Here Comes the Sun: Strategies to Achieve Low-Carbon and Zero-Carbon Health Facilities Guy Dauncey,...

221
Here Comes the Sun Strategies to Achieve Low-Carbon and Zero-Carbon Health Facilities Guy Dauncey, May 2014

Transcript of Here Comes the Sun: Strategies to Achieve Low-Carbon and Zero-Carbon Health Facilities Guy Dauncey,...

     

Here Comes the Sun Strategies to Achieve Low-Carbon and Zero-Carbon 

Health FacilitiesGuy Dauncey, May 2014   

As we burn the fossil fuels…

CO2 CO2CO2

CO2

CO2 CO2

100 million tonnes a day = 4 million tonnes an hour = 67,000 tonnes a minute = 1,000 tonnes a second

May 2014

Guy Dauncey 2013 www.earthfuture.com

The Story of EnergyPart One: Firewood

A million years ago to 1750 AD

The Story of EnergyPart Two: Charcoal

1250 to 1750 AD

The Story of EnergyPart Three: Wind and Water

1250 to 1750 AD

The Story of EnergyPart Four: Slaves

1250 to 1890 AD

The Story of EnergyPart Five: Whale Oil

1500 - 1870

The Story of EnergyPart Six: Fossil Fuels

1750 - 2050

The Story of EnergyPart Six: Fossil Fuels

1750 - 2050

The Story of EnergyPart Six: Fossil Fuels

1750 - 2050

The Story of EnergyPart Seven

2000 - 

?

Neolithic Era

Ancient Egypt

Roman Empire

Islamic Golden Age

10 9 8 7 6 5 4 3 2 1 0

The Age of Fossil Fuels

……………………………………….

The last 10,000 years

The last 10,000 years

...................................................

What happens here,when we stop using

fossil fuels?

The next billion years

?

Guy Dauncey 2013 www.earthfuture.com

• Air source solar heat pumps (heat/cooling)• Ground source solar heat pumps (<1km) and deep geothermal (>1km) (heat/cooling)• Water source solar heat pumps (heat/cooling)

• Solar thermal (heat and cooling)

• Biofuels (transport)• Biogas (heat and/or electricity when in CHP)• Bioliquids (heat and/or electricity)• Biomass boilers/stoves (heat and electricity when in CHP)

• Energy from waste – biodegradable element only (for heat and electricity when in CHP)

Renewable Heat

www.woodwaste2ruralheat.ca www.bcsea.org (search ‘webinars’)

BC Hydro 2013 Resource Options MapPotential Biomass: Wood Based

BC Hydro 2013 Resource Options MapPotential Biomass: Biogas

www.communityenergy.bc.ca

EU commitment to 2020 targets for smart, sustainable and inclusive growth: 

• Greenhouse gas emissions (mainly CO2) to be 20% lower than 1990• 20% of energy from renewable sources• 20% increase in energy efficiency

Europe: Low Carbon Health-Care

www.lowcarbon-healthcare.eu

Towards Zero Carbon Hospitals with Renewable Energy Systems

RES-Hospitals ChallengeExploring options to achieve a zero carbon hospital in the future and develop an investment plan for 50% of energy 

consumption from renewable energy by 2020www.res-hospitals.eu

ITALY

Cardinal Massaia: solar thermal, solar PV, biomass and gas fired trigeneration. €12.7 million - save nearly 12,000 tonnes CO2 per year. 

= €1,000/tonne     Over 20 years = €50/tonne

San Camillio de Lellis: tri- generation, solar PV. biomass boiler.€12.6 million - save 6,350 tonnes CO2 per year. €2,000/tonne 

Sant’Orsola campus: gas-fired cogeneration and solar PV. €32.8 million - save nearly 17,000 tonnes CO2 per year. €2,000/tonne 

Versilia: new cogeneration plant, other energy efficiency measures to complement existing solar/wind systems €7.2 million - save nearly 7,500 tonnes CO2 per year €1,000/tonne 

‘Zero carbon’ roadmap includes proposed energy-from-waste system.

