Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat...

10
Internal combustion Engines: History engine types and operation Dr. Primal Fernando d@ d lk Internal combustion Engines: History, engine types and operation of 2 & 4 stroke engines 1 wpd@pdn.ac.lk Ph: (081) 2393608 Heat engines Heat engines are cyclic devices and that the working fluid of a heat engine return to its initial state at the end of each cycle. heat engine return to its initial state at the end of each cycle. Work is done by working fluid during one part of the cycle and h ki fl id d i h (D f b on the working fluid during another part . (Deference between these two equal to network delivered by the heat engine). To maximize efficiency: deliver most work and required least work. Maximum efficiency is given by ideal reversible cycle. 2 History of internal combustion (IC) engines Both power generation and refrigeration are usually accomplished Both power generation and refrigeration are usually accomplished by systems that operate on a thermodynamic cycle: power cycles and refrigeration cycles. Power producing devises: engines Refrigeration producing devices: refrigerators, airconditioners and heat pumps. l b Steam engine 1700 (external combustion engines) 3 History of IC Engines History of IC Engines 1860 Lenoir’s engine (a converted steam engine) combusted natural gas in a double acting piston, i l i i ii Effi i 5% using electric ignition. Efficiency = 5% 4

Transcript of Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat...

Page 1: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

Internal combustion Engines: History engine types and operation

Dr. Primal Fernandod@ d lk

Internal combustion Engines: History, engine types and operation of 2 & 4 stroke engines

1

[email protected]: (081) 2393608

Heat enginesg• Heat engines are cyclic devices and that the working fluid of a 

heat engine return to its initial state at the end of each cycle.heat engine return to its initial state at the end of each cycle. 

• Work is done by working fluid during one part of the cycle and h ki fl id d i h (D f bon the working fluid during another part. (Deference between 

these two equal to network delivered by the heat engine).

• To maximize efficiency: deliver most work and required least work. 

• Maximum efficiency is given by ideal reversible cycle.

2

History of internal combustion (IC) enginesy g

• Both power generation and refrigeration are usually accomplished• Both power generation and refrigeration are usually accomplished by systems that operate on a thermodynamic cycle: power cycles and refrigeration cycles.

• Power producing devises: engines

• Refrigeration producing devices: refrigerators, air‐conditioners and heat pumps.

l b• Steam engine ‐ 1700 (external combustion engines)

3

History of IC EnginesHistory of IC Engines1860  Lenoir’s engine (a converted steam engine) 

combusted natural gas in a double acting piston, i l i i i i Effi i 5%using electric ignition. Efficiency = 5%  

4

Page 2: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

History ‐ continuedHistory  continued

• 1876 Nikolaus Otto patented the 4 cycle engine it used gaseous• 1876  Nikolaus Otto  patented the 4 cycle engine, it used gaseous fuel

• 1882 Gottlieb Daimler, an engineer for Daimler, left to work on his own engine His 1889 twin cylinder V was the first engine tohis own engine.  His 1889 twin cylinder V was the first engine to be produced in quantities. Used liquid fuel and Venturi type carburetor, engine was named “Mercedes” after the daughter of his major distributorhis major distributor

• 1893  Rudolf Diesel built successful CI engine which was 26% efficient (double the efficiency of any other engine of its time) 

5

Classification of EnginesClassification of Engines

• External vs Internal Combustion• Spark Ignition SI  or Compression Ignition CI• Configuration• Valve Location• 2 Stroke or 4 Stroke2 Stroke or 4 Stroke

6

Engine ConfigurationsEngine Configurations

In Line(Automobile)

V(Automobile)Horizontally

Opposed (Subaru)

Radial (Aircraft)Opposed Piston

(crankshafts geared together)

7

V Engineg

8

Page 3: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

Wankel Rotary Piston Enginey g

9

Rotary “Wankel” EngineRotary  Wankel  Engine

10

Ref. Internal combustion engines and air pollution, E. F. Obert

11

Basic considerations in the analysis of power cyclesy p y

• Cycles encountered in actual devices yare difficult to analyze because of the presence of complicating effects such as friction etc.friction etc. 

