HBM, current and future applications

19
Paolo Vineis Imperial College London HuGeF Foundation, Torino The role of the ”omics-techniques” in HBM, current and future applications BERLIN 19 April 2016

Transcript of HBM, current and future applications

Paolo Vineis

Imperial College London

HuGeF Foundation, Torino

The role of the ”omics-techniques” in HBM, current and future applications

BERLIN 19 April 2016

HBM and epidemiology have different goals. Omics and the exposome have been so far considered in the

context of epidemiological research, i.e. search for causes of disease (causality context) rather than in a

public health/monitoring context

Gallo V, Egger M, McCormack V, Farmer PB, et al. (2011) STrengthening the Reporting of OBservational studies in Epidemiology –

Molecular Epidemiology (STROBE-ME): An Extension of the STROBE Statement. PLoS Med 8(10): e1001117.

doi:10.1371/journal.pmed.1001117

http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.1001117

Exposome - definition

The exposome concept refers to the totality of environmental

exposures from conception onwards, The internal exposome is based

on measurements in biological material of complete sets of biomarkers

of exposure, using repeated biological samples especially during

critical life stages.

Biomarkers which can be measured in this context cover a wide range

of molecules, ranging from xenobiotics and their metabolites in blood

(metabolomics) to covalent complexes with DNA and proteins

(adductomics).

The term omics generally refers to the rigorous study of a complete set

of biological and non-biological molecules with high-throughpu

techniques (Rappaport and Smith 2010).

DATA-DRIVEN DISCOVERY (EWAS)

Molecular epidemiology

Systems biology

Genomics , epigenomics, transcriptomics & experiments

Identify sources & measure exposures

Exposure biology

KNOWLEDGE-DRIVEN APPLICATIONS

Causality and prevention

Drug development

Diagnosis, prognosis and treatment

Disease stage and response to therapy

Biomarkers of exposure

Candidate biomarkers

Diseased vs. healthy (case-control studies) Untargeted designs

Diseased vs. healthy (prospective cohorts) Targeted designs

Discriminating features

Chemical identification

Biomarkers of disease

Serum exposome

S. Rappaport, Biomarkers, 2012,

17(6), 48: 3-9

Advantages of Metabolomics • Minimally or non-invasive

• Can be performed rapidly in an automated fashion

• Suitable for use on a population-wide level

• Proven effectiveness in understanding exposure response, drug response

and disease process in humans

• Low in cost compared to other –omics technologies

BUT:

High potential for variation from experimental or environmental influence

High intra-individual variation

Large sample sizes needed to detect moderate effect sizes

Supervised analysis

defined profiles robustly

associated with known

dietary factors

Nature 2008

Metabolomic profiles as exposure biomarkers in Envirogenomarkers (FP7 funded)

• 10 POPs or heavy metals measured in blood in two prospective cohorts (n=1,800)

• Large number of metabolite features associated with exposure levels

- Higher for POPs than heavy metals

• Results robust for confounder adjustment and

correction for multiple testing

• Substantial crossover in top metabolites for exposures with similar properties

• Exposures highly correlated

• >80% signals replicated in both cohorts

0102030405060708090

100

Cad

miu

m (µ

g/L)

Lead (µ

g/L)

DD

E (pg/m

l)

PC

B1

38

(pg/m

l)

PC

B1

18

(pg/m

l)

PC

B1

53

(pg/m

l)

PC

B1

80

(pg/m

l)

PC

B1

70

(pg/m

l)

HC

B (p

g/ml)

PC

B1

56

(pg/m

l)

No

. me

tab

olit

e f

eat

ure

s

<0.05

<0.01

<0.001

Bonferroni

Cad

miu

m (

n=3

6)

Lead

(n

=36

)

DD

E (n

=65

)

PC

B1

38

(n=6

9)

PC

B1

18

(n=7

6)

PC

B1

53

(n=7

9)

PC

B1

80

(n=8

6)

PC

B1

70

(n=8

7)

HC

B (

n=9

2)

Lead (n=36) 5

DDE (n=65) 9 23

PCB138 (n=69) 8 27 54

PCB118 (n=76) 11 29 60 62

PCB153 (n=79) 10 28 57 69 66

PCB180 (n=86) 10 32 52 63 65 72

PCB170 (n=87) 10 32 53 64 64 73 84

HCB (n=92) 9 29 63 67 68 75 74 76

PCB156 (n=92) 11 33 56 64 68 74 83 84 79

No. significant features by exposure

Crossover between significant features (p<0.05)

