Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and...

15
Heat and Mass Transfer Series Editors: D. Mewes and F. Mayinger

Transcript of Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and...

Page 1: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Heat and Mass Transfer

Series Editors: D. Mewes and F. Mayinger

Page 2: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Franz Mayinger . Oliver Feldmann (Eds)

Optical Measurements Techniques and Applications

Second corrected and revised Edition

With 238 Figures

~ Springer

Page 3: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Series Editors Prof. -Dr.-Ing. DieterMewes Universität Hannover Institut für Verfahrenstechnik Callinstr. 36 30167 Hannover, Germany

Editors Prof. em. Dr.-Ing. E.h. Franz Mayinger Dr.-Ing. Oliver Feldmann Technische Universität München Lehrstuhl für Thermodynamik Boltzmannstr.15 85748 Garching, Germany

Library of Congress Control Number: 2001020640

Prof. em. Dr.-Ing. E.h. Franz Mayinger Technische Universität München Lehrstuhl für Thermodynamik Boltzmannstr.15 85748 Garching, Germany

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-3-642-63079-8 ISBN 978-3-642-56443-7 (eBook) DOI 10.1007/978-3-642-56443-7

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad­casting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Sprin­ger. Violations are liable to prosecution under German Copyright Law.

© Springer-Verlag Berlin Heidelberg 2001 Originally published by Springer-Verlag Berlin Heidelberg New York in 2001 Softcover reprint ofthe bardeover 2nd edition 2001

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro­tective laws and regulations and therefore free for general use.

Typesetting: Digital data supplied by editors Final processing: PTP-Berlin Protago-TEX-Production GmbH, Berlin (www.ptp-berlin.com) Cover-Design: deblik Berlin Printedon acid-free paper 62/3141/Yu- 54 3 2 1 o

Page 4: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Preface

Increasing possibilities of computer-aided data processing have caused a new revival of optical techniques in many areas of mechanical and chemical engi­neering. Optical methods have a long tradition in heat and mass transfer and in fluid dynamics. Global experimental information is not sufficient for de­veloping constitution equations to describe complicated phenomena in fluid dynamics or in transfer processes by a computer program. Furthermore, a detailed insight with high local and temporal resolution into the thermo­and fluiddynamic situations is necessary.

Sets of equations for computer program in thermo dynamics and fluid dynamics usually consist of two types of formulations: a first one derived from the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or turbulent diffusion. For reliably predicting the heat transfer, for example, the velocity and temperature field in the boundary layer must be known, or a physically realistic and widely valid correlation describing the turbulence must be avail­able. For a better understanding of combustion processes it is necessary to know the local concentration and temperature just ahead of the flame and in the ignition zone.

Here optical measuring techniques provide comprehensive and detailed information. Its results also supply valuable evidence on the formation of phase interfaces, on particle movement, or on the size distribution of droplet swarms. By using the results of optical measuring techniques, not only is it possible to improve computer programs to give a better description of physical processes and a better adapt ion to the physical reality but also these optical techniques are very sensitive touchstones for checking the grade of reliability and the extent of general validity of computer programs.

On the other side, evaluating optical data, for example from a hologram, from an interferogram, from Raman-spectroscopy, or from laser-induced­fluo-rescence signals, has become much faster. A few years ago it took hours to evaluate an interferogram. The same work is done today by a computer within seconds. But also the huge storage capacity of modern computers -even of the PC type - was an important requirement for preparing the way for the revival of optical methods.

Page 5: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

VI Preface

The book is intended to demonstrate the possibilities of optical measur­ing techniques - especially image-forming techniques - and to introduce the processes of recording, reprocessing and electronically evaluating the data. It is intended to inform the reader to such an extent that he can design and construct simple experimental set-ups. For more difficult and highly sophis­ticated techniques he is referred to the specialist literature in the field.

