.

05SP

IRE

-LM

Exp Astron

Tabl

e19

Phot

omet

ric

Her

sche

ldat

aof

(21)

Lut

etia

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1399

1342

2672

6424

5636

4.59

671

70.0

04.

399

0.22

42.

6964

2.42

94−2

1.8

4.48

20.

98PA

CS-

SM

1399

1342

2672

6524

5636

4.60

075

70.0

04.

382

0.22

42.

6964

2.42

95−2

1.8

4.49

00.

98PA

CS-

SM

1198

1342

2501

0724

5616

3.45

010

70.0

04.

337

0.22

12.

3743

2.59

1423

.24.

476

0.97

PAC

S-SM

1198

1342

2501

0824

5616

3.45

414

70.0

04.

352

0.22

22.

3743

2.59

1423

.24.

484

0.97

PAC

S-SM

859

1342

2289

4724

5582

4.37

826

70.0

011

.167

0.56

92.

0611

1.57

64−2

8.6

11.0

651.

01PA

CS-

SM

859

1342

2289

4824

5582

4.38

230

70.0

011

.279

0.57

52.

0611

1.57

65−2

8.6

11.1

091.

02PA

CS-

SM

684

1342

2174

1124

5565

0.36

816

70.0

07.

082

0.36

12.

2998

2.05

2526

.07.

335

0.97

PAC

S-SM

684

1342

2174

1224

5565

0.37

220

70.0

07.

100

0.36

32.

2998

2.05

2526

.07.

354

0.97

PAC

S-SM

400

1342

1984

9424

5536

5.22

184

70.0

02.

689

0.13

72.

7441

2.78

47−2

1.4

2.67

81.

00PA

CS-

SM

400

1342

1984

9524

5536

5.22

588

70.0

02.

676

0.13

62.

7441

2.78

47−2

1.4

2.64

51.

01PA

CS-

SM

1399

1342

2672

6124

5636

4.58

603

100.

002.

506

0.12

82.

6963

2.42

93−2

1.8

2.57

10.

97PA

CS-

SM

1399

1342

2672

6224

5636

4.59

007

100.

002.

504

0.12

82.

6963

2.42

93−2

1.8

2.57

60.

97PA

CS-

SM

1198

1342

2501

0424

5616

3.43

942

100.

002.

453

0.12

52.

3743

2.59

1523

.22.

523

0.97

PAC

S-SM

1198

1342

2501

0524

5616

3.44

346

100.

002.

426

0.12

42.

3743

2.59

1523

.22.

525

0.96

PAC

S-SM

859

1342

2289

5024

5582

4.38

895

100.

006.

486

0.33

12.

0611

1.57

65−2

8.6

6.39

11.

01PA

CS-

SM

859

1342

2289

5124

5582

4.39

299

100.

006.

497

0.33

12.

0611

1.57

66−2

8.6

6.43

21.

01PA

CS-

SM

684

1342

2174

1424

5565

0.37

884

100.

004.

022

0.20

52.

2998

2.05

2426

.04.

172

0.96

PAC

S-SM

684

1342

2174

1524

5565

0.38

288

100.

004.

001

0.20

42.

2998

2.05

2326

.04.

178

0.96

PAC

S-SM

400

1342

1984

9224

5536

5.21

376

100.

001.

591

0.08

22.

7441

2.78

46−2

1.4

1.59

21.

00PA

CS-

SM

400

1342

1984

9324

5536

5.21

780

100.

001.

554

0.07

92.

7441

2.78

46−2

1.4

1.56

80.

99PA

CS-

SM

221

1342

1883

3424

5518

6.57

887

100.

001.

802

0.09

32.

8326

2.50

6920

.31.

751

1.03

PAC

S-SM

221

1342

1883

3524

5518

6.58

253

100.

001.

819

0.09

32.

8326

2.50

6920

.31.

754

1.04

PAC

S-SM

Exp Astron

Tabl

e19

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

221

1342

1883

3624

5518

6.58

620

100.

001.

829

0.09

42.

8326

2.50

6820

.31.

765

1.04

PAC

S-SM

221

1342

1883

3724

5518

6.58

987

100.

001.

814

0.09

32.

