Hendershott Thesis

download Hendershott Thesis

of 59

Transcript of Hendershott Thesis

  • 8/13/2019 Hendershott Thesis

    1/59

    EVALUATIONOFTHEDEPOSITIONALENVIRONMENTOFTHEEAGLEFORD

    FORMATIONUSINGWELLLOG,SEISMIC,ANDCOREDATAINTHEHAWKVILLE

    TROUGH,LASALLEANDMCMULLENCOUNTIES,SOUTHTEXAS

    AThesis

    SubmittedtotheGraduateFacultyofthe

    LouisianaStateUniversityAgriculturalandMechanicalCollege

    inpartialfulfillmentoftherequirementsfordegreeof

    MasterofScience

    in

    TheDepartmentofGeologyandGeophysics

    byZacharyPaulHendershott

    B.S.,UniversityoftheSouthSewanee,2009December2012

  • 8/13/2019 Hendershott Thesis

    2/59

    ii

    ACKNOWLEDGEMENTS Iwouldliketothankmycommitteechairandadvisor,Dr.JeffreyNunn,forhisconstant

    guidanceandsupportduringmyacademiccareeratLSU.AdditionallyIwouldliketothankDr.

    StephenSearsandDr.SamuelBentleyforsupportingmeasmycommitteememberswiththeir

    knowledgeableinputandflexibilitywithmyworkschedule.Also,IwouldliketothankDr.Brian

    LockoftheUniversityofLouisiana-Lafayettefortakingalookatmyinitialprojectandgivingme

    valuablewordsofadviceandencouragement.IamhumblefortheopportunitytheDepartment

    ofGeologyandGeophysicsatLouisianaStateUniversitygavemetopursueaMasters

    Degreeatsuchareputableuniversity.

    SpecialthankstoGreggRobertson,theHawkvilleGeologistsofPetrohawkEnergy

    Corporation,aswellasCharlesCusackandDickStoneburnerforthepermissiontousethe

    dataandresourcesforthisstudy.Withouttheirinitialeffortsandcontributionsasthepioneers

    oftheEagleFordFormationinSouthTexas,muchlesswouldbeknownaboutthisworldclass

    resource.TheirencouragementtoturnmyinternshipintoathesistopicissomethingIwillbe

    forevergratefulfor,andtheirfriendshipinandoutoftheofficeissomethingIwillneverforget.

  • 8/13/2019 Hendershott Thesis

    3/59

    iii

    TABLE OF CONTENTSAcknowledgements..i

    ListofFigures.iv

    Abstract..vi

    Introduction..1

    GeologicBackground/StudyArea...6

    Methods.13

    FormationsandUnitDistinctions..15

    Results..19

    WellLog..19

    SeismicAnalysis..33

    Discussion...38

    CoreAnalysis..38

    WellLog/Seismic.41

    Conclusions..45

    References..47

    Vita..52

  • 8/13/2019 Hendershott Thesis

    4/59

    iv

    LIST OF FIGURESFigure1:MapoftheregionalextentoftheEagleFordShaleinTexas...2Figure2:Stratigraphiccolumnspecifictothestudyarea.....3

    Figure3:SummaryofpreviousstudiesoftheEagleFordFormationinoutcrop andinthesubsurface..........5Figure4:PaleogeographicmapoftheGulfCoastregionduringtheLateCenomanian...7Figure5:CoretypelogfromMcMullenCounty,Texas(McM-1)..10Figure6:Northwest-southeastschematiccrosssectionthroughtheHawkvilleTrough..12Figure7:MapofstudiedwellsintheHawkvilleTroughinLaSalleandMcMullenCounties,Texas......14Figure8:LaS-4typelogfromLaSalleCounty,Texas....16Figure9:CoreimagesfromMcM-1......17Figure10:N-SwelllogcorrelationfromLaS-10toLaS-9..21Figure11:IsopachmapoftheentireEagleFordFormationintheHawkvilleTrough.24Figure12:IsopachmapoftheUpperEagleFordFormation......25

    Figure13:IsopachmapoftheLowerEagleFordFormation......26Figure14:RegionalEagleFordstructuremapintheHawkvilleTrough.....27Figure15:Southwest-northeastregionalcrosssectionthroughtheHawkvilleTrough.28Figure16:Southwest-northeast(strike-oriented)crosssectioninLaSalleCounty,Texas.29Figure17:Northwest-southeast(dip-oriented)crosssectioninLaSalleCounty,Texas.30Figure18:Southwest-northeast(strike-oriented)crosssectioninMcMullenCounty,

    Texas..31Figure19:N-S(dip-oriented)crosssectioninMcMullenCounty,Texas..32Figure20:Northwest-southeastseismicdipsectionacrossLaSalleCounty,Texas..35Figure21:Northwest-southeastseismicdipsectionacrossMcMullenCounty,Texas.36

  • 8/13/2019 Hendershott Thesis

    5/59

    v

    Figure22:Northwest-southeastseismicsectioninLaSalleCounty,TexasflattenedontheBudaLimestone(blueline)..37

    Figure23:CoreimagefromMcM-1showingunconformablenature

    alongthecontactbetweentheAustinChalkandEagleFord39

    Figure24:CoreimagefromLaSalleCountywellshowinggradationalnatureofthecontactbetweentheAustinChalkandEagleFord...39

    Figure25:Amplitudeextractionprojectedinmapviewfrom

    southeastLaSalleCounty,Texas...40

  • 8/13/2019 Hendershott Thesis

    6/59

    vi

    ABSTRACTTheUpperCretaceousEagleFordFormationofSouthTexasrecordsamixed

    siliciclastic/carbonatedepositionalenvironmentacrosstheLateCretaceousPlatformofthe

    GulfofMexico.DuringtheLateCretaceous,LaSalleandMcMullenCountieswaspartofthe

    HawkvilleTrough,awedgedshapedregionbetweentheEdwardsandSligocarbonatereefs.

    Welllogsfrom21wellsandseismicdatawereusedtoconstructstructureandisopachmapsof

    theEagleFordFormationthroughouttheHawkvilleTrough.Onlytheunconformablebottom

    (Buda-EagleFord)andtop(EagleFord-AustinChalk)boundariesplustheconformable

    boundarybetweentheupperandlowerEagleFordcanbeconsistentlycorrelatedinthearea.

    TheEagleFord-AustinChalkboundaryisvariable/gradationalduetovariableerosionofthe

    EagleFordpriortodepositionoftheAustinChalk.Thisvariabilityisalsoobservedincore

    data.TheLowerandUpperEagleFordaretroughshapeddepositsthatstrikenortheast

    roughlyparallelwiththeEdwardsreef.MaximumthicknessoftheLowerEagleFordismore

    than180ftinLaSalleCountyand140ftinMcMullenCounty.TheUpperEagleFordhasa

    maximumthicknessof160ftalongtheLaSalle-McMullenCountyBorder.BoththeLowerand

    UpperEagleFordthintohalftheirmaximumthicknesswithin5-6milesoftheaxis.Depthto

    thetopoftheEagleFordvariesfrom9600ftto15000ftandstrikesparalleltotheEdwardsand

    Sligoreefs.Numerousfaultsarevisible.Mostfaultsarepost-depositionalwithmodest

    offsets.Fewfaultsaresyn-depositionalgrowthfaultsandtheEagleFordisthickeronthe

    downthrownside.Wellandseismicdatadocumentdramaticdecreasesinthicknessofthe

    UpperEagleFordoverafewmiles.InthemostextremecaseinsouthwestLaSalleCounty,

    theUpperEagleFordisentirelymissingin2wellsandhasbeenreplacedbyasandunitnot

    previouslyreported.Aseismiccrosssection,ortimeslice,justabovethetopoftheEagleFord

  • 8/13/2019 Hendershott Thesis

    7/59

    vii

    showsachannelstructurerunningwesttoeastalongsouthernLaSalleCounty.Thischannel

    islikelythecauseofobservederosionandsanddeposition.

  • 8/13/2019 Hendershott Thesis

    8/59

    1

    INTRODUCTIONTheEagleFordFormationisanUpperCretaceousorganic-richcalcareous-rich

    mudstonethatoccupiesanortheast-southwestbandacrossSouthTexas(Figure1).TheEagle

    FordFormationisanunconventionalshaleoilandgasplayandisstratigraphicallyvariablein

    termsofthickness,organiccontent,andcomposition(Locketal,2010).AlthoughtheEagle

    FordFormationhasbeenextensivelydrilledforoilandgasproduction,theregional

    depositionalanddiagenetichistoryarestillpoorlyunderstood.Inparticular,theHawkville

    TroughinLaSalleandMcMullenCountiescontainsastratigraphicallyvariablesectionofthe

    EagleFordFormationranginginthicknessfrom50-317feet(thisstudy).Anotabledifferencein

    theEagleFordwithintheHawkvilleTroughisthattheTuronianportionofthesectionis

    incompleteorinsomecorescompletelymissing(Figure2).Thepresenceofonlythe

    CenomanianagedsectionoftheEagleFordisuniquetotheHawkvilleTroughandisbeneficial

    tothereservoirduetotheoverlyingAustinChalkandAnacachoformationshavingahighclay

    content,lowresistivity,andhighductilitythatcreatesaneffectivesealfortheEagleFord.The

    upperunconformityactsasaneffectivetopsealduetoanabsenceofextensivenatural

    fracturing,allowingasuccessfultrapforhydrocarbons.

