Heat Engine Introduction

download Heat Engine Introduction

of 27

Transcript of Heat Engine Introduction

  • 8/18/2019 Heat Engine Introduction

    1/27

  • 8/18/2019 Heat Engine Introduction

    2/27

      HE2 Thermal Physics

    Heat Engine

    E

    Hot ody(source of heat)

    *+

    ,old ody(absorbs heat)

    Q2

    $

  • 8/18/2019 Heat Engine Introduction

    3/27

      HE2 Thermal Physics

    Open system

    Example of a Heat Engine

  • 8/18/2019 Heat Engine Introduction

    4/27

      HE2 Thermal Physics

    a

    d

    Internal CombustionEngine

  • 8/18/2019 Heat Engine Introduction

    5/27

      HE2 Thermal Physics

    Comparison of Otto and Diesel Cycles

    combustion

    Q=0

    Q=0

    Work per cycle

    = Area inside

  • 8/18/2019 Heat Engine Introduction

    6/27

      HE2 Thermal Physics

    Nuclear Power Plant: A ery !arge HeatEngine

  • 8/18/2019 Heat Engine Introduction

    7/27

      HE2 Thermal Physics

    Heat Engine

    E

    Hot ody(source of heat)

    Q+

    ,old ody(absorbs heat)

    Q2

  • 8/18/2019 Heat Engine Introduction

    8/27

      HE2 Thermal Physics

    E"ciency of a HeatEngine

    E-ciency# η  = $ork out.Heat in%

    Aly /irst 0aw to the workingsubstance%

    ∆U 1 Q+  Q2  W ut in a cycle# ∆U 1 3

     Thus# $ 1 *+  *2!

    1

    2

    1

    21

    1

    1

    Q

    Q

    Q

    QQ

    Q

    W −=

    ==η "ubstituting%

    1Q

    W =

    η 

    0esson%  η  is ma'imum when Q2 is minimum!

  • 8/18/2019 Heat Engine Introduction

    9/27

      HE2 Thermal Physics

    #$e %tirlingEngine

    •,losed system

    •4erates between two bodies with (small) di5erent

    temeratures!

    "ee%htt%..www!animatedengines!com.ltdstirling!shtml

  • 8/18/2019 Heat Engine Introduction

    10/27

      HE2 Thermal Physics

    isothermal

    isothermal

    1 air tem

    1hotwater

    Heatin

    Heatout

    T H8T 

    ,

    #$e %tirling Cycle

    (T H 9 T , ) is

    roortional to theamount of work

    that is done in acycle!

    2

  • 8/18/2019 Heat Engine Introduction

    11/27

  • 8/18/2019 Heat Engine Introduction

    12/27

      HE2 Thermal Physics

    Carnot Cycle

    Hot :eservoirT +

    ,old :eservoirT 2

    ,

    Q+

    Q2

  • 8/18/2019 Heat Engine Introduction

    13/27

      HE2 Thermal Physics;olume

    Pressure

    a

    b

    •d

    T 1

    Q1

    Carnot Cycle

    Q2

    nRT P 

      1=

    γ  V 

    const P 

    .=

    T 2•c

    Q=0Q=0

    nRT P 

      2=

  • 8/18/2019 Heat Engine Introduction

    14/27

      HE2 Thermal Physics;olume

    Pressure

    a

    b

    •d

    T 1

    Q1

    Q2

    nRT P 

      1=

    γ  V 

    const P 

    .=

    T 2•c

    Q=0Q=0

    nRT P 

      2=

    W

    Carnot Cycle

  • 8/18/2019 Heat Engine Introduction

    15/27

  • 8/18/2019 Heat Engine Introduction

    16/27

      HE2 Thermal Physics

    Carnot Cycle

    $e see that%

    11

    2

    1

    −−

        

      =  

      

      =

    γ  γ  

    a

    b

    c

    V V 

    V V 

    T T 

    a

    b

    c

    V =

    $hich means that

    >ow also%)/ln(

    )/ln(

    )/ln(

    )/ln(

    2

    1

    2

    1

    2

    1

    d c

    ab

    d c

    ab

    V V T 

    V V T 

    V V nRT 

    V V nRT 

    Q

    Q==

     This is an imortant result! Temerature can bede?ned (on the absolute (@elvin) scale) in terms of

    the heat ows in a ,arnot ,ycle!

    ut as thevolume ratiosare e=ual%

    2

    1

    2

    1

    T T 

    QQ =

  • 8/18/2019 Heat Engine Introduction

    17/27

      HE2 Thermal Physics

    ($at)s %pecial about aCarnot Cycle*

    +,-  Heat is transferred to.from only two reservoirsat fxed  temeratures# T + and T 2 9 not at a variety of

    temeratures!