Munich, April 1996 Franz Mayinger

Page 6: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Preface to the 2nd Edition

The first edition of the book "Optical Measurements - techniques and appli­cations" found so much interest, that it was out of sale within a few years. The present second edition comprises the completely revised first edition and is supplemented by new contributions on the latest developements in "Phase­Doppler-Velocimetry" and "Paticle-Image-Velocimetry" .

It was a special matter of concern of both the editors and the authors not only to describe and to explain the fundamentals of optical measuring techniques, but also to give guidelines for their application and to demon­strate the capability of the various methods. In combination with that ef­fort, a CD-ROM is added as a supplement to this book, which demonstrates the applicability of visualisation methods, such as Fluorescence, Schlieren­photography, Holography and Holografic Interferometry combined with High Speed Cinematography. The high-speed-movies on the CD-ROM give vigor­ous impressions of fluiddynamic transport phenomena in technical processes.

The book provides comprehensive and detailed information on most of the modern optical measuring techniques being of interest for engineers and physicists in practice. It is also of interest to Master- and Ph.D.- students who want to become familiar with optical measuring techniques.

The editors would like to thank each author for his outstanding contri­bution to this book. We also wish to acknowledge "Springer Verlag" for its contribution towards the publication of the book.

Munich, August 2000

Franz Mayinger Oliver Feldmann

Page 7: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

List of Contributors

Prof. P. Andresen Fakultat fur Physik D3 Universitat Bielefeld D - 33501 Bielefeld [email protected]­bielefeld.de

Dr. M.Buchmann Institut fur Verfahrenstechnik Universitat Hannover D - 30167 Hannover [email protected]

Dr. A. Chavez l

Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

B.Durst l

Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Dr. V.Ebert Physikalisch-Chemisches Institut Universitat Heidelberg D - 69120 Heidelberg [email protected]­heidelberg. de

A.Eder Lehrstuhl A fur Thermodynamik Technische Universitat Miinchen D - 85747 Garching [email protected]

O.Feldmann Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Dr. P. Gebhard l

Lehrstuhl A fur Thermodynamik Technische Universitat Miinchen D - 85747 Garching [email protected]

C. Gerlach Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

U. GHickert Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Page 8: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

X List of Contributors

Dr. M. Jordanl Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Dr. B. Kruppal Lehrstuhl A fUr Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Prof. F. Mayinger Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Prof. W. Merzkirch Lehrstuhl fur Stromungslehre Universitat GH Essen D - 45117 Essen wolfgang.merzkirch@uni­essen.de

Prof. D. Mewes Institut fur Verfahrenstechnik U niversitat Hannover D - 30167 Hannover [email protected]

B.Ofner Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

M. Pitschmann Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

R.Schmidt Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Prof. J. Straub Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Dr. G. Strubel Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

R.Tauscher Lehrstuhl A fur Thermodynamik Technische Universitat Munchen D - 85747 Garching [email protected]

Prof. J. Wolfrum Physikalisch-Chemisches Institut Universitat Heidelberg D - 69120 Heidelberg [email protected]

1 Authors marked with 1 formerly worked at the "Lehrstuhl A fur Ther­modynamik". Please refer to the given e-mail address in case of any questions.

Page 9: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Contents

1 Introduction.............................................. 1 Franz Mayinger and Oliver Feldmann

2 The Schlieren Technique .................................. 5 Andreas Eder, Martin Jordan 2.1 Introduction............................................... 5 2.2 Basic Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Optical and Thermodynamic Interrelations. . . . . . . . . . . . . . . . . . . . 6

2.3.1 Refraction Index and Temperature Field. . . . . . . . . . . . . . . 7 2.3.2 The Deflection of Light in an Inhomogeneous Medium. . . 7

2.4 Application of the Schlieren Technique. . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 Application to Transient Combustion Research. . . . . . . .. 13

The Schlieren Cinematography . . . . . . . . . . . . . . . . . . . . . .. 13 The Color Schlieren Technique. . . . . . . . . . . . . . . . . . . . . .. 15