Challenges: 1. precious and limited biobanked material, not easily released by PIs 2. single (spot) biological samples 3. usually blood, not urine (which may be better e.g. for metabolomics) 4. no cohorts allow life-course epidemiology 5. in-depth exposure assessment is limited by feasibility (for cancer you need large sample sizes) 6. lab measurements and omics have the same limitations related to sample size and feasibility 7. biostatistical approaches and causal interpretation 8. ethical issues

10

20

30

0 50

ALSPAC EPIC-

ESCAPE

PICCOLI+

Critical stages of life and cohorts in Exposomics

Mid- and late-life

60

Age

Birth

PISCINA

INMA

RHEA

PISCINA RAPTES

OXFORD ST

MCC

SAPALDIA

EPICURO

PISCINA study

• Ongoing experimental study of swimmers in pools

• Exposure to disinfection by-products (DBPs) and their short-term effects

• Extensive identification of DBPs in swimming pool water and air as well as biological samples (exhaled breath, blood and urine) and identify:

- Mutagenicity

- Genotoxicity

- Short-term respiratory health

effects

Metabolomic analysis - PCA

Untargeted metabolomics of blood samples, using UHPLC-QTOF mass

spectrometer

N= 3,761 metabolomic compounds measured in 100% of the samples

The Oxford Street study: integration of exposure data (Paul Cullinan, Imperial College

London), metabolomics (Augustin Scalbert, Dinesh Kumar, IARC), albumin

adductomics (George Preston, King’s College London) and other omics

Serum albumin adducts as biomarkers of exposure

Rappaport, Williams et al., Toxicol. Lett., 2012, 213, 83-90

• Stephen Rappaport’s group (UC Berkeley) have been profiling adducts of human serum albumin.

Oxford Street 2: preliminary data (13 of 59 subjects)

