Heavy Metals Detection by ICP-MS · 2019. 4. 2. · Heavy Metals Detection in Cannabis by ICPMS...

45
Heavy Metals Detection in Cannabis by ICP-MS 1 03/15/2019 Dr. Iouri Kalinitchenko Head of ICPMS R&D, Analytik Jena, Germany Harj Sandhu Value Scientific, Analytik Jena, Australia Dr. Siqi Sun Application Specialist, Analytik Jena US Dr. Oliver Büttel Director Business Development Analytik Jena US

Transcript of Heavy Metals Detection by ICP-MS · 2019. 4. 2. · Heavy Metals Detection in Cannabis by ICPMS...

  • Heavy Metals Detection in Cannabis by ICP-MS

    103/15/2019

    Dr. Iouri Kalinitchenko Head of ICPMS R&D, Analytik Jena, GermanyHarj Sandhu Value Scientific, Analytik Jena, AustraliaDr. Siqi Sun Application Specialist, Analytik Jena US Dr. Oliver Büttel Director Business Development Analytik Jena US

  • Percentage of cannabis users - including Australia/NZ

    203/15/2019

    https://www.google.com.au/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj9s_TEtJfhAhVDAXIKHa1KB3EQjRx6BAgBEAU&url=https://www.msn.com/en-gb/news/other/cannabis-use-worldwide/ss-BBOm0Xl?parent-title%3Dcannabis-twice-as-strong-as-a-decade-ago%26parent-ns%3Dar%26parent-content-id%3DBBRAJkq%26fullscreen%3Dtrue&psig=AOvVaw3CIikJK3G7K70wFYJ1L3Jr&ust=1553401184481136

  • Legal situation

    303/15/2019

    Legal as authorized by a physician Legal for any use (no prescription required)

    Australia - legal• Victoria: Legal for use by children with severe,

    treatment-resistant epilepsy, from early 2017 • Queensland: Legal by prescription from specialists

    for use by patients with a range of conditions including MS, epilepsy, cancer, and HIV/AIDS, from March 2017:

    • NSW: Legal for use by adults with end-of-life illnesses, from July 2016: Poisons and Therapeutic Goods Amendment Regulation 2016.

    • ACT: People who fall under category 6 illnesses within certain criteria as of 2017

    • Tasmania: Controlled Access Scheme began in 2017 to allow patients to access unregistered medicinal cannabis.

    • WA: Legal by prescription from doctors under certain conditions, from November 2016

    • NT: The Australian Government Department of Health regulates therapeutic medicines containing cannabinoids through the Therapeutic Goods

  • Cannabis market: Global Legal Annual Grow Rate - GAGR 36%

    03/15/2019 4

  • 03/15/2019 5

    Market dynamics driven by prescriptions, medical and health issues

    U.S. Medical Marijuana Market, By Application, 2013 – 2024

    Combined: legal / illegal

    Medical: legal

    Distribution by application

    https://www.google.com.au/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiYvOnj7ZfhAhXZZCsKHYTqBYQQjRx6BAgBEAU&url=https://mjbizdaily.com/australian-medical-marijuana-revenues-could-hit-au36-million-in-2019/&psig=AOvVaw1LMLUstjoiy1hlpl2J4oDF&ust=1553416557875491https://www.google.com.au/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwims-KK9pfhAhWJe30KHfZ9AjoQjRx6BAgBEAU&url=https://www.gminsights.com/industry-analysis/medical-marijuana-market&psig=AOvVaw3WDRCRSC8zdbHF-wIP782F&ust=1553418754520486

  • Elements of major Interest are poisonous :

    Arsenic, Cadmium, Mercury, Lead Source:

    Water and Soil during growth Natural -> Erosion of Minerals, volcanic activity

    Man-Mad -> fertilizers and herbicides/pesticides

    Impurities of raw materials during processing

    Medical cannabis is for health – means monitoring for Heavy Metals in raw Cannabis or Cannabis Products by

    6Wolfram Weisheit03/14/2019

    Action levels for “big 4”

    Element ppm

    Inorganic Arsenic 3

    Cadmium 0,5

    Lead 5

    Methyl Mercury 0,5

  • With increased state regulations, cannabis suppliers are required to conduct trace metals testing to ensure safe and high-quality products.

