Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

14

Click here to load reader

Transcript of Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

Page 1: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

LIGHT GREEN SF YELLOWISH

CAS Registry Number 5141-20-8

Chemical Structure

CA Index Name Benzenemethanaminium, N-ethyl-N-[4-[[4-[ethyl[(3-sulfophenyl)methyl]amino]phenyl](4-sulfophenyl)methylene]-2,5-cyclohexadien-1-ylidene]-3-sulfo-, inner salt, sodium salt (1 : 2)

Other Names Benzenemethanaminium, N-ethyl-N-[4-[[4-[ethyl[(3-sulfophenyl)methyl]amino]phenyl](4-sulfophenyl)methylene]-2,5-cyclohexadien-1-ylidene]-3-sulfo-, hydroxide, inner salt, disodium salt; Benzene-methanaminium,N-ethyl-N-[4-[[4-[ethyl[(3-sulfophenyl)methyl]amino]phenyl](4-sulfophenyl)methylene]-2,5-cyclohexadien-1-ylidene]-3-sulfo-, inner salt, disodiumsalt; C.I. Acid Green 5; C.I. Acid Green 5, disodium salt;LightGreen SF;AFGreenNo. 2;AcidBrilliantGreen SF;Acid Green 5; Acid Green A; Acidal Light Green SF;Acilan Green SFG; Acilan Light Green SFG; AmacidGreen G; C.I. 42095; C.I. Food Green 2; D and C GreenNo. 4; FD and C Green No. 2; Fenazo Green 7G; Food

Green 2; Green No. 203; Japan Green 205; Japan GreenNo. 205; Leather Green SF; Light Green Lake; LightGreen SF Yellowish; Light Green SFA; Light Green SFD;Light Green Yellowish; Light SF Yellowish; LissamineGreen SF; Lissamine Lake Green SF; MY/68; Merantine

Green SF; NSC 9619; Pencil Green SF; Sulfo Green J;Sumitomo Light Green SF Yellowish

Merck Index Number 5485

Chemical/Dye Class Triphenylmethane

Molecular Formula C37H34N2Na2O9S3

Molecular Weight 792.85

Physical Form Reddish-brown powder or crystals

Solubility Soluble in water; slightly soluble in ethanol;insoluble in xylene

Melting Point 288 �C (decompose)

Absorption (lmax) 630 nm, 422 nm

Synthesis Synthetic methods1–5

Staining Applications Cell;6,7 cytoplasm;8 endo-scope;9 microorganisms;10 eye membranes;11 retina;12–14

proteins;15 hairs16

Handbook of Biological Dyes and Stains By R. W. Sabnis

Copyright � 2010 John Wiley & Sons, Inc.

N

–O3S N

+

CH3

SO3Na

CH3

SO3Na

261

Page 2: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

BiologicalApplications Cosmetics;17 oral hygiene pro-ducts;18 sunscreen;19 detecting proteins;20 treating apoli-poprotein E-related diseases21

Industrial Applications Color filters;22 recording ma-terials;23 inks;24,25 highlighters;26 adhesives;27 photo-graphic materials;28 detergents;29 textiles;30,31 leather32

Safety/Toxicity Acute toxicity;33,34 carcinogenici-ty;35–38 chronic toxicity;39 genotoxicity;40 mutagenici-ty;41,42 retinal toxicity12–14

Certification/Approval Certified by Biological StainCommission (BSC)

REFERENCES

1. Tijssen, P. M. H. P.; Stanssens, D. A. W.; Muscat, D.Enhancement of dye solubility using branched poly(amide esters). Eur. Pat. Appl. EP 1321493, 2003;Chem. Abstr. 2003, 139, 54283.

2. Wang, Y.; Ni, Y.; Li, Z.; Li, Z. Synthesis of LG-SFYasbiological stains. Zhejiang Gongye Daxue Xuebao1995, 23, 212–218; Chem. Abstr. 1995, 124, 120098.

3. Liao, W.; Cai, X.; Wang, M.; Lu, X. Synthesis ofBrilliant Green SF Light Yellow. Huaxue Shiji 1995,17, 184–185; Chem. Abstr. 1995, 123, 172614.

4. Sakar, L.; Chaloupka, J.; Hlinovska, Z. Sulfonatedleuco base of a green triphenylmethane dye. Czech.CS 213158, 1984; Chem. Abstr. 1984, 100, 211665.

5. Bodforss, S. Sulfonated triphenylmethane dyes.Kungliga Fysiografiska Saellskapets Lund,Foerhandlingar 1954, 24, 1–6; Chem. Abstr. 1955,49, 25844.

6. Gelvan, D. J.; Goltsman, L.; Chausovsky, A. Stainingmethods and compositions for identifying a cellphenotype. PCT Int. Appl. WO 2007102146, 2007;Chem. Abstr. 2007, 147, 339010.

7. Garini, Y.; Mcnamara, G.; Soenksen, D. G.; Cabib,D.; Buckwald, R. A. In situmethod of analyzing cellsby staining with multiple stains and using a spectraldata collection device. PCT Int. Appl. WO2000031534, 2000; Chem. Abstr. 2000, 133, 14300.

8. Zahniser, D. J.; Isenstein, L.M.; Soule, N.W.;Mui, K.K.; Lapen, D. C. Cytological stain composition. PCTInt. Appl. WO 2001033192, 2001; Chem. Abstr.2001, 134, 337923.

9. Yamamoto, A.; Iimori, Y.; Sase, M.; Ishiguro, M.; Li,B.; Sasaki, H. Histochemical fluorescent stainingagent composition for endoscope. Jpn. KokaiTokkyo Koho JP 2007326789, 2007; Chem. Abstr.2007, 148, 49094.