HOLLAND

Two of three hospitals already had hot/cold storage, ground source heat. Detailed evaluation for most obvious technical options: biomass, solar and wind energy systems. 

Conclusion:  main zero carbon opportunity was combination of deep geothermal, green electricity & energy efficiency = 80-90% renewables by 2020. €40 million+ saves over 12,500 tonnes a year. €3,000/tonne 

Zero carbon needs combination of biomass and solar PV.

Quest to identify other large energy consumers in the locality to create a small-sized district heat system.

POLAND

Myslenice: boiler decentralisation, air/ground source heat pumps, solar thermal panels. €1.2 million = 60% RES

Sucha Beskidzka: rejected biomass in favour of geothermal radial drilling. €1.6 million = 56% RES

Wadowice: geothermal heat pumps with radial drilling; also considered hospital sewage as heat source. + Solar panels, new gas-fired boiler, energy efficiency measures. €1.6 million = 50% RES

Geothermal Radial DrillingAustrian geo-drilling technique

http://geothermic.tracto-technik.com

SPAIN

Some hospitals had solar thermal, PV, ground source heat

Main strategy: biomass boiler with wood pellets / wood chips, to consider economic benefits of a local supply chain for wood chips. 

Gorliz: planning solar PV on car park and small scale wind turbines.

Cruces and Galdako-Usansolo: planning biomass fired co-generation systems and solar PV. 

Galdako- Usansolo: adding to existing solar PV and solar heating.

Total value €16m, saves 10,000 tonnes per annum. Use of Energy Service Companies (ESCOs) seen as best way to proceed. Political problems in Spain. 

FRANCE

550 bed Avicenne Hospital: biomass boiler, solar PV €12 million will save 4,500 tonnes of CO2 emissions.€3,000/tonne 

The regional health agency is using the Renewable Energy Guide to encourage other hospitals in Greater Paris to explore energy-related investment plans.

HUNGARY

Zala County Hospital, 1060 beds, three sites. Already uses small solar thermal to supply hot water. 

2 km deep geothermal heating system €1.5 million saves nearly 2,000 tonnes CO2 €750/tonne 

Zero carbon roadmap: solar PV could close the remaining gap but would need off-site project

Ethianum Hospital in Heidelberg, Germany45 ground-source heat bore holes 

up to 70 meters deep

United Kingdom

650 bed Raigmore Hospital, Inverness: uses heavy fuel oil for thermal energy due to remoteness from national gas. 

RES: Two biomass boilers

€3.4 million = 50% RES, save 5,500 tonnes CO2 per annum.€618/tonne 

in Scotland the devolved Government has set a target for the publicly funded hospital sector to reduce CO2 emissions by 3%, year-on-year. 

The effect is to raise the priority of capital investment in renewable energy systems within hospitals.

Britain's Greenest Hospital“Urgent need to reduce our carbon footprint”:• More efficient lighting, heat exchangers and building controls: 

overall energy reduction of 26% since introduction of carbon management in 2007/8.

• Biomass boiler will reduce annual CO2 emissions by 3,459 tonnes.• Smaller 200 kilowatt biomass boiler will make the Centre self 

sufficient in heat.• Ground source heating pumps in Cystic Fibrosis Unit• Car share and cycle to work schemes• A commitment by the Trust Board to maintain a robust 

sustainability policy.

“Saving energy means saving money. The trust says such efficiencies have been partly eaten up by increased gas prices, but estimates in-year savings of £15,000. Furthermore, it reckons the biomass boilers will save it £40,000 from 2011-12 onwards under the government's scheme to charge large users of energy for every tonne of carbon dioxide they release.”