8326

2.50

6820

.31.

784

1.02

PAC

S-SM

1399

1342

2672

6124

5636

4.58

603

160.

001.

083

0.09

62.

6963

2.42

93−2

1.8

1.10

10.

98PA

CS-

SM

1399

1342

2672

6224

5636

4.59

007

160.

001.

009

0.07

42.

6963

2.42

93−2

1.8

1.10

30.

91PA

CS-

SM

1399

1342

2672

6424

5636

4.59

671

160.

001.

058

0.07

32.

6964

2.42

94−2

1.8

1.10

50.

96PA

CS-

SM

1399

1342

2672

6524

5636

4.60

075

160.

001.

072

0.07

82.

6964

2.42

95−2

1.8

1.10

70.

97PA

CS-

SM

1198

1342

2501

0424

5616

3.43

942

160.

001.

052

0.06

02.

3743

2.59

1523

.21.

064

0.99

PAC

S-SM

1198

1342

2501

0524

5616

3.44

346

160.

001.

026

0.05

62.

3743

2.59

1523

.21.

065

0.96

PAC

S-SM

1198

1342

2501

0724

5616

3.45

010

160.

001.

032

0.06

82.

3743

2.59

1423

.21.

067

0.97

PAC

S-SM

1198

1342

2501

0824

5616

3.45

414

160.

001.

085

0.05

72.

3743

2.59

1423

.21.

069

1.01

PAC

S-SM

859

1342

2289

4724

5582

4.37

826

160.

002.

707

0.15

82.

0611

1.57

64−2

8.6

2.68

11.

01PA

CS-

SM

859

1342

2289

4824

5582

4.38

230

160.

002.

710

0.14

62.

0611

1.57

65−2

8.6

2.69

11.

01PA

CS-

SM

859

1342

2289

5024

5582

4.38

895

160.

002.

802

0.15

22.

0611

1.57

65−2

8.6

2.71

51.

03PA

CS-

SM

859

1342

2289

5124

5582

4.39

299

160.

002.

819

0.14

82.

0611

1.57

66−2

8.6

2.73

21.

03PA

CS-

SM

684

1342

2174

1124

5565

0.36

816

160.

001.

597

0.09

22.

2998

2.05

2526

.01.

751

0.91

PAC

S-SM

684

1342

2174

1224

5565

0.37

220

160.

001.

667

0.09

62.

2998

2.05

2526

.01.

754

0.95

PAC

S-SM

684

1342

2174

1424

5565

0.37

884

160.

001.

718

0.09

72.

2998

2.05

2426

.01.

758

0.98

PAC

S-SM

684

1342

2174

1524

5565

0.38

288

160.

001.

709

0.09

72.

2998

2.05

2326

.01.

761

0.97

PAC

S-SM

400

1342

1984

9224

5536

5.21

376

160.

000.

708

0.04

12.

7441

2.78

46−2

1.4

0.68

01.

04PA

CS-

SM

400

1342

1984

9324

5536

5.21

780

160.

000.

696

0.03

72.

7441

2.78

46−2

1.4

0.67

01.

04PA

CS-

SM

400

1342

1984

9424

5536

5.22

184

160.

000.

688

0.04

32.

7441

2.78

47−2

1.4

0.66

11.

04PA

CS-

SM

400

1342

1984

9524

5536

5.22

588

160.

000.

654

0.04

02.

7441

2.78

47−2

1.4

0.65

21.

00PA

CS-

SM

Exp Astron

Tabl

e19

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

221

1342

1883

3424

5518

6.57

887

160.

000.

781

0.04

82.

8326

2.50

6920

.30.

756

1.03

PAC

S-SM

221

1342

1883

3524

5518

6.58

253

160.

000.

812

0.04

82.

8326

2.50

6920

.30.

758

1.07

PAC

S-SM

221

1342

1883

3624

5518

6.58

620

160.

000.

869

0.04

82.

8326

2.50

6820

.30.

763

1.14

PAC

S-SM

221

1342

1883

3724

5518

6.58

987

160.

000.

834

0.04

92.

8326

2.50

6820

.30.

771

1.08

PAC

S-SM

221

1342

1883

3324

5518

6.57

648

70.0

03.