    Inthefallof2008,PetrohawkEnergyCorporationacquiredthefirstacreagespecifically

    targetingtheEagleFordFormation.Onlyafewpilotholeshadbeendrilledintheareathrough

    theEagleFord,butweretargetingtheEdwardsLimestoneorAustinChalk.Thatfirstyearthere

    wereonly3wellspermittedanddrilledtargetingtheEagleFordFormationinSouthTexas

    (DrillingInfo,2012).Fouryearslater,thereareover120pilotholesover24counties,andjust

    under6000horizontalwellsdrilled,makingitoneofthemostactivefieldsintheUnitedStates

    (DrillingInfo,2012).

  • 8/13/2019 Hendershott Thesis

    9/59

    2

    Figure1:MapoftheregionalextentoftheEagleFordShaleinTexas.TheHawkvilleTrough(blackbox)liesbetweenthe

    EdwardsandSligoreefmargins(modifiedfromHentzandRuppel,2010).

  • 8/13/2019 Hendershott Thesis

    10/59

    3

    Figure2:Stratigraphiccolumnspecifictostudyarea,showingtheEagleFordFormation

    unconformablyboundbyAustinChalk(above)andBudaLimestone(below).Thickwave

    linesindicatehiatusesthatarenotwellconstrainedinthesubsurface(SeeDonovanand

    Staerker,2010)

  • 8/13/2019 Hendershott Thesis

    11/59

    4

    RecentstudieshavefocusedondefiningalithostratigraphicframeworkfortheEagle

    FordFormationbyseparatingitintoanumberofdepositionalparasequences(e.g.,Locketal.,

    2010;DonovanandStaerker,2010;HentzandRuppel,2010;AdamsandCarr,2010)(Figure

    3).Lock(2010)usedsubsurfacedatafromtheHawkvilleTroughtoconcludethattheunstable

    slopesedimentsmakingupthelowermemberidentifiedinoutcropareabsentbecausethey

    arealocalizedfaciesconfinedtothemarginalslope.DonovanandStaerker(2010)evaluated

    thesameoutcropinLozierCanyonalongwithsubsurfacedatawithinthestudyareaand

    referredtoitastheRioGrandeSubmarinePlateau.Theyproposedthatthissubmarineplateau

    consistedofsubmergedportionsofthe(older)SligoPlatformbetweentheEdwardsandSligo

    marginsthatformedaphysiographicbenchontheinnerportionsofthecontinentalslope

    (DonovanandStaerker,2010).DonovanandStaerkers(2010)workcorrelatedmultiple

    parasequencepackagesfromoutcroptosubsurface,andnotedthatitisgenerallyacceptedto

    separatethesubsurfaceintoupperandlowermembersaccordingtoworkdonebyGrabowski

    (1995).Finally,DonovanandStaerker(2010)furthercitedanadditional(Langtry)memberasa

    transitionfromupperEagleFordtoAustinChalklithologies.TheLangtrymemberisa40-90ft

    thickdepositionalsequencethatrecordsasubtleupwardgradationfromtheunderlyingEagle

    FordtotheoverlyingAustinChalk(DonovanandStaerker,2010).Thecorrelationsby

    GrabowskiidentifythedivisionbetweentheupperandlowerEagleFordasthedivision

    betweentheCenomanianandTuroniansections.

    Thisstudyusesgammaray,resistivity,anddensitylogsfromtwenty-onewellsthat

    penetratetheentirestratigraphicsectionoftheEagleFordacrosstheHawkvilleTroughin

    LaSalleandMcMullenCountiestomapvariationsinthicknessandpreservationoftheEagle

  • 8/13/2019 Hendershott Thesis

    12/59

    5

    Ford.Corephotosareusedtoidentifythenatureofthelogresponsealongthebounding

    unconformities.

    Anamplitudemapmadefroma3Dseismiccrosssectionisusedtoshowanerosionalfeature

    affectingtotalthicknessalongtheupperEagleFord/AustinChalkboundary.Additionally,this

    amplitudemapandotherseismiccrosssectionsshowacomplexnetworkoffaultsspanning

    theentirestudyarea.

    Figure3:SummaryofpreviousstudiesoftheEagleFordFormationinoutcropandinthe

    subsurface(fromDonovanandStaerker,2010).

  • 8/13/2019 Hendershott Thesis

    13/59

    6

    GEOLOGIC BACKGROUND / STUDY AREA TheEagleFordFormationinsouthwestTexasrecordsanUpperCretaceous

    (CenomaniantoTuronian)mixedsiliciclastic/carbonatedepositionalsystem.TheEagleFord

    Formationwasdepositedduringatransgressivecycleinashallowepeiricseawaythatcovered

    thesouthernmarginofNorthAmerica(e.g.,LiroandDawson,1994).AcrosstheCretaceous

    Platform,theEagleFordFormationtrendsfromsouthwesttonortheastroughlysubparallelto

    thepresentdaystrikeoftheGulfCoast.TheEagleFordFormationcropsoutalongabroad

    bandextendingfromElPaso,Texas,eastwardtoSanAntonio,Texas,whereitthenfollowsthe

    marginoftheEastTexasBasinnorthwardtotheOklahomaStateline(Figure1)(e.g.,Liroand

    Dawson,1994).TheEagleFordFormationinsouthTexasdipssouth-southeasttowardsthe

    GulfofMexico(Martin,2011).TheEagleFordFormationiscorrelativetotheBoquillas

    FormationintheMaverickBasin,northwestTexas,andtheTuscaloosaFormationinLouisiana

    andMississippi(LockandPeschier,2006).

    TheyoungestandeasternmostdeformationoftheLaramideOrogeny(postEagleFord

    deposition)wasastructuralinfluenceontheCretaceousPlatform(e.g.,Scott,2010).Duringa

    transgressivecycleintheCenomaniantolateTuronian,theSabineUplift,locatedeastofthe

    studyarea(Figure4),wasapositivesalientfeatureandtheOuachitaMountainchain,tothe

    north,wasaprimarysiliciclasticsedimentarysource(Scott,2010).Sedimentswerealsoshed

    intotheMaverickBasinfromthenorthwestWesternInteriorSeawayandthenintothe

    restrictedbasinoftheHawkvilleTrough(Figure4).TheEagleFordFormationandthe

    stratigraphicunitsabovewereheavilyinfluencedbybasementfaultsandbasintopography.

    LateCretaceoussedimentsdisplaythicknessvariationsacrossthearea.Thissuggeststhat

  • 8/13/2019 Hendershott Thesis

    14/59

    7

    basementcontrolplaysamajorroleinthedepositionalandpost-depositionalaccommodation

    patternsforalltheseunits(DonovanandStaerker,2010).

    Inascendingorder,themajorlithostratigraphicunitsacrosstheUpperCretaceous

    PlatformaretheDelRio,Buda,EagleFord,andAustinChalk(Figure2).WithintheHawkville

    Trough,theEagleFordisunconformablyboundbytheoverlyingAustinChalkandthe

    underlyingearlyCenomanianBudaFormation(Figure2).TheEagleFordFormationwas

    Figure4:PaleogeographicmapoftheGulfCoastregionduringtheLateCenomanian

    showingthemajortopographicfeaturesandrelativedistancefromsedimentsources

    (ImagemodifiedfromBailey[2007]bySalvador[1991],Sageman&Arthur[1994],and

    DonovanandStaerker[2010]).

  • 8/13/2019 Hendershott Thesis

    15/59

    8

    depositedduringaglobaltransgressionandhighstandofsealevelfollowingtheMiddle

    CretaceousUnconformityat96Ma(MCUofWinkerandBuffler,1988)intheGulfofMexico

    Basin(Haqetal.,1988;Jiang,1989).Theprecedinglowstandisrepresentedbytheunderlying

    carbonatehorizon,theBudalimestone(e.g.,Treadgold,2010).Theinternalcarbonatemarker

    oftheEagleFordFormation,theKampRanchMember,isthestratigraphicmarkerbetween

    theupperandlowerEagleFordintheregion(e.g.,Donovan,2010).TheKampRanchMember

    separatesthelower,organicrichshalememberfromtheuppermorecalcareousmember.The

    ConiaciantoSantonianAustinChalkstratigraphicallyoverliestheEagleFordwithamajor

    unconformityseparatingthetwoformations.DonovanandStaerker(2010)placetheK69

    MaximumFloodingSurface(MFS)asapossiblecontactbetweentheAustinChalkandthetop

    oftheEagleFordFormation,citingatransitionzonereaching40feetthickinthesubsurface

    (alsocalledtheLangtryMember)(DonovanandStaerker,2010).Insomewellsthecontactis

    abrupt,andothersitismoregradational,thusmakingitdifficulttoresolve.Forthisstudythere

    isparticularinterestintheuppercontactbetweentheEagleFordandtheAustinChalk

    becauseoffluctuatingamountsofmissingsection.Adropinbaselevelandsubsequent

    subaerialexposure,aswellaschannelincisionpostEagleForddepositionisthemainsource

    ofmissingsectionalongthissurface,andwillbediscussedingreaterdetailbelow(Scott,

    2009).