2.4.2 Application to Fuel-Injection Systems. . . . . . . . . . . . . . . .. 15

3 Fundamentals of Holography and Interferometry . . . . . . . . .. 17 Franz Mayinger 3.1 Abstract.................................................. 17 3.2 Introduction............................................... 17 3.3 Principle of Holography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 3.4 Simple Holographic Arrangement. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 3.5 Holographic Interferometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24

3.5.1 Double Exposure Technique. . . . . . . . . . . . . . . . . . . . . . . . .. 24 3.5.2 Real-Time Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28 3.5.3 Evaluation of the Interferograms. . . . . . . . . . . . . . . . . . . . .. 31 3.5.4 Finite Fringe Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33

3.6 An Interference Method for Simultaneous Heat and Mass Transfer 36 3.7 Comparison with Classical Methods .......................... 40

4 Holographic Interferometry ... . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 Robert Tauscher 4.1 Introduction............................................... 44 4.2 Components of a Holographic Interferometer. . . . . . . . . . . . . . . . . .. 44

4.2.1 Light Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44 4.2.2 Optical Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44

Page 10: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

XII Contents

4.2.3

4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10

Shutter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. 45

Beam Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 Attenuation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 Beam Expander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 Mirrors, Lenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 Recording Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 Piezo Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47 Test Facility ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48

4.3 Evaluation of Interferograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48 4.3.1 Theoretical Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48 4.3.2 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53

4.3.3 Calculation of Temperature and Concentration Distribu-tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53

4.3.4 Determination of the Local Heat Transfer Coefficient. . .. 54 4.4 Examples................................................. 54

4.4.1 Determination of the Temperature Distribution in a Com-pact Plate Heat Exchanger with Plain Fins ..... . . . . . .. 54 Description of the Test Section . . . . . . . . . . . . . . . . . . . . . .. 54 Description of the Interferograms . . . . . . . . . . . . . . . . . . . .. 56

5 Short Time Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59 Oliver Feldmann, Peter Gebhard, Anselmo Chavez 5.1 Introduction............................................... 59

5.1.1 Historical development of holography . . . . . . . . . . . . . . . . .. 59 5.1.2 The holographic image. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60 5.1.3 Holography as an optical measurement method. . . . . . . .. 61

5.2 Elements of holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62 5.2.1 Recording materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62 5.2.2 The pulsed laser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 5.2.3 Optical set-up ..................................... 66 5.2.4 Adjusting the holographic camera .................... 67 5.2.5 Recording, development and reconstruction of holograms 69

Amplitude hologram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 Phase hologram .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69

5.3 Application example: Dispersion characteristics in stirred bubble columns. . . . . . . . . . . .. 70 5.3.1 Statement of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 5.3.2 Recording the holograms. . . . . . . . . . . . . . . . . . . . . . . . . . .. 72 5.3.3 Reconstruction and evaluation of the holograms. . . . . . .. 73 5.3.4 Stereo matching of the two holograms. . . . . . . . . . . . . . . .. 74 5.3.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75

Page 11: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Contents XIII

6 Evaluation of holograms by digital image processing. . . . . .. 79 Oliver Feldmann, Robert Tauscher 6.1 Introduction............................................... 79

6.1.1 Digitization of a picture ............................ 80 6.1.2 Gray value pictures ................................ 80 6.1.3 Operations with gray value images. . . . . . . . . . . . . . . . . . .. 82

6.2 A digital image processing system for the evaluation of holo-graphic reconstructions ..................................... 85 6.2.1 Evaluation of holographic images .................... 85

Scanning of in-line holograms ....................... 85 Scanning of off-axis holograms . . . . . . . . . . . . . . . . . . . . . .. 86

6.2.2 set-up of a digital image processing system ... . . . . . . . .. 87 6.3 Image processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 87

6.3.1 Evaluation of single pulsed holograms. . . . . . . . . . . . . . . .. 88 6.3.2 Evaluation of double pulsed holograms . . . . . . . . . . . . . . .. 89 6.3.3 Stereo matching algorithm. . . . . . . . . . . . . . . . . . . . . . . . . .. 93 6.3.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93