• Staff nursery allotment and therapeutic gardens • Program for development of green champions• Better use of water• Targets for reducing waste• Annual sustainability symposium • Staff health club focusing on walking, running, yoga and tai chi. • 200 of the 5,500 staff cycle to work • Showers for cyclists• Bike-purchase loan scheme for patients and staff using 

unclaimed bicycles from the police • 150 members of staff share their cars 

www.carbontrust.com/media/39216/ctv024_hospitals.pdf 

Healthy Budgets through Energy Efficiency (UK)

Guy Dauncey 2013 www.earthfuture.com

Heat escaping

Heat not escaping

www.hotmapping.co.uk

Heat escaping

Heat not escaping

Empire State Building

SustainabilityRetrofit

38% reduced energy use

Window refurbishment6,514 windows= 4 x more efficient

Insulated Radiative Barriers

Chiller plantVariable speed drives5% improvement

Air handling unitsVariable air volume

Wireless Control Network

Efficient plugsand lightingsave 75% energy

Daylighting

Tenant Energy Management

PEER LEARNINGWORKSHOP - HOLLAND

Dutch voluntary commitment to 30% reduction in energy consumption by 2015. 

Criteria for payback of capital investment had been relaxed; break-even periods of 7-8 years being adopted in some cases. Has made huge difference to what can be achieved with energy efficiency. 

Notable examples of ground source heat pumps in some Dutch hospitals

PEER LEARNINGWORKSHOP - SPAIN

Hospital de Mataro (near Barcelona): uses Green Pipe (Tub Verd) powered by sewage and municipal waste. 

Hospital de Mollet (new): solar PV, ground source heat is one of biggest systems in Europe; natural light. 

PEER LEARNINGWORKSHOP - PARIS

4,000 MW district heating system serves whole Paris metropolitan, thermal energy to all hospitals in AP-HP. 

35% of network powered by energy recovery from domestic waste: 50% by 2015 from biomass, biofuel and geothermal. 

New district cooling network being developed in using water from River Seine. 

Several French hospitals plan to invest in biomass heating systems. Discussion on positive and negative aspects of biomass, importance of measurement and comparative data to understand what is possible.

Brentwood College, Mill Bay, BC

The geothermal buildings use 25% of the energy used by 

the other buildings. 13 months to pay for themselves.

The loops lie 30 feet deep in Saanich Inlet, covering a surface of about 1,000 square feet. Stainless steel exchangers provided a $250,000 savings compared to the cost of 

traditional exchangers

Stokmarknes Hospital, Norway: thermal energy from the sea provides nearly 90% of the heat demand 

Artificial lights = 16% of the energy consumption of a typical hospital 

Control artificial lights to guarantee comfort conditions avoiding energy wastes.

ICT infrastructure energy saving strategies: presence detection, luminance level optimization, time schedule based control. 

LED lights guarantee improved efficiency due to higher lux – watt ratio and allow control strategies without decreasing light source lifetime. 

Energy savings in Hospital de Mollet, 2014

Energy saving strategies implemented for Surgery Room Air Unit

New control algorithms based on particle counter save 11% of electricity consumption of the surgery rooms ventilation system. 

Air supply flow is regulated to maintain sanitary conditions, guarantee air quality and save energy.

Hot & Cold Production system has new energy meters that enable innovative control algorithms - 10% savings on electricity and gas consumption. Able to obtain best performance of each machine at every moment.

www.ecoquip.eu

“Healthcare organisations are … unaware of the benefits that a proactive approach to procurement of innovative new solutions can bring. This means that opportunities for innovation are missed and 

problems remain unsolved in a sector that has around 15,000 hospitals in Europe, accounts for some 5% of CO2 emissions and represents a 

huge slice of public procurement budgets.”

50 of the Greenest Hospitals in America

September 2013

Recycling & waste• Styrofoam recycling • Employee uniforms made out of recycled plastic bottles.• 100% dining ware in cafeteria; 90% in inpatient areas compostable and 

biodegradable. • Reductions in red bag biohazardous waste• Greening the operating room- recycles 675 pounds of blue wrap every month. • Hospital uses 220,000 reusable isolation gowns and 231,000 incontinent pads pa• Reprocessing medical devices, reducing medical waste, purchasing reusable 

pillows; composts 90% of food waste.• Unused medication recycling program• Ecologically safe disposal of hazardous bio-waste

50 of the Greenest Hospitals in America

September 2013

Energy & Water• PlaNYC Hospital Carbon Challenge aims to reduce greenhouse gas 

emissions 30% by 2018.• New white roof made out of recycled materials to reflect heat, 

decreases heating and cooling.• Natural sunlight hits 80% of available space• Bio-retention areas for water runoff• Microfiber mop system cut water use by 43,000 gallons and 

chemical use by 90%. 