    Regionallithofaciespatternsandfossilassemblagesindicateamarginaltoopen

    marginalmarinedepositionalenvironmentfortheEagleFordFormation(Passagno,1969;

    Surles,1987).Thesestudiesconcludethatsouthwestwardprogradingdeltassupplied

    bioclastic-siliciclasticsedimentsnearandbelowstormwave-base(DawsonandAlmon,2010).

    Sedimentsdepositedontheshallowshelfrepresenttheproximaldeltaicfacies;sediments

  • 8/13/2019 Hendershott Thesis

    16/59

    9

    depositedfurthersouthandsouthwestareinterpretedasthedistaldeltaicfaciesbasinwardof

    theshallowshelf(Figure4).

    MudstonesintheEagleFordFormationvaryfromslightlytoverysilty,calcareous,

    phosphatic,pyritic,glauconitic,bentoniticandcarbonaceousfacies,rangingfrommassiveto

    well-laminatedandslightlytoabundantlyfossiliferous(DawsonandAlmon,2010). SixmicrofacieswereidentifiedbyDawson(2000)inacoresamplefromLaSalleCountywithinthe

    studyarea:1)pyriticshales;2)phosphaticshales;3)bentoniticshales;4)fossiliferousshales;

    5)silty(quartzose)shales;and6)bituminousclaystoneandshales.Thetransgressive(lower)

    EagleFordshalesconsistedofmicrofacies1,4,and6;thecondensedintervalconsistedof1,

    2,and3,andhighstand(upper)EagleFordmicrofaciesexhibitmicrofacies4and5(Dawson,

    2000).CoreimagesillustratethenatureoftheupperandlowerEagleFord(Figure5).Black,

    thinlylaminatedshalesdominatetheLowerEagleFord,andtheupperEagleFordcontains

    moreabundantcalcareousandmixedsiliciclastic(quartzose)beds(light-gray).Upward-fining

    trenddominatesthelowermemberasgammaraydecreases,whileupward-coarseningtrend

    characterizestheuppermemberwithgammavaluesincreasing(Dawson,2000).Thelower

    EagleFordischaracterizedbyhighgamma-rayvalues(90to135APIunits)andanupward-

    coarseningtrend(Figure5).Thelowermemberisdominatedbydark,well-laminatedorganic-

    richshale(Figure5)withsubordinatelight-graycalcareousmudstone,marl,andtraceable

    amountsoflimestone(i.e.,HentzandRuppel,2010).Thereisacondensedsection,

    representingaperiodofsedimentstarvationduringamaximumfloodingeventseparatingthe

    transgressiveandearlyhighstandsystemstracts(Loutitetal.,1988).Thiscondensedsection

    occursbetweentheupperandlowerEagleFordFormationandtendstofluctuateinthickness

    acrosstheregionalextentoftheEagleFord(DonovanandStaerker,2010).Thecondensed

  • 8/13/2019 Hendershott Thesis

    17/59

    10

    intervaldevelopedduringcycle2.5oftheUpperZuniA-2(UZA-2)supercycle(Haqetal.,1988;

    Ulicnyetal.,1993).TheupperEagleFordFormation,interpretedaspartofthehighstand

    systemstract,ischaracterizedbygenerallylowgamma-rayvalues(45to75APIunits)andan

    upward-finingtrend.Theuppermemberconsistsofinterbeddeddark-andlight-gray

    mudstonesaswellasthinlystratifiedshale,limestone,andcarbonaceousquartzosesiltstone

    (Figure6;HentzandRuppel,2010).

    Figure5:CoretypelogfromMcMullenCounty,Texas(McM-1).Fromleft-rightcurves

    presentaregammaray,resistivity,anddensityporosity.Coreimageisfromthesamewell,

    andusedtohighlightnatureofthecontactbetweenupperandlowerEagleFord(Petrohawk

    Energy,2009).

  • 8/13/2019 Hendershott Thesis

    18/59

    11

    TheLateCenomanian-EarlyTuronianismarkedbyamajoranoxicextinctionevent(Fan

    etal.,2011).Thisboundaryischaracterizedbyaworldwidedepositionofhydrocarbon-rich

    shalelithofaciesliketheEagleFordFormation.Othernotableoccurrencesoforganic-rich

    CretaceousshaledepositsincludetheMowryandPierreShalesoftheWesternInterior

    Seawayandmudstone-richformationsinMorocco,Venezuela,Tunisia,Nigeria,Western

    Australia,andthePolishCarpathians(Jenkyns,2010;Hallam,1987).Warm,shallowseas

    wereprevalentduringthisglobalgreenhouseevent.Thegreenhouseeffectcauseda

    significantincreaseinCO2levelsandthusorganicproductivity.Regressiveperiods,orperiods

    ofrelativesealevelfall,turnedtheHawkvilleTroughintoarestrictedbasin(Figure6).The

    organicproductivitycontinueduntilsedimentandoxygensupplywasdepleted,resultinginan

    anoxicenvironment,whichinturnpreservedtheorganicmaterial(MartinandBaihly,2011).

    Thedeep(200-400ft)andrestrictedsettingoftheHawkvilleTroughaswellascyclic

    sedimentinfluxallowedforananomalouslythicksectionoforganicrichmaterialtoaccumulate

    betweentheEdwardsandSligoReefmargins(Figure6)(Lock,2010).TheEdwardsandSligo

    reefcomplexeswereformedduringperiodsofrapidsealeveltransgression.Subsequent

    regressiveperiodsresultedinanoxicconditionsintherestrictedbasinsduetoalackof

    nutrient-richsedimentsupply(Figure6).ThelowersectionoftheEagleFordFormationhasa

    highertotalorganiccarbon(TOC)valueasaresultofhighorganicproductivity.Followingan

    increaseofsedimentinfluxthereweresubsequentperiodsofhypoxia,ortimesoflocaldysoxic

    (oxygen-poor)conditions(AdamsandCarr,2010).Generally,thisdescribesperiodsofpartially

    oxygenatedwater.Asaresulttherewaswatercolumnstratificationanddepletionofoxygen

    belowthepycnocline.Thepycnoclinedescribestheboundaryseparatingchangesindensity

    (inthiscasesalinity)betweentwoliquidlayers.Thedepletionofoxygenbelowthisboundary

  • 8/13/2019 Hendershott Thesis

    19/59

    12

    allowsfortheorganicmattertobepreservedatthebottomofthebasin.Acyclicdepositional

    modelintheseconditionscanbeusedtoillustratethethickandorganic-richsectionofEagle

    Ford:1)relativesealevelrise,2)terrigenoussedimentinflux,3)organicproductivity,4)

    organicsedimentation,5)relativesealevelfall,6)localdysoxicandsubsequentanoxic

    environment,and7)organicpreservation(personalcommunicationwithScottyTuttle-

    PetrohawkGeologist,2011).TheUpperEagleFordismorecarbonaterich,implyinga

    shelf/slopedepositionalsetting.TheUppermemberdisplaysaprogradationallogpatternof

    finingupward(Figure5).ThisunithaslowerTOCvaluesacrosstheareaandrepresentsthe

    midtoinner-shelfdepositswithhighlylaminatedcarbonate-richmarlsandskeletallimestones.

    ThelowerTOCoftheuppermembercorrespondstomoreproximalfacieswithhigherenergy,

    lessproductivity,andmoreinteractionwiththebottomoftheocean(rip-upclasts).

    Figure6:Schematiccross-sectionfromnorthwestTexasthroughtheHawkvilleTroughdepictingestimatedapproximatewaterdepthduringEagleForddeposition.A-Afromfigure

    3modifiedfromDonovanandStaerker,2010.

  • 8/13/2019 Hendershott Thesis

    20/59

    13

    METHODS Gammaray,resistivity,anddensitylogcurveswereusedtoevaluatethethickness

    variationintheEagleFordFormationintheHawkvilleTrough.Twenty-onewellsspanning72

    milesacrossLaSalleandMcMullencounties,Texas,wereusedtounderstandthe

    Cenomaniandepositionalenvironmentinthestudyarea(Figure7).Thesewellsvertically

    penetratedtheentiresectionoftheEagleFordFormationintotheunderlyingBudaFormation.

    Mosthorizontalwellswereexcludedbecauseofanincompleteverticalstratigraphic

    successionthroughtheEagleFordsection.Wellswithbottomholelocationsusedinthisstudy

    weredrilledintotheBudaandcorrectedtoTVDbyusingknownbeddips,lengthoflateral,and

    penetrationpointsinordertocalculatethetruestratigraphicthickness(TST).Formationtops

    wereprincipallyinterpretedusingthegammaraylog;however,resistivityanddensity-porosity

    curveswereusedtosupportcorrelationofwellsincloseproximitytooneanother.Isopach

    mapsweregeneratedbylogdatacompiledtoshowtheshapeofthetotalsection,aswellas

    upperandlowerEagleFord.Duetoproprietaryobligations,thewellswerelistedbycounty

    (LaS=LaSalle;McM=McMullen),andnumberedincreasingfromWesttoEastperrequestof

    PetrohawkEnergy.

  • 8/13/2019 Hendershott Thesis

    21/59

    14

    Figure7:MapofstudiedwellsintheHawkvilleTroughinLaSalleandMcMullenCounties,TX.Wellnamesareposted(LaS

    LaSallewells;McM-McMullenWells).LaS-4andMcM-1arethetypelogsforthearea.Regional,strike,anddiporiented

    crosssectionlinesareprovided.Thosewellswithabottomholelocation(labeledhorizontalabove)weredrilledverticallyinto

    theBudaLimestoneandcorrectedfortrueverticaldepth(TVD)(ImagecreatedinSMT).