    A simple and accurate analysis method for screening the “Big Four” heavy metals (As, Pb, Cd and Hg) is highly demanded.

    “Big four” elements - approach is similar and different to Q3DUSP drugs regulation where ICPMS instrument is used

    703/15/2019

    Regulation by California Bureau of Marijuana Control

    Heavy Metal

    Action Level for Medical Edible Cannabis Products, Suppositories,

    Sublingual Products, and Other Manufactured Products (μg/g)

    Action Level for All Inhaled

    Medical Cannabis Goods

    (μg/g)

    Action Level for Topical and

    Transdermal Medical Cannabis

    Goods (μg/g)

    Cadmium 0.5 0.2 5Lead 0.5 0.5 10

    Arsenic 1.5 0.2 3Mercury 3 0.1 1

    USP232, Daily permitted exposure to elemental impurities

  • Sample Preparation Challenges Suitable for all types of cannabis product (plant

    material, edibles and concentrates)

    Prevent the loss of analyte

    Avoid contamination

    Solution

    Closed vessel microwave digestion enables easy and efficient sample preparation

    Challenges and Solutions

    803/15/2019

  • Challenges and Solutions - ICPMS

    903/15/2019

    Analysis Challenges

    Low detection limits

    Easy remove matrix and plasma induced spectroscopic interferences

    Short analysis time

    Solutions

    ICP-MS offers low detection limits, multi-element capabilities, and low sample consumption

    Integrated Collision Reaction Cell design effectively eliminates spectroscopic interferences PQMS ICP-MS

    Designed in Melbourneby ex-VARIAN R&D team Produced in Germany

    Auto-sampler Designed/produced in Brisbane

  • TOPwave with PM60 vessels were used for all cannabis digestion.

    Procedure

    1. Weigh 0.5 g plant material (or 0.2 g oil) into a PM60 vessel

    2. Add 5 mL HNO3, 1 mL HCl and 1 mL H2O23. Wait 5 minutes before close the vessel

    4. Run the TOPwave with the following temperature program

    5. Add deionized water and gold stabilizer to the sample to final volume of 50 mL

    Sample preparation

    03/15/2019 10

    Temperature programCannabis flower and oil

    Step Temperature (°C) Pressure (bar) Ramp Time (min) Hold Time (min) Power (%)

    1 150 40 5 5 752 200 40 5 15 903 50 0 1 20 0

  • TOPwave with PM60 vessels were used for all cannabis digestion.

    Procedure

    1. Weigh 0.5 g plant material (or 0.2 g oil) into a PM60 vessel

    2. Add 5 mL HNO3, 1 mL HCl and 1 mL H2O23. Wait 5 minutes before close the vessel

    4. Run the TOPwave with the following temperature program

    5. Add deionized water and gold stabilizer to the sample to final volume of 50 mL

    Sample preparation

    03/15/2019 11

    Temperature programCannabis flower before (left) and after (right) digestion

    Step Temperature (°C) Pressure (bar) Ramp Time (min) Hold Time (min) Power (%)

    1 150 40 5 5 752 200 40 5 15 903 50 0 1 20 0

  • Sample Preparation:

    SpeedMILL Plus assisted milling and enzymatic digestion with Proteinase K Weigh 100 mg of samples

    Add spherical milling beads and mill sample to powder

    Add 1mL of Lysis buffer and Proteinase K for enzymatic digestion

    Shake for 30 min at 55 °C

    TOPwave assisted digestion of Cannabis in HNO3 and HCl Weigh 150 mg – 500 mg of samples

    Add 4 mL HNO3 and 1 mL HCl (for stabilizing Hg)

    1 step Microwave digestion (20 min ramp up to 240 °C and hold for 15 min)

    Collect liquids and fill up to 10 mL

    Dilution of liquid samples with 1 % HNO3 and 0,5 % HCl to decrease Matrixeffects

    Heavy Metals in Cannabis or Cannabis Products

    12Wolfram Weisheit03/14/2019

  • ICP-MS Analysis

    03/15/2019 13

    All analyses were performed on a Analytik Jena PlasmaQuant Elite ICP-MS.