50 of the Greenest Hospitals in America

September 2013

Engagement• 55 different energy projects, saving $2.1 million that year. 

Changed to greener supplies. • Green Team includes 225 sustainability leaders and 

officers

www.beckershospitalreview.com

Designed with goal of becoming greenest hospital in Canada, and North America’s first new built 

carbon-neutral hospital.

St. Mary’s Hospital, Sechelt

• High-performance building envelope• 125 boreholes for heating and cooling through radiant slabs. • 19 kW PV array • Green roof reduces solar heat gain• Passive design strategies, solar shading, operable windows, natural 

ventilation• Lighting with occupancy sensors• Exhaust air recovery ventilation• On target to achieve 40% energy savings compared to other LEED 

Gold hospitals

St. Mary’s Hospital, Sechelt

$$  Is There a Green Premium?  $$

LEED Certified Hospitals: Perspectives on Capital Cost Premiums and Operational Benefits

The average capital cost premium for LEED-certified hospitals under 100,000 sq.ft. was 1.24% 

For hospitals over 100,000 sq.ft. it was 0.67%, based on analysis of 15 LEED-certified hospitals. 

University College London Hospitals NHS Foundation Trust  

Low-Carbon Procurement Strategy

• 75% of entire carbon footprint came from procurement process

• Assembly, packaging, transport, storage and handling of products and materials = 60% of the entire carbon footprint of the NHS.

• 3-month pilot study to embed carbon reduction into UCLH's purchasing and introduce "whole life" carbon costing.

• Worked with partners to launch neutral vendor supply chain initiative: all goods delivered to a single warehouse and held centrally. Loads consolidated before being transported, so fewer vehicles.

• Reduces transport on roads by 15%, saves 7,000 tonnes CO2/pa

• Sourcing local fruit and vegetables, free range chicken and red-tractor certified meat, offering low-carbon menu options to staff and patients, at no extra cost.

Low-Carbon Procurement Strategy

Akershus University Hospital, NorwayLow Carbon Hospital

Ground-source = 85% heat, 40% total energy.

Hospital divided into energy blocks for detailed use analysis.

Heat recovery from exhaust ventilation

Energy optimization of ventilation system

Shading devices on windows facing south and west

Low temperature radiators for maximum utilization of heat pump 

40,000 points and 3,000 rooms individually temperature controlled

May 2008, Gundersen Health SystemWisconsin, Minnesota and Iowa 

Offset 100% of fossil fuel-based energy by 2014. 

41 clinics, 325-bed hospital, 3 critical access hospitals, variety of affiliate organizations, EMS ambulance service, 

rural hospitals, nursing homes, hospice.

Gundersen Health System

www.gundersenenvision.org

www.nrel.gov/docs/fy10osti/47867.pdf

The following measures were used to attain 50% energy savings:

• Reduced lighting power densities • Daylighting sensors in applicable perimeter zones • Occupancy sensors in applicable zones • More insulative envelope (opaque exterior and fenestration)• Reduced infiltration through tighter envelope construction• Overhangs on south-facing fenestrations • A multizone variable air volume dedicated outdoor air system with zone-level water-to-air heat pumps, common condenser loop with temperature maintained though use of chiller and boiler • High-efficiency chillers, boilers, and water heaters • Demand controlled ventilation • More efficient pumps • Integration of subsystems to achieve whole-building performance.

Interseasonal Heat Transfer™ for low carbon hospitals

• Reliable, low-cost on-site space heating by recycling solar energy• Saves 50% carbon emissions compared to gas boiler• Reliable, low-cost, on site cooling by recycling winter cold• Saves over 80% carbon emissions compared to standard cooling• Low-cost heat source for processes using ThermalBanks • Prolongs life of solar thermal panels by storing heat instead of 

allowing to overheat in summer

www.icax.co.uk

Interseasonal Heat Transfer (IHT) recycles heat from an Asphalt Solar Collector down to a Thermal Bank in summer, and a heat pump to recycle heating in winter. 