• Consider a cycle that resembles the t l l l l b t it dactual cycle closely but it made up 

totally of internally reversible process (ideal cycle) 

netnetth q

wQW or ,efficiency Thermal

12

inin qQ

Page 4: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

Idealizations and simplifications p

• Cycle does not involve any f i i d i hfriction: no pressure drop in the working fluid.

• Expansion and compression process: quasi equilibrium.

• Pipes connecting various components are well insulated.

• Neglecting changers in KE and PE

13

Net work of the cycle

14

Carnot cycle y

• The Carnot cycle is the most efficient cycle that can be executed between heat a sourcethat can be executed between heat a source and a heat sink. 

T

15

H

LCarnotth T

T1,

Air‐standard assumptionp• Gas power cycles (working fluid gas): spark ignition engines, diesel 

engines, conventional gas turbines, etc.

• All these engines energy is provided by burning a fuel within the system boundary.

• Working fluid (air) mainly contains nitrogen and hardly undergoing any chemical reactions in the combustion chamber and can be closely resembles to air at all times in the chamber. 

– Assumptions: working fluid as air, behaves as ideal gas, internally reversible cycle, combustion process replace by heat addition process y p p y pby a external source, exhaust process replace by heat rejection process that re‐stores initial state of working fluid, specific heat values determines at room temperatures (call cold‐air‐standard assumptions)

16

assumptions).

Page 5: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

Reciprocating Engines

Top Dead Center (TDC) : Upper most position

Intakevalve

Exhaustvalve

p pp p

Bottom Dead Center (BDC) : Lower most position

Stroke : Length of piston travel

BoreStroke

TDC Bore : Diameter of the cylinder

Clearance Volume (Vc) : V where piston is at TDC

Displacement Volume (V ) :Swept Volume (V ‐V )BDC

Displacement Volume (Vd) :Swept Volume (Vmax‐Vmin)

Compression Ratio (rv) = (Vmax/Vmin) = (VBDC/VTDC)

Mean Effective Pressure (MEP) :

Wnet = (MEP) x (Displacement Volume)

Reciprocating Engine is INTERNAL COMBUSTION ENGINE, and is Classified into 2 types:

1. Spark Ignition (SI): Gasoline Engine, Mixing air‐fuel outside cylinder, ignites by a spark plug (Auto cycle)

2 Compression Ignition (CI): Diesel engine fuel is injected into the

17

รศ.ดร.สมหมาย ปรีเปรม

2. Compression Ignition (CI): Diesel engine,  fuel is injected into the cylinder, self ignited as a result of compression (Diesel cycle).

Parts of an engineg

18

Mean Effective Pressure, MEP Concept

P

Actual ProcessesP Equivalent by MEP

Equivalent

Equivalent by MEP

Wnet

Wnet

MEP

vvmin vmaxvvmin vmax

TDC BDCWnet = (MEP) x (Displacement Volume)

= (MEP) x (Vmax-Vmin)

19

Four Stroke Engine – spark ignition engineIntake C i Power ExhaustIntake Compression Power Exhaust

1. Intake Stroke piston moves from TDC to BDC, drawing in fresh air-fuel mixture.

2. Compression Stroke piston moves from BDC to2. Compression Stroke piston moves from BDC to TDC, compress air-fuel mixture.

3. Power Stroke piston at TDC, spark plug ignite the air-fuel mixture. the combustion occur

f t th t i th th i t till tvery fast that, in theory, the piston still at TDC. After that the piston is pushed to BDC.

4. Exhaust Stroke piston moves from BDC to TDC, pushes the combustion gases out.

20

p g

Page 6: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

Actual and ideal cycle in spark ignition iengine

21

Two Stroke Engine PowerCompressionIntake & Exhaust

1. Compression Stroke piston moves from BDC to TDC, compress air‐fuel mixture.

2. Power Stroke piston at TDC, spark plug p p p gignite the air‐fuel mixture. After the piston is pushed to BDC. Meanwhile, about half way, combustion gases are discharged and fresh air fuel mixture isdischarged and fresh air‐fuel mixture is drawing in .

2‐stroke engines generally less efficient than 4‐stroke 

22

g g yengines since partial expulsion of unburned mixture with exhaust gas. It has higher power/weight ratio. 