180

0.16

62.

8326

2.50

7020

.33.

008

1.06

PAC

S-C

N

221

1342

1883

3324

5518

6.57

648

160.

000.

784

0.09

22.

8326

2.50

7020

.30.

756

1.04

PAC

S-C

N

221

1342

1883

3224

5518

6.57

388

100.

001.

831

0.09

82.

8326

2.50

7020

.31.

754

1.04

PAC

S-C

N

221

1342

1883

3224

5518

6.57

388

160.

000.

766

0.09

72.

8326

2.50

7020

.30.

757

1.01

PAC

S-C

N

684

1342

2174

1024

5565

0.36

578

70.0

07.

101

0.36

42.

2998

2.05

2526

.07.

321

0.97

PAC

S-C

N

684

1342

2174

1024

5565

0.36

578

160.

001.

661

0.12

02.

2998

2.05

2526

.01.

748

0.95

PAC

S-C

N

684

1342

2174

1324

5565

0.37

646

100.

003.

984

0.20

52.

2998

2.05

2426

.04.

168

0.96

PAC

S-C

N

684

1342

2174

1324

5565

0.37

646

160.

001.

781

0.11

82.

2998

2.05

2426

.01.

757

1.01

PAC

S-C

N

859

1342

2289

4924

5582

4.38

656

100.

006.

440

0.33

02.

0611

1.57

65−2

8.6

6.37

01.

01PA

CS-

CN

859

1342

2289

4924

5582

4.38

656

160.

002.

735

0.17

12.

0611

1.57

65−2

8.6

2.70

61.

01PA

CS-

CN

859

1342

2289

4624

5582

4.37

588

70.0

011

.183

0.57

22.

0611

1.57

64−2

8.6

11.0

341.

01PA

CS-

CN

859

1342

2289

4624

5582

4.37

588

160.

002.

695

0.16

42.

0611

1.57

64−2

8.6

2.67

31.

01PA

CS-

CN

1198

1342

2501

0324

5616

3.43

704

100.

002.

489

0.12

92.

3743

2.59

1523

.22.

523

0.99

PAC

S-C

N

1198

1342

2501

0324

5616

3.43

704

160.

001.

118

0.09

22.

3743

2.59

1523

.21.

064

1.05

PAC

S-C

N

1198

1342

2501

0624

5616

3.44

772

70.0

04.

345

0.22

52.

3743

2.59

1423

.24.

471

0.97

PAC

S-C

N

1198

1342

2501

0624

5616

3.44

772

160.

001.

057

0.09

12.

3743

2.59

1423

.21.

067

0.99

PAC

S-C

N

1399

1342

2672

6324

5636

4.59

433

70.0

04.

447

0.22

92.

6964

2.42

94−2

1.8

4.47

90.

99PA

CS-

CN

1399

1342

2672

6324

5636

4.59

433

160.

001.

025

0.09

32.

6964

2.42

94−2

1.8

1.10

40.

93PA

CS-

CN

Exp Astron

Tabl

e19

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

1399

1342

2672

6024

5636

4.58

365

100.

002.

523

0.13

12.

6963

2.42

92−2

1.8

2.56

80.

98PA

CS-

CN

1399

1342

2672

6024

5636

4.58

365

160.

000.

999

0.11

22.

6963

2.42

92−2

1.8

1.10

00.

91PA

CS-

CN

1434

1342

2703

2624

5639

9.98

378

250.

000.

305

0.01

72.

7365

2.94

46−2

0.2

0.30

51.

00SP

IRE

-SM

1434

1342

2703

2624

5639

9.98

378

350.

000.

157

0.00

92.

7365

2.94

46−2

0.2

0.15

90.

99SP

IRE

-SM

1434

1342

2703

2624

5639

9.98

378

500.

000.

074

0.00

72.

7365

2.94

46−2

0.2

0.08

00.

93SP

IRE

-SM

1411

1342

2683

4524

5637

6.62

531

250.

000.

424

0.02

32.

7107

2.60

90−2

1.7

0.41

71.

02SP

IRE

-SM

1411

1342

2683

4524

5637

6.62

531

350.

000.

247

0.01

42.