  • 8/13/2019 Hendershott Thesis

    22/59

    15

    FORMATIONS AND UNIT DISTINCTIONSThemarkeratthetopoftheEagleFordFormationischaracterizedbyadistinct,high

    gammarayresponse(120-145API)andsharpincreaseinresistivity(from1-3ohmsto10-15

    ohms)immediatelybelowthebaseoftheAustinChalkFormation(~76API)(Figure8).The

    AustinChalkliesunconformablyabovethelowersectionoftheEagleFordFormationinthe

    HawkvilleTrough.Asawhole,theuppersectionoftheEagleFordisrepresentedbya

    generallylower(45-75API)gammarayresponse(Figure8).AnexaminationoftheLangtry

    Member,asdescribedbyDonovanandStaerker(2010)asadistinctlydifferentstratigraphic

    unitbetweentheEagleFordandAustinChalk,wasexploredinwelllogsinthestudyareaand

    remainsindistinguishable.

    TheupperandlowerunitsaredividedbytheK72sequenceboundary(Donovanand

    Staerker,2010).Thisdivisionisnotedbyasignificantincreaseinthegammarayresponse,

    andadecreaseinresistivity.ThelowerEagleFordhasahigher(90-135API)gamma

    response(Figure8).Thisunitrangesfrom72-186feetthickandisdominatedbyinterbedded

    marlsandlimestones.Theseunitdistinctions,tops,andbasesrelyprimarilyonpattern

    recognitioninthewelllogs.ImagesofcorefromawellintheHawkvilleTroughareusedto

    demonstratethenatureofunitchange,theunconformablecontactsatthetopandbaseofthe

    EagleFord,andtoexploreapossiblecorrelationtologsignatures(Figure8and9).These

    imagescanbeusedtoeithersupportordisprovethenatureoftheunconformablecontactsand

    arealsousedforvisualinspectioninternalunitdistinctions.Anattemptwasmadetoidentify

    andcorrelateadditionalinternalunitsbasedonlogresponsetocorroboratewithoutcrop

    studiesdonebyDonovanandStaerker(2010)andLockandPeschier(2010).

  • 8/13/2019 Hendershott Thesis

    23/59

    16

    Figure8:LaS-4typelogfromLaSalleCounty,Texas.Fromlefttorightthemostimportant

    logcurvestothisstudywerethegammaray,resistivity,anddensity-porositycurves(color

    ofscalebarindicatescolorofcurveused).

  • 8/13/2019 Hendershott Thesis

    24/59

    17

    CrosssectionsbasedongammaraytopsthroughtheHawkvilleTroughwere

    constructedtohighlightthethicknessvariationsinbothstrike(northeast-southwest)anddip

    orientation(southeast).LogsanalysesweredonewiththeIHS-PETRAsoftwarepackage.

    PETRAisanintegratedapplicationwithacommondatabaseandinterfaceforprojectanddata

    management;wellloganalysis,mapping,cross-sections,seismicintegration,productionand

    reservoiranalysis,and3Dvisualization.

    Figure9:CoreImagefromMcM-1displaysthenatureoftheabruptcontactbetweenthe

    AustinChalkandEagleFordformations.Skeletallagandripupclastsarecommon

    featuresalongthiscontact(ImagecourtesyofPetrohawkEnergyEagleFordConsortium).

    0ft

    2ft

  • 8/13/2019 Hendershott Thesis

    25/59

  • 8/13/2019 Hendershott Thesis

    26/59

    19

    RESULTSWELL LOG

    GammaRay,resistivity,anddensity-porositylogswereusedtoidentifythreeimportant

    stratigraphicmarkers.ThemostregionallyconsistentmarkerfortheEagleFordFormationis

    thebasalunconformitybetweentheEagleFordFormationandtheunderlyingBudaLimestone.

    ThetransitionbetweentheEagleFordandBudaLimestoneisindicatedbyabruptchangesin

    rockproperties,whichmadethissurfaceeasilycorrelatableacrosstheregion.Thecalcium

    carbonatepercentagegoesfrom15-25%(EFS)to90%(Buda),gammarayvaluesdropfrom

    125-130API(EFS)tolessthan15API(Buda),resistivityincreasesfromlessthan10(EFS)to

    over50Ohms(Buda),andthedensity-porosityvaluesdropsfrom10-15%(EFS)tolessthan

    5%(Buda).

    TheconformablecontactbetweenthelowerandtheuppermembersoftheEagleFord

    Formationisreliablybasedonadrasticincreaseinthegammaray(120-140API)(Figure8).

    AcrosstheHawkvilletrough,thismarkerisoneofthefewthatcanbeconsistentlycorrelated.

    Thecharacterofthegammaincreasediffersfromwelltowell,butoccursroughlyinthemiddle

    oftheformation.Theresistivityanddensity-porositylogsprovedlesshelpfulforcorrelation

    purposesbecauseofthevariationoffluidspresentandporosityvalues.Therewasnodistinct

    changeinformationresistivityandporositybetweentheupperandlowerunits.

    ThetopofEagleFordisthethirdcorrelativemarkeracrosstheHawkvilletroughthat

    canberecognizedwithconfidencebasedongammarayandresistivityresponse.However,

    thesectionatthetopoftheEagleFordwasremovedpost-depositioninpartsofthefield,

    causingsomeuncertainty.DonovanandStaerker(2010)identifiedatransitionalunit(Langtry

    Member)abovetheEagleFordthatwasnotconsistentlyidentifiedwithinthestudyarea.

  • 8/13/2019 Hendershott Thesis

    27/59

    20

    Instead,thistransitionalunitwascategorizedastheUpperEagleFord.Thetransitionfromthe

    overlyingAustinChalkandEagleFordisvariablyexpressedinloganalysis.However,the

    gammaray-signatureisusuallyanotableincrease,whetherabruptorgradational,withAPI

    valuesrespectivelyincreasingfrom50-75APIto120-135APIfromUpperEagleFordtoAustin

    Chalk,respectively(Figure5and8).

    TheHawkvilleTroughinLaSalleandMcMullenCountycontainsanunusuallythick

    sectionoftheEagleFordFormationsituatedbetweentheEdwardsandSligoreefmargins.

    ThetotalEagleFordintervalthinstothenorthoftheEdwardsreef,southoftheSligoReef,and

    totheeastinBeeCounty.However,thicknessacrossthe72-milelongtroughvariesgreatly

    overshortlateraldistances.Basedsolelyontrueverticaldepth(TVD)welldata,thetotalEagle

    Fordthicknessvariesby245feet(72-317;LaS-12-LaS-7,respectively).FromLaS-9toLaS-

    10(4.4Mi)theEagleFordFormationthinsfrom289ftto82ftandcontainsnouppersection

    (Figure10).

    BasedonTVDwelldatabycounty,LaSalleCountycontainsthethickestEagleFord

    sectionforallmappedhorizons(Figures11-13).WelldatafortheEagleFordFormation

    indicatesthatthethickestandthinnestsectionsarepresentinLaSalleCounty,withthethickest

    totalsection(317;LaS-7)(Figure11),thinnesttotalsection(72;LaS-12),andthickest/thinnest

    upperandlowersections(Table1)(Figure11).ThetotalEagleFordSectionthinstonortheast

    intoMcMullenCounty.AstructuremapbasedoffoftopsgatheredfromwelldataoftheEagle

    Fordshowsasoutheasterlydipdirection(Figure14).Strikeanddiporientedcrosssections,as

    wellasaregionalcrosssectionacrosstheHawkvilleTroughhighlightthosevariationsin

    separateunits,aswellasoverallthickness(Figures15-19).

  • 8/13/2019 Hendershott Thesis

    28/59

    21

    Figure10:N-SwelllogcorrelationfromLaS-10toLaS-9(4.4mi)illustratingthattheupperEagleFordmemberiserodedoutcompletelyinLaS-9.Theredlineistheinterfacebetween

    theupperandlowerEagleFordmembers.Asandbody,notfoundanywhereelsein

    HawkvilleTrough,isfoundabovetheEagleFordFormationinLaS-9.

  • 8/13/2019 Hendershott Thesis

    29/59

  • 8/13/2019 Hendershott Thesis

    30/59

    23

    Name Top EFS TVD) Middle Marker TVD) Thickness Upper Top Buda Thickness Lower Total ThicknessLaS-1 10525 10607 113 10697 159 272LaS-2 11035 11107 102 11194 149 251LaS-3 10561 10615 74 10677 93 167LaS-4 10911 11055 144 11179 124 268LaS-5 11240 11374 134 11525 151 285LaS-6 11467 11621 153 11778 157 310LaS-7 11381 11512 131 11699 186 317LaS-8 11039 11181 141 11299 118 259LaS-9 12827 12827 0 12909 82 82LaS-10 11934 12069 137 12220 153 290LaS-11 10972 11090 118 11206 116 234LaS-12 13153 13153 0 13225 72 72LaS-13 11020 11091 128 11139 122 250McM-1 11416 11547 131 11645 98 229McM-2 11866 11956 103 12052 125 228McM-3 12924 13004 128 13057 98 226McM-4 11916 11996 98 12093 119 217McM-5 12909 13024 115 13159 135 250McM-6 12407 12501 137 12562 118 255McM-7 12734 12832 120 12904 109 229McM-8 12855 12981 126 13097 116 242

    Table1:TVDwelldatacompiledfrom21wellsintheHawkvilleTrough.WellswithLaSnamesarefromLaSalle

    County,andMcMarefromMcMullenCounty.Wellnumbersincreasefromwesttoeastbycounty.