    Operating condition

    Parameter Setting

    RF Power 1400 WPlasma gas flow 9 L/min

    Nebulizer gas flow 1.04 L/minAuxiliary gas flow 1.2 L/min

    iCRC gas flow 80 mL/min He, 75 mL/min H2Stablization delay 30 s

    Sample Uptake delay 40 sRinse time 40 s

    Dewell time 30 msScans/replicate 15 (peak hopping, 1pt/peak)No. of replicate 5

    Pump rate 15 rpm with black/black PVC pump tubing

  • ICP-MS Analysis

    03/15/2019 14

    Analysis results of cannabis flower

    Element Gas mode R2 LOD (µg/L) Average of three digestions (µg/g) Spike recovery (%)

    Co59 He 0.9998 0.0232 0.6548 85.10Ni60 He 0.9994 0.0457 0.1283 116.40Cu65 He 0.9996 0.3459 10.6981 101.88Zn66 He 1.0000 4.9018 66.2541 91.83As75 H2 0.9999 0.0694 0.0952 124.90

    Cd111 none 0.9999 0.0124 0.0117 103.15Hg202 none 1.0000 0.0027

  • Excellent detection limits LoD - ppq, ppt

    Wide elemental coverage - from Li - U over 70 elements measurable

    High throughput, < 40sec per sample! all elements determined (almost

    simultaneously)Wide dynamic range

    • linear over 11+ orders• Dynamic range ppq – %

    Sensitive and precise fully quantitative measurements external calibration standard additions

    Powerful semi-quantitative analysis no standards needed

    Isotopic analysis isotope ratios isotope dilution

    Routine technique many users run systems overnight 1000+ samples a day

    General question: Why ICP-MS ?

  • Why ICPMS from Analytik Jena?

    • designed in Australia (Melbourne), ex-VARIAN team • Produced in Germany (Jena) and Australia

    the most advanced ICP-MS

  • VARIAN -> AnalytikJena ICPMS expertise

    30years!

    Year 1988 1993 2003 2005 2008 2010 2013 2014 2015

    Ultramass 800 810 820 m90 Elite PlasmaQuant MS

    AnalytikJena (Germany/Australia)Bruker (Melbourne)VARIAN (Melbourne)

    Varian ICPMS technology Ion Mirror, iCRC with Analytik Jena plasma

    2019

    Most innovative, patented ICPMS

    2015

  • Designed to be fast, precise, economical and robust

    18

    Virtual Ground Plasma - ½ argon iCRC Interface,simplicity

    Ion Optics – x10 better sensitivity

    Analytik Jena design protected by 8 inventions:1. ½ Ar plasma, robust 2. Robust interface 3. x10 times better sensitivity Ion Optics4. Never clean Ion Optics 5. Never clean mass-analyser6. Low noise quadrupole 7. iCRC - integrated Collision Reaction Cell 8. All digital detector, ADD11.

  • Plasma generation

    ½ Ar plasma technology Fassel torch No shield Robust plasma

  • Economical - ½ Argon Only 9L/min of argon consumption. Saves annually about 13000 EUR

    100% Ethanol Direct sea water - 3.5% TDS

    Robust and matrix tolerant: any sample, any matrix

    100% IPA24% NaCl

  • 21

    Interface(robustness test)

    Direct sea water - 3.5% TDS

    Neat Sea Water – direct, 3 days, non-stop

    No clogging, no salt blockage

    Photo of the cones after 3.5 % NaCl run for 3 days non-stop

  • Ion Optics

    Never clean Ion Optics x10 times better sensitivity

    • Extremely robust Ion Mirror • x10 better sensitivity

  • Absolute robustnessOnly ions reflected into the mass-analyser

    Video is available on https://www.analytik-jena.de

    Maximum signal x10 sensitivity No contamination No drift No maintenance Stable signal

    • Neutrals passing through the field inside of the ring

    • The field cannot be contaminated

    Stableat any sample, any matrix!

