HAPL Modeling Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson...

20
HAPL Modeling Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Ander son Mechanical & Aerospace Engineering University of California, Los Angeles May 15 th , 2006

description

 HEROs: Helium Diffusion  Analytical approach: temperature profile

Transcript of HAPL Modeling Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson...

Page 1: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

HAPL Modeling Ion and Heat

Transport

Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike AndersonMechanical & Aerospace EngineeringUniversity of California, Los Angeles

May 15th, 2006

Page 2: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Outline HEROs: Helium Diffusion

Model revisited Results updated Future schedule

Analytical approach: temperature profile Green’s function formulation Results comparison Plans for next step

Page 3: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

HEROs: Helium Diffusion

Analytical approach: temperature profile

Page 4: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Previous HEROs code has seriousserious numerical instability problem:

In most cases:

Time to be simulated < 100 sec Running Time > 6 hours Time step > 2000 steps Temperature range < 2000 K

Page 5: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

HEROs model is completely revisited Still, spatial & kinetic:

Simplify the equation Ignore some cluster effects:

(e.g. vacancy clusters, interstitial clusters etc.) 18 variables/equations 13 Ignore bubble coalescence

Start from spatial-independent case

Generation Reaction , Diffusion Drift

ii j i iC C C C C

t

Page 6: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

HEROs numerical scheme:

variable bin sizeW front W back

Implantation profileTemperature profile Within a bin, each C(i) isin an average sense

Page 7: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

We want to use our new HEROs code to model different conditions.

Helium Implantation Damage

We re-simulated UWM’s “steady” implantation caseconstant temperature constant temperature

Page 8: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Experiments (Cipiti & Kulcinski, 2004) show:

1 m1 m

1160 °C2.6x1016 He/cm2-s2.5 min.

990 °C8.8x1015 He/cm2-s7.5 min.

1 m

730 °C2.2x1015 He/cm2-s30 min.40 KeV He

On W51018 ion/cm2

Temperature

Pore Size

Pore Density

Page 9: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

New HEROs code is stablestable and gives the correct information about pore sizes:

Page 10: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

So does the pore density …

Page 11: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

HEROs also gives the spatial distribution information (average sense):

40 KeV; Temperature=1160 oC; Bin Number=20; Total width=10m

Page 12: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Irradiation Time (sec)

HeliumAm

ount(appm)

10-6 10-4 10-2 100 102 104 10610-6

10-4

10-2

100

102

104

106

UWM Steady (Polycrystal)

Total ImplantedHe Retention

In GB

In Bubble

In Clusters

Helium retention:

Most of He are in grain boundary

Page 13: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Capabilities of new HEROs code are largely largely improved

HEROs Total time to be simulated

Running time

Required time steps

Temperature range

Previous <100 sec >6 hrs >2000 steps <2000 K

Current >106 sec <5 mins < 100 steps <3500 K

Page 14: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Planning on HEROs: Implement “pulsed” cases:

UWM UNC IFE

Add bubble coalescence

Exceed the 0-order (average) description Include 1st-order size distribution

Page 15: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

HEROs: Helium Diffusion

Analytical approach: temperature profile

Page 16: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

We are doing 1-D heat diffusion: Well-known equation:

Adiabatic boundary condition:

If material properties are constant:

,T TT c T k T Q x tt x x

0

0x

Tx

, amT t T

2 24 4

0 0

1,2

tx x t t x x t t

amQT x t T dt dx e ec t t

, , ,G x x t t

Page 17: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Numerical approximations: Discrete time steps:

Volumetric heating Surface heat

1

1

0 0

,, , , ,

ntn

am n n

Q x tT x t T dt dx G x x t t

T c T

0.7

depl xFQ e

t

Page 18: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Good agreement is achieved:

(Blanchard 2005)

Page 19: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Planning: Real cases of heating:

Volumetric heating IFE condition

Couple temperature into HEROs Same “kinetic-equation” structure 13 variables/equation 14

Page 20: HAPL Modeling  Ion and Heat Transport Qiyang Hu, Nasr Ghoniem, Shahram Sharafat, Mike Anderson Mechanical & Aerospace Engineering University of California,

Thanks!