  • 8/13/2019 Hendershott Thesis

    31/59

    24

    Figure11:IsopachmapofentireEagleFordFormationobservedintheHawkvilleTrough.Theentiresectionistroughshaped

    withanaxisroughlyparalleltobeddingstrike,andshowsdrasticthinningwithin5-6milesoftheaxis.Seismicdatawasused

    tofillinareasbetweenknownvaluesfromTable1(HandcontouredinSMT).

  • 8/13/2019 Hendershott Thesis

    32/59

    25

    Figure12:IsopachmapoftheupperEagleFordFormationasseenintheHawkvilleTrough.Valuesarebasedprimarilyfrom

    welldata,andseismicwasalsousedtofillingapsbetweenwellswithknownvalues.NotethattheupperEagleFord

    Formationisabsentin2southernLaSalleCountywells(Hand-contouredinSMT).

  • 8/13/2019 Hendershott Thesis

    33/59

    26

    Figure13:IsopachmapoftheLowerEagleFordintheHawkvilleTrough.Valuesarebasedprimarilyfromwelldata,and

    seismicwasalsousedtofillingapsbetweenwellswithknownvalues.ItisthickestinLaSalleCountyinLaS-6at153ft.

    Similartotheupperandtotalsection,thisunitistrough-shapedandtheaxisofthetroughthinslaterallyfromthecenter.This

    sectionthinsdramaticallytowardssouthwestLaSalleCounty(ImagecreatedinSMT).

  • 8/13/2019 Hendershott Thesis

    34/59

    27

    Figure14:RegionalEagleFordStructuremapintheHawkvilleTroughbasedonthesub-seatrueverticaltop(SSTVD)data

    gatheredfromlogs.Faultswerepickedusingseismicdata.ThereisextensivefaultinginMcMullenCounty.Mostofthefaults

    post-datedepositionoftheEagleFordFormation,withtheexceptionofafewgrowthfaultsinMcMullenCountythatcontribute

    tothicknessandsectionvariationovershortlateraldistances.(MapcreatedinSMT)

  • 8/13/2019 Hendershott Thesis

    35/59

    28

    Figure15:Southwest-northeastcrosssectionthroughtheEagleFordFormationintheHawkvilleTrough.Cross-sectionishungonthetopofEagleFordandverticalaxisisshownwithblacklineinfeet.(crosssectioncreatedinPetra,mapcreatedinSMT).

  • 8/13/2019 Hendershott Thesis

    36/59

    29

    Figure16:Southwest-northeast(strike-oriented)crosssection,hungonthetopEagleFord,fromLaS-2toLaS-8inLaSalle

    County,TX.Blacklineindicatesverticalaxisinfeet(crosssectioncreatedinPetra,mapimagecreatedinSMT).

  • 8/13/2019 Hendershott Thesis

    37/59

    30

    Figure17:Northwest-southeast(dip-oriented)crosssection,hungonthetopEagleFord,fromLaS-3toLaS-6inLaSalle

    County,TX.Blacklineindicatesverticalaxisinfeet(crosssectioncreatedinPetra,mapimagecreatedinSMT).

  • 8/13/2019 Hendershott Thesis

    38/59

    31

    Figure18:Southwest-northeast(strike-oriented)crosssection,hungonthetopEagleFord,fromMcM-3(southwest)toMcM-

    8(northeast)inMcMullenCounty,TX.Blacklineindicatesverticalaxisinfeet(crosssectioncreatedinPetra,mapimage

    createdinSMT).

  • 8/13/2019 Hendershott Thesis

    39/59

    32

    Figure19:N-S(dip-oriented)crosssection,hungonthetopEagleFord,fromMcM-1(N)toMcM-3(S)inMcMullenCounty,

    TX.Blacklineindicatesverticalaxisinfeet(crosssectioncreatedinPetra,mapimagecreatedinSMT).

  • 8/13/2019 Hendershott Thesis

    40/59

    33

    SEISMIC ANALYSIS TheavailabilityofseismicinsouthTexas,bothtwo-dimensional(2D)andthree-

    dimensional(3D),areplentifulduetotheextensivecontinueddrillingintotheEagleFordand

    manyotherproductivezonesstatewide.The3DseismicinHawkvillefieldwasshotand

    processedoverthecourseofseveralyearsandbrokenupintophases.ThePatronGrande

    surveycoversHawkvilleFieldandencompassesapproximately955squaremiles

    (www.globalgeophysical.com).The3Ddatademonstratesacomplexnetworkoffaultsand

    erosionalfeaturesthroughouttheHawkvilleTough(Figures14,20,and21).TheEagleFord

    andBudaFormationswerepickedbasedontopsseenwhiledrilling,andthentiedintothe

    seismic,topfortop(personalcommunicationwithMarieHenry-Geophysicist,Petrohawk

    2010).ThemethodmostcommonlyusedhereisaTimeDepthChart,whichisusedtoconvert

    TVDvaluesintotimesothewellboreisplottedinseismic.TheBudaFormationhasahigh

    velocityanddensity,makingitthemostreliabletopthatcanbepickedintheHawkvilletrough;

    thisyieldshighacousticimpedance.Acousticimpedanceindicateshowmuchsoundpressure

    isgeneratedbythevibrationofmoleculesinaparticularmediumatagivenfrequency;locally,

    thisshowsupasastrongpeak(personalcommunicationJarrettPierce,Geophysicist2012)

    (Figure20and21).InFigure20(highlightedinpurple),anextrapeakcanbeseenontheleft

    sideofthefigurebetweenthetopofEagleFordandthetopofBuda.Inseismicdatathispeak

    onlyoccurswhentotalthicknessreachesgreaterthan150feet.Movingtowardstherightside

    ofthefigure,thisstrongpeakdisappearsandtheupperEagleFordbecomestruncated.Figure

    21,fromMcMullenCounty,demonstratestheadditionalaccommodationseenonthedownthrownsideofgrowthfaults.Thisimageshowstheappearanceofthestrongpeak,

    discussedabove,thatoccurswhentotalthicknessisgreaterthan150feet.Thisthickness

    continuestoincreasedowndipasanothergrowthfaultisencountered.Thetotalthickness

  • 8/13/2019 Hendershott Thesis

    41/59

    34

    increased95feetovertheextentofthelinethatisindiporientationincentralMcMullen

    County.Figure22isaseismiccrosssectionthatwasgeneratedbyflatteningthedataonthe

    BudaHorizonandobservingthehorizonjustabovetheEagleFordshowingdrasticlateral

    thinningacrosstheprofile.Amplitudeextractionmaps,ortimeslices,takenfrom3Dseismic

    volumesrevealhigh-resolutiondispersalpatternsandassociatedsystemstractsongeologic

    timesurfaces(Li,2008).FlatteningwasachievedthroughSMTsseismicmoduleand

    subtractedtheinfluenceofregionaldipinordertoproperlyimagethefeatureseenabove(solid

    yellowlineinFigure22).Thepurposeofastructure-removedtimesliceistobeabletoimage

    amplitudevariationsinmapviewaffectingagreaterregionalextentthatoccurredatorneara

    geologictime-equivalenthorizon.Thistimeslice,inmapview,revealeda6-7milewide

    channelrunningfromsouthwestLaSalleacrosstotheLaSalle/McMullenborder(yellowlinesin

    figure25).ThefeaturediscoveredcorrespondstothinningoftheEagleFordinLaSalleCounty

    fromover+/-250feettolessthan70feetinlessthanfivemiles.

  • 8/13/2019 Hendershott Thesis

    42/59

    35

    Figure20:Northwest-southeastSeismicdipsectionacrossLaSalleCounty,Texas.Thereisminorfaultingassociated

    withsectionthickness.FromnorthwesttosoutheastthethicknessoftheEagleFordchangesfromthicktothin(as

    notedwheretheextrapeakispresent).TheChannelIncisionisevidentonthissectionof3Ddata.Fieldofviewfor

    figures20-22areapproximately7miles.Verticalaxisisrecordedintime(roughly0.5seconds)(Imagecreatedin

    SMT).

  • 8/13/2019 Hendershott Thesis

    43/59

  • 8/13/2019 Hendershott Thesis

    44/59

    37

    Figure22:Northwest-southeastseismicscreenshotthatshowsflatteningontheBudaLimestone(blueline)and

    generatingthetimeslicethroughthehorizonabovetheEagleFordFormationinsoutheastLaSalleCounty(yellowline).

    Thisimageshowsthatinlessthan5milestheEagleFordthinsby180feet.Verticalaxisisrecordedintime(roughly

    0.5seconds)(ImagecreatedinSMT).

