Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. ·...

24
Institut für Strukturphysik, TU Dresden, Christian Schroer ([email protected]) Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive lenses Christian G. Schroer Institute of Structural Physics, Technische Universität Dresden D-01062 Dresden e-mail: [email protected] http://www.nanoprobe.de Tuesday, June 28, 2011

Transcript of Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. ·...

Page 1: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

Institut für Strukturphysik, TU Dresden, Christian Schroer ([email protected])

Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive lenses

Christian G. SchroerInstitute of Structural Physics, Technische Universität DresdenD-01062 Dresdene-mail: [email protected]://www.nanoprobe.de

Tuesday, June 28, 2011

Page 2: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Collaboration

2

B. LengelerII. Phys. Institut, RWTH Aachen, Aachen

M. Burghammer, C. Riekel, S. SchöderESRF, Grenoble, France

G. Falkenberg, J. Gulden, A. Mancuso, N. Reimers, I. Vartaniants, G. Wellenreuther, E. WeckertHASYLAB, DESY, Hamburg, Germany

P. Boye, J. Feldkamp, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, J. Reinhardt,S. Ritter, D. Samberg, A. Schropp, A. Schwab, F. Seiboth, S. StephanInst. f. Strukturphysik, TU Dresden, Dresden

A. Jahn, K. Richter, K. ViehwegerIHM, TU Dresden, Dresden

HGF: VI-203, VI-403

Tuesday, June 28, 2011

Page 3: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Hard X-Ray Nanoprobe and Scanning Microscopy

3

Highest resolution:

fluorescenceabsorption (XAS)diffraction (SAXS & WAXS)...

diffraction limited imaging of source onto sampleflux on sample given by coherent flux Fc and efficiency T of optic

Scanning microscopy:

different contrasts:

Resolution limited by focus size

source

lens

focus

L1

L2 =L1f

L1 − fImprove resolution (independent of optic):

coherent x-ray diffraction imagingcombined with nanofocusing

Tuesday, June 28, 2011

Page 4: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Brilliance and coherent dose density

4

ERLDiffraction limited beam:

coherent flux is focused!

Coherent flux:

Fc = Br · λ2 · ΔE

E

Defines SNR for all contrast mechanismsin scanning microscopy

Beyond nanobeam resolution:CXDI: resolution limited by dose density

IcΔt =Fc

AΔt

Schropp, Schroer, NJP 12, 035016 (2010)(cf. poster)

Tuesday, June 28, 2011

Page 5: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Optimal Nanofocusing: Optimize Coherent Flux Density

5

Fc = Br · λ2 · ΔE

E

dt = αλ

2NA∝ λ

NAA ∝ d2

t ∝ λ2

NA2

Assume optimal adaptation of aperture to coherence length

focused flux:

F = Fc · T T: efficiency of optic

diffraction limit: focal spot area:

Coherent dose density:

IcΔt =Fc

AΔt ∝ Br︸︷︷︸ ·NA2 · T︸ ︷︷ ︸ ·ΔE

E· Δt

figure of meritfor optic

source limited by sample

Δt: exposure time

Tuesday, June 28, 2011

Page 6: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5 6

parabolic lens shape

Refractive X-Ray Lenses

100 µm

nanofocusing lenses

first realized in 1996 (Snigirev et al.)

a variety of refractive lenses have been developed since

applied in full-field imaging and scanning microscopy

most important to achieve optimal performance:

Lengeler, RWTH

Tuesday, June 28, 2011

Page 7: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Nanofocus

large focal length f: aperture limited by absorption

minimize µ/δ ( small atomic number Z)

100 μm

7

Deff

focus

aper

ture

NA

L2

Deff = 4

√fδ

μ∝

√f

NA =Deff

2f∝ 1√

f( minimize focal length f)

transition to nanofocusing lenses (NFLs)

Tuesday, June 28, 2011

Page 8: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5 8

Optimal diffraction limit (at shortest focal length):

for focal point 1 mm behind horiz. lens

Nanofocusing Lenses

NAmax =√

Tuesday, June 28, 2011

Page 9: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Adiabatically Focusing Lenses

9

Adjust aperture to follow converging beam:

increased refractive power per unit lengthnumerical aperture diverges logarithmicallyperformance limited by feature size

PRL 94, 054802 (2005)

Example: Diamondlow Z high density ρ

exit aperture: 100nm, f = 2.3mm diffraction limit: 4.7 nm

no sharp fundamental limit: limit given by fabrication

Tuesday, June 28, 2011

Page 10: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Hard X-ray Scanning Microscopy at PETRA III

10

Tuesday, June 28, 2011

Page 11: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5 11

Tuesday, June 28, 2011

Page 12: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Scanning Coherent X-Ray Diffraction Imaging: Ptychography

far-field diffraction pattern

Sample is raster scanned through confined beam

At each position of scan: diffraction pattern is recorded

Overlap in illumination between adjacent points

sample

12

J. Rodenburg, H. Faulkner. Appl. Phys. Lett. 85, 4795 (2004),P. Thibault, et al., Science 321, 379 (2008),A. Schropp, et al., Appl. Phys. Lett. 96, 091102 (2010).