6.4 Evaluation of interferograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94

7 Light Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99 Boris Kruppa, Gernoth Strube, Christo! Gerlach 7.1 Introduction............................................... 99 7.2 Scattering Processes ........................................ 101

7.2.1 Interaction of Light and Matter ...................... 101 7.2.2 Elastic Scattering ................................... 102 7.2.3 Inelastic Scattering ................................. 103

7.3 Light Scattering Techniques in Heat Transfer .................. 104 7.3.1 Mie-Scattering ..................................... 104 7.3.2 Rayleigh-Scattering ................................. 107 7.3.3 Raman-Scattering .................................. 108 7.3.4 Laser Induced Fluorescence (LIF) ..................... 111 7.3.5 Absorption ........................................ 112

7.4 Concluding Remarks ........................................ 115

8 Laser-Doppler Velocimetry ............................... 117 Andreas Eder, Bodo Durst, Martin Jordan 8.1 Introduction ............................................... 117 8.2 Principles of LDV .......................................... 118 8.3 Optics .................................................... 119 8.4 Signal Processing ........................................... 121 8.5 Seeding Particles ........................................... 123 8.6 Determination of Characteristic Turbulence-Quantities .......... 124

8.6.1 Fundamentals of Turbulent Flows ..................... 124 8.6.2 Measurement of Turbulence-Quantities ................ 134

Page 12: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

XIV Contents

9 Phase Doppler Anemometry (PDA) ....................... 139 Bernd Oiner 9.1 Introduction ............................................... 139 9.2 General considerations for the application of PDA .............. 139 9.3 Principles of PDA .......................................... 140

9.3.1 Light-scattering by particles ......................... 140 9.3.2 Optical parameters of a Phase Doppler Measurement Sys-

tern ............................................... 142 9.3.3 Phase-diameter relationship ......................... 142

9.4 Measurement accuracy ...................................... 146 9.5 Applications of PDA ........................................ 147

10 Dynamic Light Scattering . ............................... 153 Boris Kruppa, Martin Pitschmann, Johannes Straub 10.1 Introduction ............................................... 153 10.2 Overview .................................................. 153 10.3 Light Scattering Theory ..................................... 156

10.3.1 Scattering Geometry and Assumptions ................ 156 10.3.2 Temporal and Spatial Behavior of Scattered Light ...... 158 10.3.3 Correlation Functions ............................... 159 10.3.4 Hydrodynamic Fluctuation Theory ................... 164

10.4 Experimental Methods ...................................... 166 10.4.1 Homodyne Method ................................. 166 10.4.2 Heterodyne Method ................................. 169

10.5 Measurement of Thermal Diffusivity .......................... 170

11 Raman Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Gernoth Strube 11.1 Introduction ............................................... 173 11.2 Theoretical Basics of Raman Spectroscopy. . . . . . . . . . . . . . . . . . . . . 174

11.2.1 Concentration Measurements ......................... 177 11.2.2 Temperature Measurement ........................... 180

General Considerations .............................. 180 Thermometry by Rotational Raman Spectroscopy ...... 182 Thermometry by Vibrational Raman Spectroscopy ...... 185

11.3 Experimental set-up ........................................ 188 11.3.1 Laser ............................................. 190 11.3.2 Focussing and Collection Lenses ...................... 191 11.3.3 Spectral Frequency Selection ......................... 192 11.3.4 Photon Converters .................................. 192 11.3.5 Data Acquisition and Control ........................ 193

11.4 Selected Applications ....................................... 194 11.5 Concluding Remarks ........................................ 198

Page 13: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Contents XV

12 Laser induced Fluorescence .............................. 199 Peter Andresen 12.1 Introduction ............................................... 199 12.2 Basic Principles of Laser Induced Fluorescence ................. 201

12.2.1 General Considerations .............................. 201 12.2.2 Concentration Measurement ......................... 207 12.2.3 Temperature Measurement ........................... 208 12.2.4 'Itacer LIF ......................................... 210