  • 8/13/2019 Hendershott Thesis

    45/59

    38

    DISCUSSIONCORE ANALYSIS

    Basiccoreanalysisillustratesthenatureoftheboundingunconformities,atthebaseof

    EagleFord/TopofBudacontact,butmostnotablytheupperunconformitybetweentheEagle

    FordFormationandtheoverlyingAustinChalk(Figure23and24).Insomeareasofthe

    HawkvilleTroughthecontactisfoundtobeabrupt(Figure23),andinotherareasitismore

    gradational(Figure24).However,itisacceptedthatthetwoformationsareseparatedbya

    majorunconformityandK72sequenceboundary(Petrohawk,2009;DonovanandStaerker,

    2010).Theabruptnatureofthisboundaryconsistsofathin(~.3-.5in)layerofskeletallag,rip-

    upclasts,andsomesoft-sedimentdeformation(Figure23;Petrohawk,2009).Therip-up

    clasts,skeletallimestones,andsoftsedimentdeformationfeaturesindicatesmoreproximal

    facies(Petrohawk,2009).TheproximalfacieshadlowerTOCvaluesandhigheramountsof

    silica-bearingminerals.TheLEFcontainshigherTOC,hemipelagicmarlsdepositedinamore

    anoxicenvironmentdistaltosedimentsource(Petrohawk,2009).Thegeneraldepositional

    modelfortheEagleFordisagentlyinclinedcarbonaterampattheinner/outershelfinterface,

    withinreachofstorm-wavebase(Petrohawk,2009).

    AnattemptwasmadetocorrelatethelogresponsesattheupperandlowerEagleFord

    interface,aswellasinternalparasequenceboundariesidentifiedbyDonovanandStaerker

    (2010).WhilethesharpandgradationalnatureoftheAustinChalk/EagleFordboundaryin

    corecanbeidentifiedbythesharpandgradualincreaseofgammarayseeninlogs,therewas

    nodatasuggestingacorrelationbetweenlogresponseandadditionalindividual

    parasequencespackages.Thiscouldbecausedbytheinabilitytocapturethesesmallevents

    inlogresponse.Thelikelihoodthattheseparasequencepackagesexistishigh,butremainto

    beidentifiedandcorrelatedtospecificlogresponses.

  • 8/13/2019 Hendershott Thesis

    46/59

    39

    Figure23:CoreimagedemonstratingabruptandunconformablenatureoftheAustinChalk

    andEagleFordFormationfromMcM-1wellinMcMullenCounty,TX(imagecourtesyof

    PetrohawkEnergyEagleFordConsortium).

    Figure24:Coreimageillustratingthegradationalnatureoftheunconformablecontact

    betweentheAustinChalkandEagleFordFormationasseeninaLaSalleCounty,TXwell

    (imagecourtesyofPetrohawkEnergyEagleFordConsortium).

  • 8/13/2019 Hendershott Thesis

    47/59

    40

    Figure25:AmplitudeextractionprojectedinmapviewfromFigure22insoutheastLaSalleCounty.Thisprojectionis

    generatedfromatime-equivalenthorizonjustabovetheEagleFord.Yellowlinesshowtheextent(width)ofchannel

    describedinFigure22.Faultscanbeseennorthofthechannel(darklines).Wholeimageisunavailabledueto

    proprietaryobligations.(ImagecreatedinSMT).

  • 8/13/2019 Hendershott Thesis

    48/59

    41

    WELL LOG/SEISMICTheEagleFordFormationintheHawkvilleTroughvariessignificantlyintermsof

    thickness(showninseismic)andinternalstratigraphicframework(showninmappingandin

    seismic)overshortlateraldistances.Thepaleo-waterdepthandbasintopographysituated

    betweenthestructurallyhighfeaturesoftheEdwardsandSligoReefmargins,allowedfor

    moreaccommodationthandistalareas.Thethicknessvariationisduetothebowlshaped

    featurethatformedbetweenthetworeefs(Figures15and17).Basedonwelllogandseismic

    data,depthtotheEagleFordvariesfrom9600ftto15000ft(subsea)alongaroughlyplanar

    surfacethatstrikesparalleltothesereefmargins(Figure14).Post-depositionalforces-suchas

    erosionoftheupperand,inextremecases,portionsofthelowerEagleFord-weremajor

    controlsonthicknessvariationseenintheHawkvilleTrough.Inthemostextremecasein

    southwestLaSalleCounty,theUpperEagleFordisentirelymissingintwowellsandhasbeen

    replacedbyachannelsandunitnotpreviouslyreported(Figure10).Thishasbeenidentified

    asachannelsandbasedonthegammaraysignatures(20-45API)andresistivityresponse(2-

    4ohms)usingthecriteriaofBoothetal.,2003.TheLowerEagleFordwasalsopartially

    erodedinthesetwowells(Figure10).Numerousfaultsarevisibleonseismicdata(Figures20

    and21).Mostofthesefaultsarepost-depositionalwithmodestoffsets(25-200feet)(Figure

    21).Afewofthefaultsaresyn-depositionalgrowthfaults,indicatedbythickersediment

    accumulationintheadditionalaccommodationonthedownthrownside(Figures18and20).

    Figure18showsathickerLEFsectionduetoasyn-depositionalgrowthfault.Figure20shows

    theappearanceanddisappearanceofthepeakonthedownthrownsideofthegrowthfault

    (highlightedinpurple),interpretedastheseismicexpressionoftheUEF/LEFinterface.Itis

    onlypresentwhentotalthicknessexceeds150ft.

  • 8/13/2019 Hendershott Thesis

    49/59

    42

    ParticularlyinterestingisanerosionaleventbestcapturedinLaSalleCounty.Whatis

    interpretedasachannel,referredtohereinasthePaleo-NuecesChannel,post-datingAustin

    ChalkandAnacachodepositionranthroughsouthernLaSalleCounty(Figure25)(thisstudy).

    FirstdescribedbyTreadgold(2010)asagravitationalslump,furtherwelllogandseismic

    analysisshowsthatameanderingchannelisanotherpossibleinterpretation.Whenthe

    amplitudeisextracted,afterflatteningontheBudahorizon,fromthesurfacejustabovethe

    EagleFord(yellowlineinFigure22),a6-7milewidechannelisrevealedrunningthroughthe

    HawkvilleTrough(Figure25).Figure20showshighacousticimpedanceabovethetopof

    EagleFordthatcannotbecorrelatedthroughthecenterofthefeature,butispresentoneither

    side.ThishighacousticimpedanceisinterpretedinthisstudyastheAustinChalkformation,

    andallowsageneraltimerelationshiptobedetermined.Proprietaryobligationsanddata

    availabilityonlyallowsthisfeaturetobecapturedwithintheboundariesoftheHawkville

    Trough,primarilyinLaSalleCountyalthoughrecentseismicanalysisshowsitextendinginto

    McMullenCounty.Figure25showsahorizonthatwasextractedfromaseismicline(Figure22

    yellowline)projectingitsamplitudevariationsinmapview.TheyellowlinesinFigure25

    annotatetheboundariesofthechannel,withthestrikeanddipdirection(oftheEagleFord

    Formation)symbolinred.Thewhitelinestothenortheastofthechannelarefaultsystemsthat

    propagatethroughoutLaSalleCounty,butdonotintersectthechannelandarethusinterpreted

    aspre-incisiondeformation.ThePaleo-NueceschannelisfirstobservedinsouthwestLaSalle

    Countyrunningnortheast-southwestalongbeddingstrike.Updip,thechannelisnotpresent

    andthetotalthicknessoftheEagleFordremainsbetween250-270feet(LaS-10inFigure10).

    Downdip,thechannelispresent,shownbythepresenceofsandabovetheEagleFordand

    thenoticeablymissingsectionoftheupperEagleFordentirelyandpartofthelowerEagleFord

    (LaS-9infigure10).Whenthechannelmeanderssoutheast(paralleltoEagleFordbeddip),

  • 8/13/2019 Hendershott Thesis

    50/59

    43

    thestratadirectlyabovetheEagleFordFormation(AustinChalk),theupperEagleFord,and

    someofthelowerEagleFordFormationareerodedoutwithinamatterof4.4miles(LaS-9in

    figure10).AdistinctsandbodyisdepositedabovetheEagleFord,andthisparticularsand

    bodyisuniquetotheareainbetweentheboundariesofthechannel(Figure10).Mostlikely

    thisisachannelandnotaslumpduetothefactthat:1)gravitationalslumpswouldpermeate

    alongbeddipinsteadofdisplayingameanderingnature;2)horizonswithinandabovethe

    EagleFordFormationwouldnotbemissing,onlytiltedunlesstheslumpdisplacedthe

    sedimentsasignificantdistance;3)thestrataoneithersideofthefeatureareundeformedand

    presentinexpectedthicknesses;and4)mostimportantlythereisnoexplanationastowhya

    sandbodythatdoesnotoccurstratigraphicallyinanyareaoftheEagleFordFormationis

    presenthere,solelywithintheboundariesofthisfeature.