    +.-  Heat transfer is the most e-cient ossiblebecause the temerature of the working substancee=uals the temerature of the reservoirs! >o heatis wasted in owing from hot to cold!

    +/-  The cycle uses an adiabatic rocess to raiseand lower the temerature of the workingsubstance! >o heat is wasted in heating u theworking substance!

    +0-  ,arnot cycles are reversible! >ot all cycles areB

  • 8/18/2019 Heat Engine Introduction

    18/27

  • 8/18/2019 Heat Engine Introduction

    19/27

      HE2 Thermal Physics

    E"ciency of a %tirling Engine

    1uestion: $hat is the ma'imum ossible

    e-ciency of a "tirling engine oerating betweenroom temerature (2C ,) and boiling water (+33,)F

    1uestion:  $hat is the ma'imum ossible

    e-ciency of a "tirling engine oerating betweenroom temerature (2C ,) and ice (3 ,)F

    Ga'imum e-ciency would be achieved by a Carnotcycle oerating between reservoirs at T+ 1 I @

    and T2 1 2JK @!

    1

    =20.0=373

    2981=

    Q

    W cη 

    1

    =08.0=298

    2731=

    Q

    W cη 

  • 8/18/2019 Heat Engine Introduction

    20/27

      HE2 Thermal Physics

    2el3in4Planc5 %tatement of t$e%econd !aw of #$ermodynamics

    6t is imossible to construct a device that 9oerating in a cycle 9 will roduce no other

    e5ect than the e'traction of heat from a singlebody and the erformance of an e=uivalentamount of work7

    Or LA cyclical engine cannot convert heat

    from a single body comletely into work!"ome heat must be re&ected at a lowertemerature! Thus# e-ciency# η  D +B

  • 8/18/2019 Heat Engine Introduction

    21/27

  • 8/18/2019 Heat Engine Introduction

    22/27

  • 8/18/2019 Heat Engine Introduction

    23/27

      HE2 Thermal Physics

    6efrigerator: A $eat engine operating inre3erse

    E

    Hot ody

    Q+

    ,old ody 

    Q2

    Q

    work 

    heat 

    in

    out 

    2==η 

    Refrigerator Efficiency:

  • 8/18/2019 Heat Engine Introduction

    24/27

      HE2 Thermal Physics

    6efrigerator E"ciency

    Q

    work 

    heat 

    in

    out 

    2==η 

    21

    2

    QQQ R−

    =η 

    /irst 0aw tells us that Q2 < W  9Q+ 1 3!

     Thus# W  1 Q+  Q2

    2

    21

    2

    1

    2

    1

    2

    21

    11

    1

    T T 

    Q

    Q

    Q

    QQ

    c R

    =−=−=

    =η 

    /or a ,arnot refrigerator# the e-ciency is%

    21

    2

    T T 

    T c R −

    =η E-ciency is usually 8+B

     The smaller the T  di5erence# the more

    e-cient is the refrigerator!

  • 8/18/2019 Heat Engine Introduction

    25/27

      HE2 Thermal Physics

    Clausius %tatement of t$e %econd!aw of #$ermodynamics

    (alies to refrigerators)

    6t is imossible to construct a device that 9

    oerating in a cycle 9 will roduce no othere5ect than heat transfer from a colder body tohotter body!7

    64rLHeat cannot ow from a cold body to ahotter body by itself! $ork has to be done inthe rocess!7

  • 8/18/2019 Heat Engine Introduction

    26/27

      HE2 Thermal Physics

  • 8/18/2019 Heat Engine Introduction

    27/27

    HE2 Thermal Physics

     E"ciency of a Heat Pump

     The urose of a heat um is to e'tract heat from acold body (such as the :iver Thames) and 6um7 it toa hot body (such as an o-ce building)!

     The /irst 0aw tells us that W  1 Q+9Q

    2"o#

    substituting# we ?nd%

    1221

    1

    21

    1

    /1

    1

    T T T T 

    QQ

    QC hp −

    =−

    =−

    =η 

    η hp is always 8 +B /or ma'imum η , T 2 should be ≅ T + (&ustslightly less)

    QC hp

    1=η 

     The e-ciency is de?ned as the amount of heat umedin to the hot body er the amount of work done%