Doubles the CoP of the heat pump by starting from a warm ThermalBank.

Laying down a ThermalBank before the insulated foundations are installed. Stores heat in the ground, retrieved in winter for heating.

Doubles the performance of the heat pump by starting with a warm ThermalBank instead of cold ground.

Solar Collector captures summer heat for storage in the ground & release for heating in winter. ICAX doubles the CoP 

of the heat pump by starting with a warm ThermalBank

The heat pump in an ICAX Skid starts with warmth from a ThermalBank 

instead of starting with cold ground temperature.

Tesco, Oldham, UK25,400 sq ft 

First supermarket heated and cooled by Interseasonal Heat Transfer. 41% reduced emissions from heating and cooling.

CoP 8.5 (normal 3.5)Each 1kW of electricity produces 8.5 kW of heat.

Wellington Civic & Leisure Centre, UKICAX extracts heat from solar roofing, 

and from changing room and swimming pool ventilation. Used for domestic hot water, swimming pool. Excess 

summer heat stored in ThermalBank for re-cycling in winter.

Merton, London, UKIntergenerational Acacia Centre

Initially the architects looked at a biomass boiler. Costs grew as they included storage for the woodchip fuel, 

space for delivering fuel to the site, and the practicalities of managing a boiler installation. 

A review of energy requirements pointed to the need for summer cooling, which the boiler could not provide.

ICAX proposal less expensive than biomass heat + electrical air cooling. Took up less space, saved constructing special 

building for biomass boiler. Annual running costs less.

ICAX proposal able to provide over 40% of on-site renewable energy.

Merton Intergenerational Centre

Heats the building using heat from the building in summer (by-product of cooling), stored in underground boreholes. 

Advanced ground source heat pump linked to the boreholes, recycles the stored waste heat in winter.

Merton Intergenerational Centre

Toddington, UK

Solar heat road test in Hiroshima, Japan

SOLAR THERMAL STORAGE

Molten Salt: 7.5 hours after dark

Slab and Earth Heat Storage

Saturated sand 

100% solar heated house, Emmental, Switzerlandwww.jenni.ch

Austria

Guy Dauncey 2013 www.earthfuture.com

REHAU Borehole for 95°C industrial waste heatSheffield, UK

In Sweden, Stockholm sends heat from treated sewage effluent to 80,000 apartments

Vancouver False Creek Sewage-Based District Heat

Pre-insulated piping used to heat most homes and commercial buildings in Scandinavia. 

Insulation allows the delivery of hot water at 200o C to customers up to 23 km away, with a net loss of only a few degrees.

Drake Landing, Okotoks, Alberta.

Solar Thermal District Heating

Guy Dauncey 2013 www.earthfuture.com

800 solar hot water 

panels on the garages

90% of residential space heating needs met by solar thermal energy (40-50o C)

Reduction - 5 tonnes of greenhouse gas emissions per home per year.

Guy Dauncey 2013 www.earthfuture.com

The Energy Centre

Solar Thermal Heating 12 months a year

Community solar heat panelsSolar hot water

panels

Guy Dauncey 2007www.earthfuture.com

Collective solar thermal system on a residential building, Germany www.wagner-solar.com

Almere, Holland

Tunnel transfers heated water and steam  from the Amager Powerplant to the National Hospital in Copenhagen

Insulated heat pipes

The District Heat Plant, ViennaArchitect – Hundertwasser

District heat tower at Theiss, Lower Austria50,000 cubic meters

Marstal, Danish island of Aero100% solar district heat + 23.4 MWth solar thermal storage 