  • 24

    • Collecting data x10 times faster• Approximately x6 - 7 times more samples per hour. Yes, x 6-7times • Measurement precision RSD

  • Analytik Jena - best technical specification ICPMS

    Sensitivity and LoD

  • Element GuaranteedSpecification 1ppb [kcps]

    Typical2.11.16

    installation, (Germany), 1 ppb [kcps]

    Li7 250 317Be9 50 84

    Mg24 600 815Co59 1000 1532Y89 1200 1960

    In115 1500 2470

    Tl205 950 1950Bi209 1000 2021Th232 1000 2663U238 1000 2108

    CeO+/Ce+

  • • Extra High Sensitivity ICP-MS of the ELITE model

    • Part-per-quadrillion (pg/L) detection limits for REEElement Detection Limits(pg/L)

    La 21Ce 13Pr 8Nd 20Sm 39Eu 13Gd 27Tb 6Dy 20Ho 4Er 15Tm 6Yb 24Lu 5

    LoD - ppq rangeLoD

    Rare Earth Elements

    Best technical specification for Sensitivity; LoD - practice

  • About the Limits of Detection

    Be9 Bi209 Cd112

    Tl 203Ag107

    Bi209

    Cs133

  • Element no gas H2Li7 0,5 2,5

    Be9 0,4 0,7

    B11 6,9 17

    Na23 25 13

    Mg24 1,1 2,0

    Al27 0,9 2,4

    Ca44 303 23

    Sc45 3,5 n. m.

    Ti49 0,6 n. m.

    V51 2,3 0,8

    Cr52 6,1 0,5

    Mn55 0,7 0,8

    Fe56 n. m. 1,6

    Fe57 571 76

    Co59 0,1 0,4

    Ni60 22 10

    Cu63 0,4 0,7

    Zn66 1,6 2,1

    Ga69 0,1 0,4

    As75 5,4 1,9Se78 15 13

    Rb85 0,1 0,9

    Sr88 0,04 0,05

    Y89 0,01 n. m.

    Zr90 0,05 n. m.

    Nb93 0,02 n. m.

    Mo95 0,1 n. m.

    Mo98 0,1 n. m.

    Ru101 0,06 n. m.

    Rh103 0,008 n. m.

    Pd105 0,05 n. m.

    Ag107 0,03 0,1

    Cd112 0,06 0,1In115 0,01 0,03

    Sn120 0,1 n. m.

    Sb121 0,04 n. m.

    Te125 0,4 1,4

    Cs133 0,05 0,09

    Ba138 0,07 0,07

    La139 0,02 n. m.

    Ce140 0,01 n. m.

    Pr141 0,006 n. m.

    Nd146 0,03 n. m.

    Sm147 0,03 n. m.

    Eu153 0,01 n. m.

    Gd157 0,03 n. m.

    Tb159 0,004 n. m.

    Dy163 0,02 n. m.

    Ho165 0,003 n. m.

    Er166 0,009 n. m.

    Tm169 0,004 n. m.

    Yb172 0,02 n. m.

    Lu175 0,003 n. m.

    Hf178 0,02 n. m.

    Ta181 0,005 n. m.

    W182 0,02 n. m.

    Re185 0,01 n. m.

    Ir193 0,01 n. m.

    Pt195 0,04 n. m.

    Au197 0,03 n. m.

    Hg202 0,4 n. m.Tl205 0,03 0,03

    Pb… 0,04 0,03Bi209 0,01 0,01

    Th232 0,02 0,05

    U238 0,01 n. m.

    Pb208LoD - 72 [ng/L] ppq

    Limits of Detection LoD, [ng/L], ppt

    Moving to ppq limits of detection

    Sheet1

    Elementno gasH2

    Li70,52,5

    Be90,40,7

    B116,917

    Na232513

    Mg241,12,0

    Al270,92,4

    Ca4430323

    Sc453,5n. m.

    Ti490,6n. m.