7107

2.60

90−2

1.7

0.21

71.

14SP

IRE

-SM

1411

1342

2683

4524

5637

6.62

531

500.

000.

180

0.01

02.

7107

2.60

90−2

1.7

0.10

91.

65SP

IRE

-SM

1402

1342

2677

1624

5636

7.67

595

250.

000.

442

0.02

42.

7001

2.47

55−2

1.8

0.44

90.

99SP

IRE

-SM

1402

1342

2677

1624

5636

7.67

595

350.

000.

222

0.01

32.

7001

2.47

55−2

1.8

0.23

40.

95SP

IRE

-SM

1402

1342

2677

1624

5636

7.67

595

500.

000.

108

0.00

82.

7001

2.47

55−2

1.8

0.11

80.

92SP

IRE

-SM

1388

1342

2653

8624

5635

3.79

785

250.

000.

520

0.02

82.

6829

2.26

90−2

1.2

0.54

50.

95SP

IRE

-SM

1388

1342

2653

8624

5635

3.79

785

350.

000.

257

0.01

52.

6829

2.26

90−2

1.2

0.28

40.

90SP

IRE

-SM

1388

1342

2653

8624

5635

3.79

785

500.

000.

103

0.01

32.

6829

2.26

90−2

1.2

0.14

30.

72SP

IRE

-SM

1215

1342

2508

0224

5618

1.02

598

250.

000.

520

0.02

82.

4062

2.40

8624

.30.

536

0.97

SPIR

E-S

M

1215

1342

2508

0224

5618

1.02

598

350.

000.

261

0.01

52.

4062

2.40

8624

.30.

278

0.94

SPIR

E-S

M

1215

1342

2508

0224

5618

1.02

598

500.

000.

124

0.01

02.

4062

2.40

8624

.30.

140

0.89

SPIR

E-S

M

1196

1342

2506

3724

5616

2.04

058

250.

000.

452

0.02

52.

3717

2.60

5223

.00.

445

1.02

SPIR

E-S

M

1196

1342

2506

3724

5616

2.04

058

350.

000.

232

0.01

32.

3717

2.60

5223

.00.

231

1.01

SPIR

E-S

M

1196

1342

2506

3724

5616

2.04

058

500.

000.

110

0.00

82.

3717

2.60

5223

.00.

116

0.95

SPIR

E-S

M

892

1342

2313

4424

5585

8.04

713

250.

000.

669

0.03

62.

0438

1.92

98−2

9.1

0.63

41.

06SP

IRE

-SM

892

1342

2313

4424

5585

8.04

713

350.

000.

342

0.01

92.

0438

1.92

98−2

9.1

0.33

01.

04SP

IRE

-SM

Exp Astron

Tabl

e19

(con

tinu

ed)

OD

OB

SID

mid

-tim

e[J

D]

λ[μ

m]

FD[J

y]σ

[Jy]

r[A

U]

[A

U]

α[◦

]T

PM[J

y]FD

/TPM

Inst

r./M

ode

892

1342

2313

4424

5585

8.04

713

500.

000.

156

0.01

02.

0438

1.92

98−2

9.1

0.16

60.

94SP

IRE

-SM

861

1342

2291

9324

5582

6.85

575

250.

001.

168

0.06

32.

0594

1.60

18−2

8.8

1.14

31.

02SP

IRE

-SM

861

1342

2291

9324

5582

6.85

575

350.

000.

595

0.03

22.

0594

1.60

18−2

8.8

0.59

31.

00SP

IRE

-SM

861

1342

2291

9324

5582

6.85

575

500.

000.

289

0.01

62.

0594

1.60

18−2

8.8

0.29

80.

97SP

IRE

-SM

423

1342

2002

0424

5538

8.83

050

250.

000.

272

0.01

62.

7189

3.05

43−1

9.4

0.28

10.

97SP

IRE

-SM

423

1342

2002

0424

5538

8.83

050

350.

000.

144

0.01

02.

7189

3.05

43−1

9.4

0.14

60.

99SP

IRE

-SM

423

1342

2002

0424

5538

8.83

050

500.

000.

065

0.00

92.

7189

3.05

43−1

9.4

0.07

30.