Air Standard Otto Cycle (Nikolaus A. Otto 1876)Ideal cycle of spark ignition engine, comprises of 4- Process:Ideal cycle of spark ignition engine, comprises of 4 Process:

Process 1-2 Isentropic CompressionIsentropic Compression (piston moves from BDC to TDC)

Process 2-3 v = constant, heat addedv = constant, heat added (piston stays still, represents combustion)

Process 3-4 Isentropic expansionIsentropic expansion (piston moves from TDC to BDC gives POWER)

Process 4-1 v = constant, heat rejectionv = constant, heat rejection (piston stays still, represents EXHAUST and INTAKE stroke)

T 3P 3

There are only 2-stroke of all 4-processes,

T qin

wout

2

1

4

qout

2

1

4

win

ss1=s2 s3=s4vv2=v3 v1=v4

TDC BDC

23

What is the different of Otto cycle from Carnot cycle, the most efficient cycle

T 3qinEnergy balance – Otto cycle (I)

2 4

gy y

)/()()( kk

Neglecting changes in KE and PE

1qout

)/()()( kgkJuwwqq outinoutin

Heat transfer to/from the system is under ss1=s2 s3=s4

P 3

constant volume (no work)

)( 23v23in TTcuuq Evaluate at room tem: called cold air standard assumption

2 4

wout)( 14v14out TTcuuq

qw

1

TTT

TT 1

41

standard assumption

vv2=v3 v1=v4

1win

in

out

in

netOttoth q

q1qw

,

1

TT

T

T1

TTTT

1

2

32

1

23

14

24

Page 7: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

T 3qinEnergy balance – Otto cycle (II)

2 4

gy y

outnetOttoth

q1w,

1

TT

T1

TT1 1

41

14

1qout

ininOttoth qq,

1

TT

T1

TT1

2

32

23

Processes 1‐2 and 3‐4 are isentropic and v =v ss1=s2 s3=s4

P 3

Processes 1‐2 and 3‐4 are isentropic and v2=v3and v4=v1 (Pvk=constant)

41k

31k

21 TvvT

2 4

wout3

4

4

3

1

2

2

1

TvvT

Compression ratio 11 vVVmax

vv2=v3 v1=v4

1win

Compression ratio2

1

2

1

vVVr

min

max

1

25

1kOttoth r11 ,

Thermal efficiency of a Otto cycle (I)y y ( )

1kOttoth r11 ,

• High compression ratios: temperature of air/fuel  mixture rises above auto 

r

ignition temperature (premature ignition)‐produces audible noise is called engine knock. k=1.4

• Improvement of thermal efficiency was obtained utilizing higher compression ratios (up to 12) gasoline ble d ith tet aethyl lead (i o iblend with tetraethyl lead (improving octane rating) but it has been prohibited to use since the hazardous of lead to health Octane rating = measure of fuel 

26

of lead to health.  gquality (measure of engines knock resistance)

Thermal efficiency of a Otto cycle (II)y y ( )

• Most compression ratios are around 10:1,

Monatomic gas (He, Ar)

Most compression ratios are around 10:1, meaning that the gas let into the cylinder is compressed to 1/10 times its original size.

airCO2

• Efficiency is better with a higher compression ratio but only to the limits      

Molecular weight of the working fluid increases

k=1.2 ethane

of the fuel quality.

• Thermal efficiency of actual spark ignitionThermal efficiency of actual spark ignition engine ~ 25‐30% 

27

Compression Issuesp

• Problems can occur during a cycle if there is:• Problems can occur during a cycle if there is:

– Lack of Compression caused from gasses leaking past the i t h l i th i t th i t k h t lpiston, a hole in the piston, or the intake or exhaust valves 

are not sealing properly.

– Lack of Spark caused by malfunctioning spark plugs, dirty spark plugs, mistimed firings, or bad connections between plugs and the battery.

28

Page 8: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

How Fuel is Handled• Structure of Gasoline

– Is mostly comprised of hydrocarbon molecules havingIs mostly comprised of hydrocarbon molecules having from six to ten carbon atoms.