    Basedontheisopachmaps,LaSallewasmostlikelyasiteofsedimentinfluxasseenin

    loganalysis.ApproachingtheEdwardsReefMargin,dipsincreasefrom2-4degrees

    north/northwestto7-12degreesnorth/northwest.ApproachingtheEdwardsreef,athinner

    EagleFordsectionisencountered,ultimatelyaffectinginternalstratigraphiccorrelation(LaS-3

    inFigure17).ThelowerEagleFordisconsistentlyhigherintotalorganiccarbonandinsupport

    ofpreviousstudies,thedark,well-laminatedmarlsweredepositedinadeep,oxygen-starved,

    outer-shelf/marginalmarinesettingduringaworldwidegreenhouseenvironment(Petrohawk

    Energy,2009).Ananoxicenvironmentcoupledwithhighorganicproductivityatthesurface

    wouldsupportwhytherearehighertotalorganiccarbonvaluesinthislowermember.Also,the

    anoxicenvironmentcausedbytherestrictedsettingbetweenthereefboundarieswouldallow

    foralargeaccumulationandpreservationoforganic-richsediments.Duringtimesofincreased

    sedimentationratesand/orstormevents,breaksinthereefwouldallowclastic-richsediments

  • 8/13/2019 Hendershott Thesis

    51/59

    44

    tofloodintotheHawkvilleTrough.Proofforthistypeofsedimentationcouldbesupportedby

    in-depthanalysisofcores.

    ThedepositionalmodelfortheupperEagleFordintheHawkvilleTroughismoredifficult

    todecipherduetoamorecomplexnetworkoferosionalfeaturesalongtheuppercontact.The

    influencethatthePaleoNuecesChannelhadonthiscontactisevidentthroughseismicand

    wellloganalysisinsouthernLaSalleCounty.Wherethechannelwascuttingsedimentsabove

    theEagleFordalongbeddingstrike,theinfluenceofitserosionontheupperEagleFordis

    largelyspeculativewithoutachronostratigraphicreconstructionofthischannel.However,the

    erosionalinfluenceontheupperEagleFordisclearwhereitiscompletelymissing,theunique

    sandbodyisdepositedabovethelowerEagleFord,andthecharacteristiccoarseningupward

    natureofthelowerEagleFordremainsintact.

  • 8/13/2019 Hendershott Thesis

    52/59

    45

    CONCLUSIONSWelllogandseismicdatahavebeenusedtoregionallymapthefollowingEagleFord

    boundariesintheHawkvillefieldinLaSalleandMcMullenCounties,Texas:(1)Unconformable

    boundarybetweenthebaseoftheEagleFordandBuda,whichischaracterizedby9-15API

    gammaresponse,atransitionfromastrongpeak(Buda)toastrongtrough(LEF)inseismic,

    andtransitionfromlimestonetoorganic-richmarlstonelithology;(2)Conformablecontact

    betweentheLEFandUEFcharacterizedbya120-140APIgammaresponse,transitionfrom

    troughtopeak(wheregreaterthan150ft)inseismic,andtransitionfrommarlstoneto

    interbeddedshale/limestonelithology;(3)UnconformableboundarybetweentheUEFand

    AustinChalk,whichischaracterizedbya120-135APIgammaresponse,transitionfromstrong

    trough(UEF)tostrongpeak(AustinChalk)inseismic,andtransitionfromtheinterbedded

    shale/limestonelithologytothemassivechalk-bearinglimestonelithology.

    WelllogandseismicexpressionoftheEagleFord-AustinChalkboundaryis

    variable/gradationalduetolaterallyvariableerosionoftheEagleFordpriortodepositionofthe

    AustinChalk.Thisvariabilityisalsoobservedincoredata,wherethesharpcontactcontains

    skeletallagdepositsandrip-upclasts,andthegradationalcontactonlyshowsminorchanges

    infossilcontentandlightercolorduetoincreasedlimestonecontent.Othersubdivisionsofthe

    EagleFordsuggestedfromoutcropstudies(e.g.LockandPeschier,2010;Donovanand

    Staerker,2010)cannotbeconsistentlyrecognizedintheHawkvilleTroughbecausethe

    contrastinpropertiesbetweenlithologiescannotbedecipheredinthecurrentlogandseismic

    resolution.BoththeLEFandUEFaretroughshapeddepositsthatstrikenortheastroughly

    parallelwiththeEdwardsReefmargin.TheaxisofthetroughisclosertotheEdwardsReef

    thantheSligoReef.MaximumthicknessoftheLEFismorethan180ftinLaSalleCountyand

  • 8/13/2019 Hendershott Thesis

    53/59

    46

    approximately140ftinMcMullenCounty.TheUEFisthinnerwithamaximumthicknessof160

    ftalongtheLaSalle-McMullenCountyborder.BoththeLEFandUEFthinrapidlytohalftheir

    maximumthicknesseswithin5-6milesoftheaxis.TheEagleFordalsothinsapproachingthe

    reef,andtothenortheastintoMcMullenCounty.Welldatadocumentsdramaticdecreasesin

    thicknessoftheUEFoverafewmilesduetoerosion.Inthemostextremecaseinsouthwest

    LaSalleCounty,theUEFisentirelymissingin2wellsandhasbeenreplacedbyasandunit

    notpreviouslyreported.TheLEFmayhavealsobeenpartiallyerodedinthesetwowells.

    Basedonwelllogandseismicdata,depthtotheEagleFordvariesfrom9600ftto

    15000ftalongaroughlyplanarsurfacethatstrikesparalleltotheEdwardsandSligoReef

    margins.Numerousfaultsarevisibleonseismicdata.Mostofthesefaultsarepost-

    depositionalwithmodestoffsets(25-200ft).Afewofthefaultsaresyn-depositionalgrowth

    faultsandtheEagleFordisthickeronthedownthrown(Gulfward)side.Seismicdatashows

    thattheEagleFordinthisregiondecreasesinthicknessfromover270fttolessthan80ftand

    thatthereflector(strongpeakinFigures20-22)interpretedtobetheboundarybetweenthe

    LEFandUEFdisappearsastheunitthinstolessthan150ft.Aseismictimeslicejustabove

    thetopoftheEagleFordhungontheBudatoremoveeffortsofbasinwarddipshowsa

    channelstructurerunningwesttoeastalongsouthernLaSalleCounty.Thischannelislikely

    thesourceoferosionandsanddepositionobservedinwellsLaS-9andLaS-12.

  • 8/13/2019 Hendershott Thesis

    54/59

    47

    REFERENCES

    Adams,R.L.,andJ.P.Carr,2010,RegionaldepositionalsystemsoftheWoodbine,Eagle

    Ford,andTuscaloosaoftheU.S.GulfCoast:GulfCoastAssociationofGeological

    SocietiesTransactions,v.60,p.3-27.

    Ambrose,W.A.,T.F.Hentz,F.Bonnaff,R.G.Loucks,L.F.Brown,Jr.,F.P.Wang,andE.C

    Potter,2009,Se-quencestratigraphiccontrolsoncomplexreservoirarchitectureof

    highstandfluvial-dominateddeltaicandlowstandvalley-filldepositsintheUpper

    Cretaceous(Cenomanian)WoodbineGroup,EastTexasFieldRegionalandlocal

    perspectives:AmericanAssociationofPetroleumGeologistsBulletin,v.93,p.231-269.

    Bhattacharya,J.P.andMacEachern,J.A.,2009,Hyperpycnalriversandprodeltaicshelvesin

    TheCretaceousSeawayOfNorthAmerica:JournalofSedimentaryResearch,v.79,p.

    184-209.

    Booth,JamesR.,Dean,MichealC.,DuVernayIII,AlvinE.,Styzen,MichaelJ.,Paleo-

    bathymetriccontrolsonthestratigraphicarchitectureandreservoirdevelopmentof

    confinedfansintheAugerBasin:centralGulfofMexicoslope,MarineandPetroleum

    Geology,Volume20,Issues68,JuneSeptember2003,Pages563-586,ISSN0264-

    8172,

    Bustin,A.M.,andR.M.Bustin,2008,Importanceoffabricontheproductionofgasshales:

    SocietyofPetroleumEngineersPaper114167,Richardson,Texas,26p.

    Cannon,R.T.Hazzard,A.Young,andK.P.Young(leaders),GeologyoftheValVerdeBasin

    andfieldtripguidebook:WestTexasGeologicalSociety,Midland,p.36.

    Dawson,W.C.,2000,Shalemicrofacies:EagleFordGroup(Cenomanian-Turonian)north-

    centralTexasoutcropsandsubsurfaceequivalents:GulfCoastAssociationof

    GeologicalSocietiesTransactions,v.50,p.607-622.

    Dawson,W.C.,B.J.,Katz,L.M.Liro,andV.D.Robison,1993,Stratigraphicandgeochemical

    variability:EagleFordGroup,east-centralTexas, inJ.M.Armentroutetal.,eds.,Rates

    ofgeologicprocesses-tectonics,sedimentation,andclimate:Implicationsfor

    hydrocarbonexploration:Proceedingsofthe14thAnnualGulfCoastSectionofthe

    SocietyofEconomicPaleontologistsandMineralogistsFoundationResearch

    Conference,Houston,Texas,p.19-28.

  • 8/13/2019 Hendershott Thesis

    55/59

    48

    Dawson,W.C.,andW.R.Almon,2010,EagleFordShalevariability:Sedimentologic

    influencesonsourceandreservoircharacterinanunconventionalresourceunit:Gulf

    CoastAssociationofGeologicalSocietiesTransactions,v.60,p.181-190.

    Donovan,A.,andS.Staerker,2010,StratigraphyoftheEagleFord(Boquillas)Formationin

    SouthTexas:GulfCoastAssociationofGeologicalSocietiesTransactions,v.60,p.

    787-788.