12.3 Experimental Setup and Procedures .......................... 211 12.3.1 Experimental Setup ................................. 211 12.3.2 Experimental and Evaluation Procedures .............. 215

12.4 Selected Applications ....................................... 221 12.5 Concluding Remarks ........................................ 228

13 Absorption ............................................... 231 Volker Ebert, Jiirgen Wolfrum 13.1 Introduction ............................................... 231 13.2 Line spectra ............................................... 232

13.2.1 Position ........................................... 233 13.2.2 Shape and width ................................... 233

A. Natural line broadening ........................... 234 B. Doppler broadening .............................. 234 C. Collisional broadening ............................ 235 D. Voigt function-Mixed line shapes .................. 236

13.2.3 Line strength ...................................... 238 13.3 Experimental techniques .................................... 243

13.3.1 Overview .......................................... 243 Techniques used in absorption spectroscopy ............ 246

13.3.2 Experimental examples .............................. 248 A. In situ measurements of ammonia concentration in

industrial combustion systems .................. 248 B:sFast temperature measurements with tunable diode

lasers ........................................ 252 C; Harmonic detection techniques for the measurement

of small absorptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 D. Simultaneous in-situ detection of oxygen and water

in a full scale waste incinerator with near infrared diode lasers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

E. In situ determination of free radicals in flames . . . . . . . 266

14 Pyrometry and Thermography ........................... 270 Udo L. Gliickert, Robert Schmidt 14.1 Introduction ............................................... 270 14.2 Temperature Radiation ..................................... 271 14.3 Method of 'Itansmission ..................................... 278

Page 14: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

XVI Contents

14.4 Radiation Receiver (Detector) ............................... 280 14.5 Thermal Cameras - Thermography Image Systems ............. 283 14.6 Pyrometers ................................................ 286

14.6.1 Classification According to Construction Types ......... 289 14.6.2 Filament and Quotient Pyrometers ................... 289 14.6.3 IR Recording Heads ................................. 290

14.7 Error Potential. ............................................ 290 14.7.1 Error Sources During Recording ...................... 290 14.7.2 Equipment Error ................................... 291 14.7.3 Problems with Thermograph Readings ................ 293

14.8 Appendix ................................................. 294 14.8.1 Important Constants ................................ 294 14.8.2 Further Information and Tables ...................... 294

15 Tomography ............................................. 300 Mathias Buchmann, Dieter Mewes 15.1 Introduction ............................................... 300 15.2 Integral Measurement Methods .............................. 303

15.2.1 Absorption Methods ................................ 305 15.2.2 Interferometric Methods ............................. 305

15.3 Mathematical Reconstruction Methods ........................ 307 15.3.1 Algebraic Reconstruction Methods .................... 309

Matrix Methods .................................... 309 Iterative Series Expansion ........................... 312

15.3.2 Explicit Reconstruction Methods ..................... 318 Fourier Transform Method ........................... 319 Analytical Solution of Integral Equations .............. 322

15.3.3 Comparison of Reconstruction Methods ............... 324 15.4 Implementations ........................................... 329

15.4.1 Measurement of temperature fields in stirred vessels ..... 330 15.4.2 Measurement of micro- and macromixing with the tomo-

graphical dualwavelenght tomography ................. 333 15.4.3 Tomographic measurements of flames with the Schlieren

effect .............................................. 336 15.4.4 Chemical species tomography by near infra-red absorption 337

16 Particle Image Velocimetry .............................. 340 Wolfgang M erzkirch 16.1 Introduction ............................................... 340 16.2 Hardware for the experimental set-up ......................... 341 16.3 Evaluation software ......................................... 345 16.4 Three-dimensional flow ..................................... 353 16.5 Applications ............................................... 354

Page 15: Heat and Mass Transfer978-3-642-56443-7/1.pdffrom the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or

Contents XVII

Nomenclature . ............................................... 358

References . ................................................... 371

Index ......................................................... 397