72.1190.11108.11126.11144.11162.11180.11198.11

0

1

2

3

4

5

6

00

1_H

EA_

HP

_T1

_V2

_09

E_2

96

48

_X

00

1_H

EA_

HP

_T2

_V2

_09

F_2

96

49

_X

00

1_H

EA_

HP

_T3

_V2

_09

D_

29

64

7_X

00

1_H

EA_

OX

_T1

_V

1_

09

B_2

96

45

_X0

01

_HEA

_O

X_

T2_

V1

_0

9C

_29

64

6_X

00

1_H

EA_

OX

_T3

_V

1_

09

A_2

96

44

_X

00

1_Q

UA

LITY

CO

NTR

_09

Q_2

96

50

_X

00

1_T

EST_

CA

RR

Y-O

_0

9R

_29

65

1_

X0

09

_HEA

_H

P_T

1_V

1_0

3A

_2

94

17

_X0

09

_HEA

_H

P_T

2_V

1_0

3F_

29

42

2_

X0

09

_HEA

_H

P_T

3_V

1_0

3E_

29

42

1_

X0

09

_HEA

_O

X_

T1_

V2

_0

3D

_29

42

0_

X0

09

_HEA

_O

X_

T2_

V2

_0

3C

_29

41

9_X

00

9_H

EA_

OX

_T3

_V

2_

03

B_2

94

18

_X0

09

_QU

ALI

TYC

ON

TR_0

3Q

_29

42

3_

X0

09

_TES

T_C

AR

RY-

O_

03

R_2

94

24

_X

02

0_C

OP

_HP

_T1

_V2

_04

D_

29

41

2_X

02

0_C

OP

_HP

_T2

_V2

_04

C_

29

41

1_X

02

0_C

OP

_HP

_T3

_V2

_04

B_

29

41

0_X

02

0_C

OP

_OX

_T1

_V

1_

04

A_

29

40

9_

X0

20

_CO

P_O

X_T

2_

V1

_0

4F_

29

41

4_

X0

20

_CO

P_O

X_T

3_

V1

_0

4E_

29

41

3_X

02

0_Q

UA

LITY

CO

NTR

_04

Q_2

94

15

_X

02

9_C

OP

_HP

_T1

_V1

_01

D_

29

10

4_X

02

9_C

OP

_HP

_T2

_V1

_01

C_

29

10

3_X

02

9_C

OP

_HP

_T3

_V1

_01

E_2

91

05

_X

02

9_C

OP

_OX

_T1

_V

2_

01

A_

29

10

1_

X0

29

_CO

P_O

X_T

2_

V2

_0

1B

_29

10

2_

X0

29

_CO

P_O

X_T

3_

V2

_0

1F_

29

10

6_

X0

29

_QU

ALI

TYC

ON

TR_0

1Q

_29

10

7_

X0

31

_CO

P_H

P_

T1_V

1_1

2C

_2

96

63

_X0

31

_CO

P_H

P_

T2_V

1_1

2E_

29

66

5_

X0

31

_CO

P_H

P_

T3_V

1_1

2A

_29

66

1_X

03

1_C

OP

_OX

_T1

_V

2_

12

B_2

96

62

_X

03

1_C

OP

_OX

_T2

_V

2_

12

F_2

96

66

_X

03

1_C

OP

_OX

_T3

_V

2_

12

D_

29

66

4_

X0

31

_QU

ALI

TYC

ON

TR_1

2Q

_29

66

7_

X0

31

_TES

T_C

AR

RY-

O_

12

R_2

96

68

_X

04

8_C

OP

_HP

_T1

_V2

_11

E_2

96

57

_X

04

8_C

OP

_HP

_T2

_V2

_11

F_2

96

58

_X0

48

_CO

P_H

P_

T3_V

2_1

1D

_2

96

56

_X0

48

_CO

P_O

X_T

1_

V1

_1

1B

_29

65

4_

X0

48

_CO

P_O

X_T

2_

V1

_1

1C

_29

65

5_

X0

48

_CO

P_O

X_T

3_

V1

_1

1A

_2

96

53

_X

04

8_Q

UA

LITY

CO

NTR

_11

Q_2

96

59

_X

05

2_C

OP

_HP

_T1

_V1

_05

C_

29

39

4_X

05

2_C

OP

_HP

_T2

_V1

_05

E_2

93

96

_X

05

2_C

OP

_HP

_T3

_V1

_05

A_2

93

92

_X0

52

_CO

P_O

X_T

1_

V2

_0

5B

_29

39

3_

X0

52

_CO

P_O

X_T

2_

V2

_0

5F_

29

39

7_

X0

52

_CO

P_O

X_T

3_

V2

_0

5D

_2

93

95

_X

05

2_Q

UA

LITY

CO

NTR

_05

Q_2

93

98

_X

05

5_I

HD

_H

P_T

1_

V1

_1

0B

_30

07

5_

X0

55

_IH

D_

HP

_T3

_V

1_

10

A_3

00

74

_X

05

5_I

HD

_O

X_

T1_V

2_1

0E_

30

07

7_

X0

55

_IH

D_

OX

_T2

_V2

_10

F_3

00

78

_X0

55

_IH

D_

OX

_T3

_V2

_10

D_

30

07

6_X

05

5_Q

UA

LITY

CO

NTR

_10

Q_3

00

79

_X

06

3_I

HD

_H

P_T

1_

V2

_0

6D

_29

40

3_

X0

63

_IH

D_

HP

_T2

_V

2_

06

C_2

94

02

_X

06

3_I

HD

_H

P_T

3_

V2

_0

6B

_29

40

1_

X0

63

_IH

D_

OX

_T1

_V1

_06

A_2

94

00

_X0

63

_IH

D_

OX

_T2

_V1