+ Biomass cogeneration plant

www.sunmark.com  Marstal, Denmark

Olivier Drucke, 2009

www.solarthermalworld.org

Guy Dauncey 2013 www.earthfuture.com

134 GWin 2013

9000% increase

since 2000

Vauban, Freiburg, Germany

Kagoshima Nanatsujima 70 MW solar plant

London’s new solar bridge

2014: 4 kW PV = $16,0004,400 kWh year

Guy Dauncey 2013 www.earthfuture.com

2020: 4 kW PV = $6,0004,400 kWh year

Guy Dauncey 2013 www.earthfuture.com

Will save $30,000 - $60,000 over the 30 year life of the panels

20 kW Solar, St Mary’s Hospital, Sechelt

$3.50/watt  20 kW = $73,50020 kW generates 22,000 kwh/year

2014: $2728 pa2024: $3834 pa2034: $5154 pa

Over 25 years: $110,000

By 2020: $1.50/watt  20 kW = $31,500Over 25 years: saves $131,000

(Assumes BC Hydro price inflation 3% pa)

Solar Valley, China

Huang Ming started Himin with the production of solar thermal components in 1990. • 360 internal company standards (48 relevant 

international standards; 20 national standards China)• Employs 6,300 people in Dezhou • 60,000 partners throughout China. • Combines all production steps from borosilicate glass to 

the collector panels, tanks and complete thermosiphon systems

Solar Valley, Dezhou, China• 3 vacuum tube factories + 3 water heater factories• Automated tube assembly line – 40,000 tubes a day• PV road lighting over 16 km• Solar office and hotel complex• Solar university with 2000 students educated in solar 

energy products, engineering and business. Most study free of charge

• Solar sports and entertainment complex, parks and apartments. 

• Brings together developers, city planners, school directors, hospital directors

• Goal: to set a global example of solar as a viable solution. • Receives 1,500-4,000 visitors a day

www.chinasolarvalley.net

Solar Egg Spa Resort, Sun Valley, ChinaSolar + Geothermal Heat

Sun-Moon MansionSolar Thermal Year-Round

Utopia Gardens, Solar Valley, China

504 solar tubes feed heat into a central heating and cooling system

Owners save up to 75% of annual energy costs.

In summer, the solar field powers the absorption chillers for air-conditioning.

Excess heat is stored in a seasonal storage area below the building complex with 1,800 bore holes, large enough to supply the entire Utopia Garden Project.

Electric compression and gas absorption chillers serve as backup when the solar heat does not reach a high enough temperature to run the solar chillers.

Winter space heating primarily covered by seasonal storage ground source heat pumps. If not sufficient, rest of their energy from a district heat system.

Utopia Gardens

Himin Solar ValleySolar Shell International Conference Center

• Solar water heating• BIPV lighting• Energy-saving glass• Ceiling radiation• Intelligent sun-shading• Intelligent building control• 1994 square meters solar heat collection• Mono-silicon and poly-silicon thin film batteries • 70% solar energy conversion

1/10th energy of a conventional building. Heating and cooling from huge solar thermal 

installation with aquifuge trans-seasonal energy storage and ground source heat pump. 

April 2014

The last 10,000 years

...................................................

What happens here,when we stop using

fossil fuels?

A billion years

The Sun does not begin to turn into a Red Giant for more than a billion years.

That’s 100,000 periods each with 10,000 years

A billion years

The Sun does not begin to turn into a Red Giant for more than a billion years.

And with every passing year, solar technology will improve

and get cheaper.

Guy Dauncey 2013 www.earthfuture.com

Guy Dauncey 2013 www.earthfuture.com

Guy Dauncey 2013 www.earthfuture.com

CITY of the

FUTURE

A Journey to the Year 2032

GUY DAUNCEY

Summer 2014

Guy Dauncey 2013 www.earthfuture.com

www.slideshare.net/GuyDauncey

Table TaskYou have been given $10 million to invest 

with the goal of reducing GHGs. What’s your preference? 

Decide – Share why - Discuss

1. Biomass heat2. Ground-source/water-source heat3. Solar thermal heat + inter-seasonal storage 4. Solar thermal heat + inter-seasonal storage 

+ ground-source heat pump

Guy Dauncey 2013 www.earthfuture.com

Guy Dauncey

www.earthfuture.com