89SP

IRE

-SM

Exp Astron

References

1. Altieri, B.: PACS Observer’s Manual, HERSCHEL-HSC-DOC-0832, vol. 2.4, http://herschel.esac.esa.int/Docs/PACS/html/pacs om.html (2011)

2. Balog, Z., Muller, T.G., Nielbock, M., et al.: The Herschel-PACS photometer calibration: point-sourceflux calibration. Exp. Astron. this issue (2013)

3. Beichman, C.A., Neugebauer, G., Habing, H.J., Clegg, P.E., Chester, T.J.: Infrared astronomicalsatellite (IRAS) catalogs and atlases, vol. 1: Explanatory Supplement. (1988)

4. Belskaya, I.N., Fornasier, S., Krugly, Yu, N., et al.: Puzzling asteroid 21 Lutetia: our knowledge priorto the Rosetta fly-by. A&A 515, 29 (2010)

5. Bendo, G.J., Griffin, M.J., Bock, J.J., et al.: Flux calibration of the Herschel-SPIRE photometer.MNRAS 433, 3062 (2013)

6. Bowell, E., Hapke, B., Domingue, D., et al.: Application of photometric models to asteroids. In:Binzel, R.P., et al. (eds) Asteroids II, pp. 524–556. University of Arizona Press (1989)

7. Carry, B., Dumas, C., Fulchignoni, M., et al.: Near-infrared mapping and physical properties of thedwarf-planet Ceres. A&A 478, 235 (2008)

8. Carry, B., Dumas, C., Kaasalainen, M., et al.: Physical properties of (2) Pallas. Icarus 205, 460(2010)

9. Carry, B., Kaasalainen, M., Merline, W.J., et al.: Shape modeling technique KOALA validated byESA Rosetta at (21) Lutetia. P&SS 66, 200 (2012)

10. Chamberlain, M.A., Boynton, W.V.: Ceres lightcurve analysis Period determination. Icarus 188, 451(2007)

11. Cohen, M.: Stellar calibration in the infrared: extending the legacy of the KAO, ISO, and MSX toSIRTF and beyond. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds) Proceedings ofthe Conference The Calibration Legacy of the ISO Mission, p. 135. ESA SP-481 (2003)

12. Decin, L.: Stellar models in IR calibration. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F.(eds) Proceedings of the Conference The Calibration Legacy of the ISO Mission, p. 141. ESA SP-481(2003)

13. de Graauw, Th., Helmich, F.P., Phillips, T.G., et al.: The Herschel-Heterodyne instrument for thefar-infrared (HIFI). A&A 518, 6D (2010)

14. Dehaes, S., Bauwens, E., Decin, L., et al.: Structure of the outer layers of cool standard stars. A&A533, A107 (2011)

15. Drummond, J.D., Weidenschilling, S.J., Chapman, C.R., Davis, D.R.: Photometric geodesy of main-belt asteroids. II - Analysis of lightcurves for poles, periods, and shapes. Icarus 76, 19 (1988)

16. Drummond, J.D., Christou, J., Nelson, J.: Triaxial ellipsoid dimensions and poles of asteroids fromAO observations at the Keck-II telescope. Icarus 202, 147 (2009)

17. Drummond, J.D., Carry, B., Merline, W.J., et al.: The size and pole of Ceres from nine years ofadaptive optics observations at Keck and the VLT, AAS, DPS meeting #45, #208.06 (2013)

18. Dunham, D.W., Dunham, J.B., Binzel, R.P., et al.: The size and shape of (2) Pallas from the 1983occultation of 1 Vulpeculae. AJ 99, 1636 (1990)

19. Engelbracht, C.W., Blaylock, M., Su, K.Y.L., et al.: Absolute calibration and characterization ofthe multiband imaging photometer for spitzer. I. The stellar calibrator sample and the 24 microncalibration. PASP 119, 994–1018 (2007)

20. Gordon, K.D., Engelbracht, C.W., Fadda, D., et al.: Absolute calibration and characterizationof the multiband imaging photometer for Spitzer. II. 70 micron Imaging. PASP 119, 1019–1037 (2007)