    V512,30,8

    Cr526,10,5

    Mn550,70,8

    Fe56n. m.1,6

    Fe5757176

    Co590,10,4

    Ni602210

    Cu630,40,7

    Zn661,62,1

    Ga690,10,4

    As755,41,9

    Se781513

    Rb850,10,9

    Sr880,040,05

    Y890,01n. m.

    Zr900,05n. m.

    Nb930,02n. m.

    Mo950,1n. m.

    Mo980,1n. m.

    Ru1010,06n. m.

    Rh1030,008n. m.

    Pd1050,05n. m.

    Ag1070,030,1

    Cd1120,060,1

    In1150,010,03

    Sn1200,1n. m.

    Sb1210,04n. m.

    Te1250,41,4

    Cs1330,050,09

    Ba1380,070,07

    La1390,02n. m.

    Ce1400,01n. m.

    Pr1410,006n. m.

    Nd1460,03n. m.

    Sm1470,03n. m.

    Eu1530,01n. m.

    Gd1570,03n. m.

    Tb1590,004n. m.

    Dy1630,02n. m.

    Ho1650,003n. m.

    Er1660,009n. m.

    Tm1690,004n. m.

    Yb1720,02n. m.

    Lu1750,003n. m.

    Hf1780,02n. m.

    Ta1810,005n. m.

    W1820,02n. m.

    Re1850,01n. m.

    Ir1930,01n. m.

    Pt1950,04n. m.

    Au1970,03n. m.

    Hg2020,4n. m.

    Tl2050,030,03

    Pb…0,040,03

    Bi2090,010,01

    Th2320,020,05

    U2380,01 n. m.

     Hab ich von 0,02 auf 0,01 reduziert. Hatte bei den Highthroughputmessungen 40c/s BG und 1,4Mcps sensitivity

    ð  Würde in 0,13 resultieren => 0,01 sollte kein Problem sein.

    Sheet2

    Sheet3

    Sheet1

    Elementno gasH2

    Li70,52,5

    Be90,40,7

    B116,917

    Na232513

    Mg241,12,0

    Al270,92,4

    Ca4430323

    Sc453,5n. m.

    Ti490,6n. m.

    V512,30,8

    Cr526,10,5

    Mn550,70,8

    Fe56n. m.1,6

    Fe5757176

    Co590,10,4

    Ni602210

    Cu630,40,7

    Zn661,62,1

    Ga690,10,4

    As755,41,9

    Se781513

    Rb850,10,9

    Sr880,040,05

    Y890,01n. m.

    Zr900,05n. m.

    Nb930,02n. m.

    Mo950,1n. m.

    Mo980,1n. m.

    Ru1010,06n. m.

    Rh1030,008n. m.

    Pd1050,05n. m.

    Ag1070,030,1

    Cd1120,060,1

    In1150,010,03

    Sn1200,1n. m.

    Sb1210,04n. m.

    Te1250,41,4

    Cs1330,050,09

    Ba1380,070,07

    La1390,02n. m.

    Ce1400,01n. m.

    Pr1410,006n. m.

    Nd1460,03n. m.

    Sm1470,03n. m.

    Eu1530,01n. m.

    Gd1570,03n. m.

    Tb1590,004n. m.

    Dy1630,02n. m.

    Ho1650,003n. m.

    Er1660,009n. m.

    Tm1690,004n. m.

    Yb1720,02n. m.

    Lu1750,003n. m.

    Hf1780,02n. m.

    Ta1810,005n. m.

    W1820,02n. m.

    Re1850,01n. m.

    Ir1930,01n. m.

    Pt1950,04n. m.

    Au1970,03n. m.

    Hg2020,4n. m.

    Tl2050,030,03

    Pb…0,040,03

    Bi2090,010,01

    Th2320,020,05

    U2380,01 n. m.

     Hab ich von 0,02 auf 0,01 reduziert. Hatte bei den Highthroughputmessungen 40c/s BG und 1,4Mcps sensitivity

    ð  Würde in 0,13 resultieren => 0,01 sollte kein Problem sein.

    Sheet2

    Sheet3

    Sheet1

    Elementno gasH2

    Li70,52,5

    Be90,40,7

    B116,917

    Na232513

    Mg241,12,0

    Al270,92,4

    Ca4430323

    Sc453,5n. m.