_06

F_2

94

05

_X0

63

_IH

D_

OX

_T3

_V1

_06

E_2

94

04

_X

06

3_Q

UA

LITY

CO

NTR

_06

Q_2

94

06

_X

06

3_T

EST_

CA

RR

Y-O

_0

6R

_29

40

7_

X0

72

_CO

P_H

P_

T1_V

2_1

6B

_2

97

96

_X0

72

_CO

P_H

P_

T2_V

2_1

6F_

29

79

9_X

07

2_C

OP

_HP

_T3

_V2

_16

D_

29

79

7_X

07

2_C

OP

_OX

_T2

_V

1_

16

E_2

97

98

_X0

72

_CO

P_O

X_T

3_

V1

_1

6A

_2

97

95

_X

07

2_Q

UA

LITY

CO

NTR

_16

Q_2

98

00

_X

08

0_I

HD

_H

P_T

1_

V1

_0

2C

_29

11

1_

X0

80

_IH

D_

HP

_T2

_V

1_

02

E_2

91

13

_X0

80

_IH

D_

HP

_T3

_V

1_

02

A_2

91

09

_X

08

0_I

HD

_O

X_

T1_V

2_0

2B

_2

91

10

_X0

80

_IH

D_

OX

_T2

_V2

_02

F_2

91

14

_X0

80

_IH

D_

OX

_T3

_V2

_02

D_

29

11

2_X

08

0_Q

UA

LITY

CO

NTR

_02

Q_2

91

15

_X

08

0_T

EST_

CA

RR

Y-O

_0

2R

_29

11

6_

X1

01

_IH

D_

HP

_T1

_V

2_

07

A_2

96

26

_X

10

1_I

HD

_H

P_T

2_

V2

_0

7B

_29

62

7_

X1

01

_IH

D_

HP

_T3

_V

2_

07

F_2

96

31

_X

10

1_I

HD

_O

X_

T1_V

1_0

7D

_2

96

29

_X1

01

_IH

D_

OX

_T2

_V1

_07

C_

29

62

8_X

10

1_I

HD

_O

X_

T3_V

1_0

7E_

29

63

0_

X1

01

_QU

ALI

TYC

ON

TR_0

7Q

_29

63

2_

X1

02

_IH

D_

HP

_T1

_V

1_

15

F_2

97

56

_X

10

2_I

HD

_H

P_T

2_

V1

_1

5E_

29

75

5_X

10

2_I

HD

_H

P_T

3_

V1

_1

5C

_29

75

3_

X1

02

_IH

D_

OX

_T1

_V2

_15

A_2

97

51

_X1

02

_IH

D_

OX

_T2

_V2

_15

B_

29

75

2_X

10

2_I

HD

_O

X_

T3_V

2_1

5D

_2

97

54

_X1

02

_QU

ALI

TYC

ON

TR_1

5Q

_29

75

7_

X

Ad

de

d m

ass

/ D

a A

dd

uct

am

ou

nt

/ ar

bit

rary

un

its

Sample ID

Epigenetic Variation related to exposures (smoking)

N F C

DNA methylation in blood identifies “Former Smokers”

Molecular quantification of past exposure

= measured individual risk Shenker et al, Epidemiology 2013

Shenker et al, HMG 2013

Hypomethylation of the AHRR and F2RL3 genes is associated with lung cancer: genome-wide study in three prospective

cohorts (Fasanelli et al, Nature Comm. 2015)(also replicated in MCCS and EPIC-Heidelberg)

Hypomethylation of the AHRR and F2RL3 genes is associated with lung cancer: genome-wide study in two prospective

cohorts (Polidoro, Fasanelli, Ponzi)(also replicated in MCCS)

NOWAC

cases controls OR 95% CI p-value

AHRR cg05575921

Unadjusted 124 122 0.37

0.31-0.54 3.33x10-11

Adjusted 124 122 0.39 0.24-0.61 2.55x10-5

Never 11 54 0.60 0.07-5.19 0.04375

Former 41 33 0.23 0.10-0.56 0.001

Current 72 35 0.46 0.24-0.88 0.019

F2RL3 cg03636183

Unadjusted 124 122 0.46

0.31-0.56 3.86x10-10

Adjusted 124 122 0.51 0.35-0.73 4.19x10-4

Never 11 54 1.07 0.29-4.00 0.916

Former 41 33 0.25 0.35-0.55 0.001

Current 72 35 0.55 0.32-0.94 0.030

Rappaport, Vineis, Scalbert et al., Environ. Health Perspect., 2014, 122, 8, 769-774

From the literature we obtained human blood concentrations of 1,561 small

molecules and metals derived from foods, drugs, pollutants, and

endogenous processes. Blood concentrations spanned 11 orders of

magnitude and were indistinguishable for endogenous and food chemicals

and drugs, whereas those of pollutants were 1,000 times lower.

Method

dynamic

range

Thank you

19