21. Griffin, M.J., North, C.E., Schulz, B., et al.: Flux calibration of broadband far infrared and submil-limetre photometric instruments: Theory and application to Herschel-SPIRE. MNRAS 434, 992–1004(2013)

22. Griffin, M.J., Orton, G.S.: The near-millimeter brightness temperature spectra of Uranus and Neptune.Icarus 105, 537 (1993)

23. Griffin, M.J., Abergel, A., Abreu, A., et al.: The Herschel-SPIRE instrument and its in-flightperformance. A&A 518, 3G (2010)

24. Hammersley, P.L., Jourdain de Muizon, M.: The development of stellar photometric standards forISO. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds) Proceedings of the ConferenceThe Calibration Legacy of the ISO Mission, p. 129. ESA SP-481 (2003)

Exp Astron

25. Horner, J., Muller, T.G., Lykawka, P.S.: (1173) Anchises—thermophysical and dynamical studies ofa dynamically unstable Jovian Trojan. MNRAS 423, 2587–2596 (2012)

26. Kawada, M., Baba, H., Barthel, P.D., et al.: The Far-Infrared Surveyor (FIS) for AKARI. PASJ 59,389 (2007)

27. Keihm, S.J.: Interpretation of the lunar microwave brightness temperature spectrum - feasibility oforbital heat flow mapping. Icarus 60, 568 (2013)

28. Kessler, M.F., Steinz, J.A., Anderegg, M.E., et al.: The Infrared Space Observatory (ISO) mission.A&A 315, 27 (1996)

29. Klaas, U., Abraham, P., Acosta-Pulido, J.A., et al.: ISOPHOT in-flight calibration strategies. In:Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds) Proceedings of the Conference TheCalibration Legacy of the ISO Missions, p. 19. ESA SP-481 (2003)

30. Lagerkvist, C.-I., Magnusson, P., Williams, I.P., et al.: Physical studies of asteroids. XXIV - phaserelations for 48 asteroids obtained with the Carlsberg Meridian circle. A&AS 94, 43 (1992)

31. Lagerkvist, C.-I., Piironen, J., Erikson, A. (eds.): Asteroid Photometric Catalogue, p. 201, 5th edn.Astronomical Observatory, Uppsala University, Sweden (2001)

32. Lagerros, J.S.V.: Thermal physics of asteroids. I. Effects of shape, heat conduction and beaming. A&A310, 1011 (1996)

33. Lagerros, J.S.V.: Thermal physics of asteroids. III. Irregular shapes and albedo variegations. A&A325, 1226 (1997)

34. Lagerros, J.S.V.: Thermal physics of asteroids. IV. Thermal infrared beaming. A&A 332, 1123 (1998)35. Lamy, P.L., Faury, G., Jorda, L., et al.: Multi-color, rotationally resolved photometry of asteroid 21

Lutetia from OSIRIS/Rosetta observations. A&A 521, 19 (2010)36. Lebofsky, L.A., Sykes, M.V., Tedesco, E.T., et al.: A refined standard thermal model for asteroids

based on observations of 1 ceres and 2 pallas. Icarus 68, 239–251 (1986)37. Li, J.-Y., McFadden, L.A., Parker, J.W., et al.: Photometric analysis of 1 ceres and surface mapping

from HST observations. Icarus 182, 143 (2006)38. Lim, T.L., Swinyard, B.M., Burgdorf, M.J., et al.: The LWS calibration strategy. In: Metcalfe, L.,

Salama, A., Peschke, S.B., Kessler, M.F. (eds) Proceedings of the Conference The Calibration Legacyof the ISO Missions, p. 13. ESA SP-481 (2003)

39. Lim, T.L., Stansberry, J., Muller, T.G., et al.: TNOs are Cool: a survey of the trans-Neptunian region.III. Thermophysical properties of 90482 Orcus and 136472 makemake. A&A 518, 148–152 (2010)

40. Lutz, D.: PACS Photometer Point Spread Function. PICC-ME-TN-033, vol. 2.0., http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/bolopsf 20.pdf (2012)

41. Marston, A.P., Teyssier, D.: HIFI Observer’s Manual, HERSCHEL-HSC-DOC-0784, vol. 2.4., http://herschel.esac.esa.int/Docs/HIFI/html/hifi om.html (2011)