    Ti490,6n. m.

    V512,30,8

    Cr526,10,5

    Mn550,70,8

    Fe56n. m.1,6

    Fe5757176

    Co590,10,4

    Ni602210

    Cu630,40,7

    Zn661,62,1

    Ga690,10,4

    As755,41,9

    Se781513

    Rb850,10,9

    Sr880,040,05

    Y890,01n. m.

    Zr900,05n. m.

    Nb930,02n. m.

    Mo950,1n. m.

    Mo980,1n. m.

    Ru1010,06n. m.

    Rh1030,008n. m.

    Pd1050,05n. m.

    Ag1070,030,1

    Cd1120,060,1

    In1150,010,03

    Sn1200,1n. m.

    Sb1210,04n. m.

    Te1250,41,4

    Cs1330,050,09

    Ba1380,070,07

    La1390,02n. m.

    Ce1400,01n. m.

    Pr1410,006n. m.

    Nd1460,03n. m.

    Sm1470,03n. m.

    Eu1530,01n. m.

    Gd1570,03n. m.

    Tb1590,004n. m.

    Dy1630,02n. m.

    Ho1650,003n. m.

    Er1660,009n. m.

    Tm1690,004n. m.

    Yb1720,02n. m.

    Lu1750,003n. m.

    Hf1780,02n. m.

    Ta1810,005n. m.

    W1820,02n. m.

    Re1850,01n. m.

    Ir1930,01n. m.

    Pt1950,04n. m.

    Au1970,03n. m.

    Hg2020,4n. m.

    Tl2050,030,03

    Pb…0,040,03

    Bi2090,010,01

    Th2320,020,05

    U2380,01 n. m.

     Hab ich von 0,02 auf 0,01 reduziert. Hatte bei den Highthroughputmessungen 40c/s BG und 1,4Mcps sensitivity

    ð  Würde in 0,13 resultieren => 0,01 sollte kein Problem sein.

    Sheet2

    Sheet3

  • Highest sensitivity means the highest speed of analysis – 82 samples per hour

  • Sensitivity vs Speed of analysis

    50 elements case

    Example of 50 elements to measure:

    • Peak hopping method (single point per peak)• 20ms – dwell time per element • x50 scans Total time - 1s per replicate

    Replicates - x10 Integration time per element: 1s x10replicates = 10 sec

    Total measurement time for 50 elements50 x 10s = 500s

    Sample washout and stabilization time 20sTotal time per sample: 520s

    RESULT 7 samples per hour

    Example of 50 elements to measure:

    • Peak hopping method (single point per peak)• 2ms – dwell time per element • x50 scans Total time - 0.1s per replicate

    Replicates - x10 Integration time per element: 1s x10replicates = 1 sec

    Total measurement time for 50 elements50 x 1s = 50s

    Sample washout and stabilization time 20sTotal time per sample: 70s

    RESULT 51 samples per hour

    x7 times more samples !

    Standard non sensitive ICP-MS x10 times more sensitive ICP-MS

    precision RSD - 2%

  • 82 samples per hourExample is drinking water, USEPA 200.8, 21 elements, 2.2% RSD

    82 drinking water samples per hour with 21 elements (RSD

  • Sensitivity benefit: 82 samples per hour,

    Calculations:• PQMS argon consumption < 9l/min • One 50L bottle - 2 days, 20h• 2 days productivity 1600 samples • One Bottle cost - 100EUR. • Cost of argon - 6.2c per sample

    • RSD 2.2% - 82 samples/hour• RSD 1.5% - 60 samples/hour

    Argon consumption Cost per sample

    6.2c

    Drinking water USEPA 200.8, 21 elements, 2.2% RSD

    USEPA 200.8 requires

  • Quadrupole mass-analyzer

    Patent 1: Contamination protection and low noise

    Patent 2: Zero maintenance mass-analyser pre-filter

    • Maintenance free

  • Advanced ADD 11

    All Digital Detector

  • The detector converts ions into electrical pulses. Adjustment of voltage applied to control dynode provides attenuation of final output signal.