Tuesday, June 28, 2011

Page 13: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Ptychographic Microscopy

13

Experiment at P06:

detector: Pilatus 300k (172µm pixel size)

sample-detector distance:2080 mm

exposure time: 1.5 s per point

Sample: NTT AT test pattern

SEM image (I. Snigireva)

Tuesday, June 28, 2011

Page 14: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Scanning Microscopy: Ptychography

1

500 nm

E = 15.25 keV, 125 x 62 steps of 40 x 40 nm2: 5 x 2.48 µm2 FOVexposure: 0.3 s per point

50 nm lines and spaces

Montag, 11. Juli 2011

Page 15: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Nanofocusing Lenses with High Numerical Aperture

16

E = 24.3 keVLens made of Si becomesnearly transparent

Expected focus: 43 x 52 nm2

(diffraction limited)

101x101 scan points40 nm step size0.5 s exposure time

Ptychographic scan:

1 µmArtifact: Graininess

Compton scattering generates background

Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010

Tuesday, June 28, 2011

Page 16: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Nanofocusing Lenses with High Numerical Aperture

16

E = 24.3 keVLens made of Si becomesnearly transparent

Expected focus: 43 x 52 nm2

(diffraction limited)

101x101 scan points40 nm step size0.5 s exposure time

Ptychographic scan:

1 µmArtifact: Graininess

Compton scattering generates background

Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010

Experiment done at ID 13Collaboration for development of nanoprobe

ESRF

Tuesday, June 28, 2011

Page 17: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Nanofocusing Lenses with High Numerical Aperture

16

E = 24.3 keVLens made of Si becomesnearly transparent

Expected focus: 43 x 52 nm2

(diffraction limited)

101x101 scan points40 nm step size0.5 s exposure time

Ptychographic scan:

1 µmArtifact: Graininess

Compton scattering generates background

Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010

Tuesday, June 28, 2011

Page 18: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Focus at High Numerical Aperture

17

E = 24.3 keVLens made of Si becomesnearly transparent

101x101 scan points40 nm step size0.5 s exposure time

Ptychographic scan:

Reconstructed focus

Focus: astigmatism

lenses not perfectly mutually orthogonal

Expected focus: 43 x 52 nm2

(diffraction limited)

Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010

Tuesday, June 28, 2011

Page 19: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Focus at High Numerical Aperture

17

E = 24.3 keVLens made of Si becomesnearly transparent

101x101 scan points40 nm step size0.5 s exposure time

Ptychographic scan:

Reconstructed focus

Focus: astigmatism

lenses not perfectly mutually orthogonal

2x zoom

500 nm

Expected focus: 43 x 52 nm2

(diffraction limited)

Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010

Tuesday, June 28, 2011

Page 20: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Focus at High Numerical Aperture

18

E = 24.3 keVLens made of Si becomesnearly transparent

101x101 scan points40 nm step size0.5 s exposure time

Ptychographic scan:

Focus: astigmatism

lenses not perfectly mutually orthogonal

500 nm

horiz.: 46 nmvert.: 63 nm

Main advantage of Gaussian aperture:

relatively clean Gaussian Beam

Expected focus: 43 x 52 nm2

(diffraction limited)

Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010

Tuesday, June 28, 2011

Page 21: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Focus at High Numerical Aperture

19

Reconstructed focus

Schroer et al., Proc. XRM 2010

500 nmFocus: astigmatism

lenses not perfectly mutually orthogonal

Tuesday, June 28, 2011

Page 22: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Focus at High Numerical Aperture

19

Reconstructed focus

Schroer et al., Proc. XRM 2010

500 nm

Tuesday, June 28, 2011

Page 23: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Compare Resolution and Dose Density

20

1 : 4√

15 ≈ 1 : 1.96 1 : 4√

1875 ≈ 1 : 6.6

≈ 10 nm ≈ 33 nm

siemens starptychography

microchipptychography

gold particleCXDI

dose density [ph/nm2] 100000 800 1500000

measured resolution 10 nm 40 nm 5 nm

dose density ratio1:15 1:1875 1:1

expected resolution ratio1:1

expected resolution5 nm

100 nm1 µm500 nm

PRL 101, 090801 (2008)J. Micro., 241, 9 (2011)

Tuesday, June 28, 2011

Page 24: Hard X-ray Scanning Nanoprobe: coherent nanobeam optics limits; refractive … · 2013. 12. 19. · Schropp, et al., APL 96, 091102 (2010), Schroer, et al., Proc. XRM 2010 Experiment

XDL 2011, WS 5

Current Results and Optimized Experiment at ERL

21

Match coherence with aperture of optic:

increase in flux: > 20 x

ERL: increase brilliance by about 500 x

increase in flux: ~ 500 x

Imaging radiation hard object:

1 µm

gain about 1.5 orders of magnitude in resolution

~ 0.3 nm resolution (NTT test pattern), ~ 1 nm for C based object

Optic: diamond NFL

increase transmission: >10 x

increase NA: ~3 x

IcidealΔt ≈ 20 × 500 × 10 × ·IctodayΔt ≈ 106 · IctodayΔt

IcΔt ∝ Br · NA2 · T · Δt

Tuesday, June 28, 2011