42. Millis, R.L., Wassermann, L.H., Franz, O.G., et al.: The size, shape, density, and Abledo of ceres fromits occultation of BD+8deg471. Icarus 72, 507–518 (1987)

43. Moor, A., Muller, T.G., Kiss, C., et al.: PACS photometer calibration block analysis. Exp. Astron. thisissue (2013)

44. Moreno, R.: PhD thesis. Universite de Paris (1998)45. Moreno, R.: Neptune and Uranus planetary brightness temperature tabulation. Tech. rep., ESA

Herschel Science Centre. available from ftp://ftp.sciops.esa.int/pub/hsc-calibration/PlanetaryModels/ESA4/ (2012)

46. Muller, T.G., Lagerros, J.S.V.: Asteroids as IR standards for ISOPHOT. A&A 338, 340–352 (1998)47. Muller, T.G., Lagerros, J.S.V., Burgdorf, M., et al.: Fundamental thermal emission parameters of

main-belt asteroids derived from ISO. In: Cox, P., Kessler, M.F. (eds) The Universe as Seen by ISO,p. 141. ESA SP-427 (1999)

48. Muller, T.G., Lagerros, J.S.V.: Asteroids as calibration standards in the thermal infrared for spaceobservatories. A&A 381, 324–339 (2002)

49. Muller, T.G.: Thermophysical analysis of infrared observations of asteroids. M&PS 37, 1919 (2002)50. Muller, T.G., Lagerros, J.S.V.: Asteroids as calibration standards in the thermal infrared—applications

and results from ISO. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds) Proceedings ofthe Conference The Calibration Legacy of the ISO Missions, p. 157. ESA SP-481 (2003)

51. Muller, T.G., Blommaert, J.A.D.L.: 65 Cybele in the thermal infrared: multiple observations andthermophysical analysis. A&A 418, 347–356 (2004)

Exp Astron

52. Muller, T.G., Sterzik, M.F., Schutz, O., et al.: Thermal infrared observations of near-Earth asteroid2002 NY40. A&A 424, 1075–1080 (2004)

53. Muller, T.G.: The Asteroid Preparatory Programme for HERSCHEL, ASTRO-F & ALMA. In:Wilson, A. (ed) Proceedings of the Dusty and Molecular Universe: A Prelude to Herschel andALMA, p. 471. ESA SP-577 (2005)

54. Muller, T.G., Sekiguchi, T., Kaasalainen, M., et al.: Thermal infrared observations of the Hayabusaspacecraft target asteroid 25143 Itokawa. A&A 443, 347–355 (2005)

55. Muller, T.G., Durech, J., Hasegawa, S., et al.: Thermo-physical properties of 162173 (1999 JU3), apotential flyby and rendezvous target for interplanetary missions—Based on the experience from theHayabusa flyby target 25143 Itokawa. A&A 525, 145 (2011)

56. Muller, T.G., Okumura, K., Klaas, U.: PACS Photometer Passbands and Colour Correction Factorsfor Various Source SEDs, PICC-ME-TN-038, vol. 1.0., http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/cc report v1.pdf (2011)

57. Muller, T.G., Nielbock, M., Balog, Z., et al.: PACS Photometer—Point-Source Flux Calibration,PICC-ME-TN-037, vol. 1.0. (2011)

58. Muller, T.G., O’Rourke, L., Barucci, A.M., et al.: Physical properties of OSIRIS-REx target asteroid(101955) 1999 RQ36. Derived from Herschel, VLT/ VISIR, and Spitzer observations. A&A 548, 36–45 (2012)

59. Murakami, H., Baba, H., Barthel, P., et al.: The infrared astronomical mission AKARI. PASJ 59, 369(2007)

60. Nielbock, M., Muller, T.G., Balog, Z., et al.: The Herschel-PACS photometer calibration: a timedependent flux calibration for the PACS chopped photometry AOT mode. Exp. Astron. this issue(2013)

61. O’Rourke, L., Muller, T.G., Valtchanov, I., et al.: Thermal & shape properties of asteroid (21) Lutetiafrom Herschel observations around the Rosetta flyby. P&SS 55, 192 (2012)