    Control Section

    Signal Output

    Quadrupole Gain Control

    Ion to e-Conversion

    Amplification

    e-e-e-

    + e-

    36

    Innovative All Digital Detector ADD 11

    • Discrete Dynode Electron Multiplier: - Operates in pulse counting mode at all times

    • Extended Dynamic Range: - Provides 11 decades of linear dynamic range 0.1 – 10 10 c/s

    • No Pulse to Analog Cross Calibration Required: - 2 stage digital attenuation

  • Analytik Jena ADD11 – Australian design/production• The ADD11 detector has been designed by ETP (Sydney) in

    collaboration with Varian (now Analytik Jena) R&D (Melbourne)• Produced in Australia by ETP in Sydney

    References:

  • Compact instrument to work in laboratory

    MS

    ICP• ‘Open Book’ concept - fastest access to the

    interface maintenance • Square footprint - smallest on market

    Why is the vertical orientation?

    MS

    ICP

    All Digital Detection 11 orders linear range

  • 39

    German quality - pumps

    Leybold SV40 or Dry pump

    HiPace300

    G forceprotection

    Magnetic bearing

    Stator Rotor60000rpm

    Axis

    Lowerbearing

    Turbine blades pitch optimised for best compression ratio

    Electronicsmodule

    Foreline outlet Optimised Drag stage for 15Torr continues pressure

    Magnetic bearing system - robust1. Robust magnetic bearing system - 10G force2. Smooth running – no start up/shutting

    resonances3. Extremely - quiet 4. Mean time to failure > 200,000 hours, 22+ years

    CONCLUSION: HiPace300 is a high quality pump made in Germany, it is best fit for ICPMS

    Two Magnetic bearings turbo pumps from Germany

  • Innovation summary

    Highest x10 times sensitivity among ICPMS - 1.5 109 c/s per ppm: Faster to measure sample by x2 times ½ argon consumption

  • PQMS Elite at Clinical laboratory, Royal North Shore Hospital (RNSH)Australia, Sydney, March 2019

    Analytik Jena ICPMS – in Australia

  • Analytik Jena – product portfolio

    03/15/2019 42

  • Analytik Jena (Germany) is a division of Endress + Hauser corporation (Switzerland)

    03/15/2019 43

    Analytik Jena clients

  • 03/15/2019 44

    Who is E+H?

  • Thanks for attention. Questions please.Dr. Iouri Kalinitchenko, Head of ICPMS R&D, Analytik Jena, Germany/Australia

    [email protected]

    Heavy Metals Detection in Cannabis by ICP-MS ��Percentage of cannabis users - including Australia/NZ�Legal situationCannabis market: Global Legal Annual Grow Rate - GAGR 36%�Market dynamics driven by prescriptions, medical and health issues Medical cannabis is for health – means monitoring for Heavy Metals in raw Cannabis or Cannabis Products by �“Big four” elements - approach is similar and different to Q3D�USP drugs regulation where ICPMS instrument is used Challenges and SolutionsChallenges and Solutions - ICPMSSample preparationSample preparationHeavy Metals in Cannabis or Cannabis ProductsICP-MS AnalysisICP-MS AnalysisGeneral question: Why ICP-MS ?Slide Number 16VARIAN -> AnalytikJena ICPMS expertise ��30years!Slide Number 18Slide Number 19Economical - ½ Argon Slide Number 21Slide Number 22Absolute robustness �Only ions reflected into the mass-analyserSlide Number 24Slide Number 25Slide Number 26Slide Number 27About the Limits of DetectionSlide Number 29Slide Number 30Sensitivity vs Speed of analysis�50 elements case Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Analytik Jena ADD11 – Australian design/productionSlide Number 38Slide Number 39Slide Number 40Slide Number 41Analytik Jena – product portfolioAnalytik Jena (Germany) is a division of �Endress + Hauser corporation (Switzerland)Slide Number 44Thanks for attention. Questions please.�Dr. Iouri Kalinitchenko, Head of ICPMS R&D, Analytik Jena, Germany/Australia�[email protected]