    DrillingInfo,2012.EagleFordShaleWellsearch

    Fan,L.,Thompson,J.,andRobison,J.2010.UnderstandingGasProductionMechanismand

    EffectivenessofWellStimulationintheHaynesvilleShaleThroughReservoir

    Stimulation.PaperSPE136696presentedattheCanadianUnconventionalResources

    &InternationalPetroleumConference,Calgary,Alberta,Canada19-21October.

    Doi:10.2118/136696-MS.

    Freeman,V.L.,1961,ContactofBoquillasFlagsandAustinChalkinValVerdeandTerrell

    counties,Texas:AmericanAssociationofPetroleumGeologistsBulletin,v.45,p.105-

    107.

    Halbouty,M.T.,andJ.J.Halbouty,1982,RelationshipsbetweenEastTexasFieldregionand

    SabineUpliftinTexas:AmericanAssociationofPetroleumGeologistsBulletinv.66,p.

    1042-1054.

    Hallam,A.,1987.EndCretaceousmassextinctionevent:argumentforterrestrialcausation:

    Science,238,1237-1242

    Haq,B.U.,J.Hardenbol,andP.R.Vail,1986,Chronologyoffluctuatingsealevelssincethe

    Triassic(250millionyearsagotopresent):Science,v.235,p.1156-1167.

    Hazzard,R.T.,1959,Diagrammatic-stratigraphicsectionsLozierCanyonsections,Terrell

    County,Texas,inR.L.Cannon,R.T.Hazzard,A.Young,andK.P.Young(leaders),GeologyoftheValVerdeBasinandfieldtripguidebook:WestTexasGeologicalSociety,Midland,p.36.

    Hentz,T.F.,andS.C.Ruppel,2010,RegionallithostratigraphyoftheEagleFordShale:

    MaverickBasintoEastTexasBasin:GulfCoastAssociationofGeologicalSocieties

    Transactions,v.60,p.325-337.

  • 8/13/2019 Hendershott Thesis

    56/59

    49

    Jenkyns,H.C.2010.Geochemistryofoceanicanoxicevents.GeochemistryGeophysics

    Geosystems,v.11,p.1-30

    Jenkyns,H.C.,1980,Cretaceousanoxicevents:fromcontinentstooceans:JournalGeologicalSocietyLondon,v.137,p.171-188.

    Jiang,M.J.,1989,BiostratigraphyandgeochronologyoftheEagleFordShale,AustinChalk,

    andlowerTaylormarlinTexasbasedoncalcareousnannofossils:Ph.D.dissertation,

    TexasA&MUniversity,496p.

    Li,X.,andH.Zeng,2008,SeismicsedimentologyanddepositionalsystemsintheUpper

    CretaceousOlmosFormation,GoldRiverNorthField,WebbCounty,SouthTexas:Gulf

    CoastAssociationofGeologicalSocietiesTransactions,v.58,p.623-634

    Liro,L.M.,W.C.Dawson,B.J.Katz,andV.D.Robison,1994,Sequencestratigraphic

    elementsandgeochemicalvariabilitywithinacondensedsection:EagleFordGroup,

    east-centralTexas:GulfCoastAssociationofGeologicalSocietiesTransactions,v.44,

    p.393-402.

    Lock,B.E.,andL.Peschier,2006,Boquillas(EagleFord)upperslopesediments,WestTexas:

    Outcropanalogsforpotentialshalereservoirs:GulfCoastAssociationofGeological

    SocietiesTransactions,v.56,p.491-508.

    Loucks,R.G.,R.M.Reed,S.C.Ruppel,andU.Hammes,2010,Preliminaryclassificationof

    matrixporesinmudrocks:GulfCoastAssociationofGeologicalSocietiesTransactions,

    v.60,p.435-441.

    Loutit,T.S.,J.Hardenbol,andP.R.Vail,1988,Condensedsections:thekeytoage

    determinationandIntegratedApproach:SocietyofEconomicPaleontologistsand

    MineralogistsSpecialPublication42,p.188-213.

    Mancini,E.A.,D.A.Goddard,R.Barnaby,andP.Aharon,2006a,Resourceassessmentof

    thein-placeandpotentiallyrecoverabledeepnaturalgasresourceoftheonshore

    interiorsaltbasins,northcentralandnortheasternGulfofMexico:U.S.Departmentof

    EnergyFinalTechnicalReport,ProjectDE-FC26-03NT41875,173p.

  • 8/13/2019 Hendershott Thesis

    57/59

    50

    Mancini,E.A.,J.Obid,M.Badali,K.Liu,andW.C.Parcell,2008,Sequence-stratigraphic

    analysisofJurassicandCretaceousstrataandpetroleumexplorationinthecentraland

    easternGulfcoastalplain,UnitedStates:AmericanAssociationofPetroleumGeologists

    Bulletin,v.92,p.1655-1686.

    Martin,R,Baihlt,J.,Malpini,R.,Lindsay,G.,andAtwood,W.K.2011.Understanding

    ProductionsfromEagleFord-AustinChalkSystem.PaperSPE145117presentedatthe

    AnnualTechnicalConferenceandExhibition,Denver,Colorado,USA,30-October-2

    November.Doi:10.2118/145117-MS.

    Pessagno,E.A.,1969,UpperCretaceousstratigraphyofthewesternGulfCoastareaof

    Mexico,Texas,andArkansas:GeologicalSocietyofAmericaMemoir111,Boulder,

    Colorado,129p.

    Robison,C.R.,1997,HydrocarbonsourcerockvariabilitywithintheAustinChalkandEagle

    FordShale(UpperCretaceous),EastTexas,U.S.A.:InternationalJournalofCoal

    Geology,v.34,p.287-305.

    Salvador,A.,andJ.M.Q.Muneton,compilers,1989,Stratigraphiccorrelationchart,Gulfof

    MexicoBasin,theGulfCoastBasin:GeologicalSocietyofAmerica,TheGeologyof

    NorthAmerica,v.J,plate5.

    Salvador,A.,andJ.M.QuezadaMueton,1991,Stratigraphiccorrelationchart,GulfofMexico

    Basin,inA.Salvador,ed.,TheGulfofMexicoBasin:ThegeologyofNorthAmerica,v.

    J:GeologicalSocietyofAmerica,Boulder,Colorado,Plate5.

    Scott,R.W.,2010,Cretaceousstratigraphy,depositionalsystems,andreservoirfaciesofthe

    northernGulfofMexico:GulfCoastAssociationofGeologicalSocietiesTransactions,v.

    60,p.597-609.

    Scott,R.W.,2010,Cretaceousstratigraphy,depositionalsystems,andreservoirfaciesofthe

    northernGulfofMexico:GulfCoastAssociationofGeologicalSocietiesTransactions,v.

    60,p.597-609.

    Surles,M.A.,Jr.,1987,StratigraphyoftheEagleFordGroup(UpperCretaceous)andits

    source-rockpotentialintheEastTexasBasin:BaylorGeologicalStudiesBulletin45,

    Waco,Texas,57p.

  • 8/13/2019 Hendershott Thesis

    58/59

    51

    Treadgold,Galen,BillMcLain,andStevenSinclair.EagleFordShaleProspectingwith3D

    SeismicData.Proc.ofSocietyofEconomicGeologistsAnnualMeeting,Denver.2270-2273.

    Trevino,R.H.,1988,FaciesanddepositionalenvironmentsoftheBoquillasFormation,Upper

    CretaceousofsouthwestTexas:M.S.thesis,UniversityofTexasatArlington,135p.

    Ulicny,D.,J.Hladikova,andL.Hradecka,1993,Recordofsea-levelchanges,oxygen

    depletionandthe13CanomalyacrosstheCenomanian-Turonianboundary,Bohemian

    CretaceousBasin:CretaceousResearch,v.14,p.211-234.

    Winkler,C.D.,andR.T.Buffler,1988,Paleogeographicevolutionofearlydeep-waterGulfof

    Mexicoandmargins,JurassictoMiddleCretaceous(Comanchean):American

    AssociationPetroleumGeologistsBulletin,v.72,p.318-346.

  • 8/13/2019 Hendershott Thesis

    59/59

    VITA ZachHendershottwasborninHouston,Texasin1987andattendedEpiscopalHigh

    SchoolinBellaire,Texas.Aftergraduatingin2005,heleftHoustontopursueabachelors

    degreeattheUniversityoftheSouthinSewanee,Tennessee.Duringhisfouryearsat

    Sewanee,ZachwasamemberofSigmaAlphaEpsilonFraternityandwasinductedintothe

    OrderoftheGownsmanhonorsocietyin2008.Zachworkedasanexplorationgeologyintern

    duringthesummersof2007and2008forEtoco,L.P..AftergraduatingfromSewaneein2009,

    ZachmovedtoNewOrleansandworkedasalegalassistantwhilestudyingforhisGREand

    applyingtoLouisianaStateUniversity.Zachenrolledinthegraduateprogramtopursuehis

    MastersofSciencedegreeingeologyundertheguidanceofDr.JeffreyNunnin2010.He

    becamethefirstgeologyinternforPetrohawkEnergyCorporationduringtheSummerof2011

    inHouston,Texas.Zachacceptedafull-timejobofferwithPetrohawkEnergyCorporationin

    HoustonasanOperationsGeologistintheirEagleFordGroup.