62. Orton, G.S., Burgdorf, M.J.: Planetary Spectral Models as References for Calibration. In: Metcalfe,L., Salama, A., Peschke, S.B., Kessler, M.F. (eds) Proceedings of the Conference The CalibrationLegacy of the ISO Mission, p. 147. ESA SP-481 (2003)

63. Pearson, C., Lim, T., North, C.E., et al.: SPIRE point source photometry within the Herschelinteractive processing environment (HIPE). Exp. Astron. this issue (2013)

64. Pilbratt, G.L., Riedinger, J.R., Passvogel, T., et al.: Herschel space observatory. An ESA facility forfar-infrared and submillimetre astronomy. A&A 518, L1 (2010)

65. Poglitsch, A., Waelkens, C., Geis, N., et al.: The photodetector array camera and spectrometer (PACS)on the Herschel space observatory. A&A 518, L2 (2010)

66. Reach, W.T., Megeath, S.T., Cohen, M., et al.: Absolute calibration of the infrared array camera onthe Spitzer space telescope. PASP 117, 978–990 (2005)

67. Rieke, G.H., Lebofsky, M.J., Low, F.J.: An absolute photometric system at 10 and 20 microns. AJ 90,900 (1985)

68. Rieke, G.H., Young, E.T., Engelbracht, C.W., et al.: The multiband imaging photometer for Spitzer(MIPS). ApJS 154, 25 (2004)

69. Roelfsema, R.R., Helmich, F.P., Teyssier, D., et al.: In-orbit performance of Herschel-HIFI. A&A 537,A17 (2012)

70. Russell, C.T., Raymond, C.A., Coradini, A., et al.: Dawn at vesta: testing the protoplanetary paradigm.Science 336, 684 (2012)

71. Sandell, G.: Secondary calibrators at submillimetre wavelengths. MNRAS 271, 75 (1994)72. Sandell, G.: Submillimetre calibration—experience from ground-based observations. In: Metcalfe, L.,

Salama, A., Peschke, S.B., Kessler, M.F. (eds) Proceedings of the Conference The Calibration Legacyof the ISO Mission, p. 439. ESA SP-481 (2003)

73. Schmidt, B.E., Thomas, P.C., Bauer, J.M., et al.: The shape and surface variation of 2 Pallas from thehubble space telescope. Science 326, 275 (2009)

74. Schulz, B.: ISOPHOT point source calibration—wrapping it up. In: Metcalfe, L., Salama, A., Peschke,S.B., Kessler, M.F. (eds) Proceedings of the Conference The Calibration Legacy of the ISO Mission,p. 83. ESA SP-481 (2003)

75. Stansberry, J.A., Gordon, K.D., Bhattacharya, B., et al.: Absolute calibration and characterizationof the multiband imaging photometer for Spitzer. III. An asteroid-based calibration of MIPS at 160micron. PASP 119, 1038 (2007)

Exp Astron

76. Swinyard, B.M., Ade, P., Baluteau, J.-P., et al.: In-flight calibration of the Herschel-SPIRE instrument.A&A 518, 4S (2010)

77. Thomas, P.C., Binzel, R.P., Gaffey, M.J., et al.: Vesta: spin pole, size, and shape from HST images.Icarus 128, 88 (1997)

78. Thomas, P.C., Parker, J.W., McFadden, L.A., et al.: Differentiation of the asteroid Ceres as revealedby its shape. Nature 437, 224–226 (2005)

79. Valtchanov, I.: SPIRE Observer’s Manual, HERSCHEL-DOC-0798, vol. 2.4., http://herschel.esac.esa.int/Docs/SPIRE/html/spire om.html (2011)

80. Wasserman, L.H., Millis, R.L., Franz, O.G., et al.: The diameter of Pallas from its occultation of SAO85009. AJ 84, 259 (1979)

81. Werner, M.W., Roellig, T.L., Low, F.J., et al.: The Spitzer space telescope mission. ApJS 154, 1 (2004)82. Wright, E.L., Eisenhardt, P.R.M., Mainzer, A.K., et al.: The wide-field infrared survey explorer

(WISE): mission description and initial on-orbit performance. AJ 140, 1868–1881 (2010)