– Octane is a measure of the resistance to detonation The– Octane is a measure of the resistance to detonation. The octane number assigned to gasoline (87,89, 93, 100, 114, 120) represents the ratio of heptane, which easily detonates, to isooctane, which does not want to detonatedetonates, to isooctane, which does not want to detonate (better to say octane number above 100 as “performance number”. It is calculated by different way. Often itʹs done by pure extrapolation. ) . Eighty‐seven‐octane gasoline is y p p ) g y ggasoline that contains 87‐percent octane and 13‐percent heptane (or some other combination of fuels that has the same performance of the 87/13 combination of t /h t )

29

octane/heptane). 

Chemical Energy of Gasolinegy

• The chemical energy of one gallon of gasoline is on the average• The chemical energy of one gallon of gasoline is, on the average, 125,000 BTU per gallon (132×106 J per 3.8 L). 

• Only about 25% of chemical energy in gasoline is converted to mechanical energy.

• Basically out of a one dollar gallon of gasoline, 75 cents is wasted.

30

Cylinder Configurationsy g

Straight Configuration V Configuration

Displacement refers to the volume inside each piston chamber For

Flat

piston chamber. For example: a 3.0 Liter engine with 6 cylinders

31

Configuration will have 0.5 liters per cylinder.

Diesel cycle: The ideal cycle for compression ignition (CI) engine (Rudolph Diesel 1890)ignition (CI) engine (Rudolph Diesel 1890)• Similar to spark ignition engine differing mainly in the method 

f i i i i b iof initiating combustion.

• In spark ignition (SI) engines (gasoline engines), air fuel mixture p g g g gcompressed below auto ignition temperature of the air/fuel mixture and combustion starts by firing spark plugs.  

• In combustion ignition (CI) engines (diesel engines) air compressed above the auto ignition temperature of the air fuel mixture and then fuel inject into the air. 

• SI engines has a carburetor and diesel engine has a fuel pump.

32

• The compression ratio of diesel engines typically higher (12 ‐24)

Page 9: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

Diesel engineg• The fuel injection starts when the 

piston reaches to TDC.p

• Combustion process takes place over longer interval.over longer interval.

• Because of this longer period the heat addition process can beheat addition process can be approximated as constant pressure heat addition process. 

• Other parts are common for both SI and CI engines.  

33

Energy balance – Diesel engine (I)

)/()()( kgkJuwwqq outinoutin

)()()( 23p2323232in TTchhuuvvPq

)( TTcuuq )( 14v14out TTcuuq

outnetDi lth

q1w

ininDieselth q

1q,

1

TTT

1TT1 1

41

14 )(

1

TTkT

1TTk

1

2

32

1

23

14

)()(

34

Energy balance – Diesel engine (II)T

in

out

in

netDieselth q

q1qw

,

1TkT

1TTT

1TTkTT1

32

1

41

23

14

)()(

1T

kT2

2

33 vVr Define new quantity; cutoff ratio

22c vV

rDefine new quantity; cutoff ratio

Utilizing definition of isentropic ideal‐gas relationsg p g

)(, 1rk1r

r11

c

kc

1kDieselth

r is the compression ratio

35

Otto vs. Diesel

)(, 1rk1r

r11

c

kc

1kDieselth1kOttoth r

11 ,

ratio) ncompressio same the on operate cycles both (when DieselthOttoth ,,

• Limiting value of rc=1; when efficiencies of both Otto and Diesel cycles are identical.

Di l l h hi h i i h f• Diesel cycle operates much higher compression ratios, therefore thermal efficiency of Diesel engines are usually higher than SI engines (35 to 40%). 

• Diesel engines burns fuels more completely than gasoline engines.

Energy content of 1 gallon of diesel on average, 147,000 BTU per ll (155 106 J 3 8 L)

36

gallon (155×106 J per 3.8 L).

Page 10: Heat engines - University of Peradeniya - Sri Lanka -2… · Heat engines • Heat engines ... heat rejection (piston stays still, represents EXHAUST and INTAKE stroke) T3 P There

Dual cycley

• More realistic way to model:• More realistic way to model:Combination of heat transfer processes in gasoline and diesel 

lcycles.

• The relative amount of heat transfer during each process can be adjusted to approximate actual cycle more closely.actual cycle more closely.

37