10. Noda, N.; Mizutani, T. Microorganism-measuringmethod using multiple staining. Jpn. Kokai TokkyoKoho JP 2006340684, 2006;Chem. Abstr. 2006, 146,77563.

11. Haritoglou, C.; Freyer, W. Method, dye andmedicament for staining the internal limiting

membrane, epiretinal membrane, the vitreous and/or the capsule of an eye. U.S. Pat. Appl. Publ. US2008206149, 2008;Chem. Abstr. 2008, 149, 315506.

12. Schuettauf, F.; Haritoglou, C.; May, C. A.; Rejdak,R.; Mankowska, A.; Freyer,W.; Eibl, K.; Zrenner, E.;Kampik, A.; Thaler, S. Administration of novel dyesfor intraocular surgery: an in vivo toxicity animalstudy. Invest. Ophthalmol. Vis. Sci. 2006, 47,3573–3578.

13. Haritoglou, C.; Tadayoni, R.;May, C. A.; Gass, C. A.;Freyer, W.; Priglinger, S. G.; Kampik, A. Short-termin vivo evaluation of novel vital dyes for intraocularsurgery. Retina 2006, 26, 673–678.

14. Haritoglou, C.; Yu, A.; Freyer, W.; Priglinger, S. G.;Alge, C.; Eibl, K.; May, C. A.; Welge-Luessen, U.;Kampik, A. An evaluation of novel vital dyes forintraocular surgery. Invest. Ophthalmol. Vis. Sci.2005, 46, 3315–3322.

15. De Moreno, M. R.; Smith, J. F.; Smith, R. V.Mechanism studies of Coomassie Blue and silverstaining of proteins. J. Pharm. Sci. 1986, 75,907–911.

16. Watanabe, K.; Ono, T.; Ota, T.; Minei, T.; Horikoshi,T.Wave-setting hair dye. Jpn. Kokai Tokkyo Koho JP02076807, 1990; Chem. Abstr. 1991, 114, 49342.

17. Goto, H.; Taguchi, S.; Iida, N. Method fordiscoloration prevention of pigments in pharma-ceutical and cosmetic compositions. Jpn. KokaiTokkyo Koho JP 2000053522, 2000; Chem. Abstr.2000, 132, 171121.

18. Maruoka, T. Disposable oral hygiene productcomprising waterproof container and porous drug-holding material. Jpn. Kokai Tokkyo Koho JP11197217, 1999; Chem. Abstr. 1999, 131, 149103.

19. Ross, J. S.; Morefield, E. M. Sunscreen withdisappearing color indicator. U.S. Patent 6290936,2001; Chem. Abstr. 2001, 135, 215789.

20. Albarella, J. P.; Cahill, S. E.; Johnson, G. M.; Pugia,M. J. Improved method for the detection of protein.Eur. Pat. Appl. EP 793099, 1997;Chem. Abstr. 1997,127, 231593.

262 Light Green SF Yellowish

Page 3: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

21. Crutcher, K. A.; Harmony, J. A. K. Methods for thetreatment of apolipoprotein E-related diseases. PCTInt. Appl. WO 2000050042, 2000; Chem. Abstr.2000, 133, 203003.

22. DeKeyzer, G.; Lamatsch, B.;Muehlebach, A.; Rime,F.; Schmitt, G. Surface-modified nanoparticlescomprising a cationic colorant for use in colorfilters. PCT Int. Appl. WO 2008107304, 2008;Chem. Abstr. 2008, 149, 357452.

23. Franke, W.; Brahm, R. Electrophotographicrecording material. Ger. Offen. DE 3404365, 1985;Chem. Abstr. 1986, 104, 43146.

24. Godbout, D. A.; Vincent Kwan, W. S. Water-based,resin-free and solvent-free eradicable and re-writeball-pen inks or tinted fluid. U.S. Pat. Appl. Publ. US2006032398, 2006;Chem. Abstr. 2006, 144, 214528.

25. Aoyama, M.; Tsuda, M.; Sago, H.; Umemura, M.;Yamazaki, H.; Higashiyama, S. Water-thinnedfluorescent inks for ink-jet recording. Jpn. KokaiTokkyo Koho JP 2005120367, 2005; Chem. Abstr.2005, 142, 448372.

26. Davies-Smith, L.; Sum, V. W. Highlightable andhighlighted mixtures, marking instruments,eradicator solution and kits, using the mixtures inhighlighting. U.S. Pat. Appl. Publ. US 2005120919,2005; Chem. Abstr. 2005, 143, 9331.

27. Rohowetz, S. E. Thermotropic adhesive tape. U.S.Patent4188437,1980;Chem.Abstr.1980,92, 164885.

28. Tschopp, P. Photographic silver halide material withat least one color-containing silver halide-free layer.Ger. Offen. DE 2855428, 1979; Chem. Abstr. 1980,92, 31961.

29. Mito, K.; Gobayashi, T.; Shindo, K. Indicator systemfor use in a granular detergent composition. PCT Int.Appl. WO 9907817, 1999; Chem. Abstr. 1999, 130,169869.

30. De La Torre, M. Method of treating textile carrying astain. PCT Int. Appl. WO 2008122752, 2008; Chem.Abstr. 2008, 149, 473420.

31. Deeds, S. M. Fabric repair coloring device and usingthe device to color unwanted bleached out spots onfabric. U.S. Patent 6739779, 2004; Chem. Abstr.2004, 140, 424935.

32. de laMaza, A.;Marsal, A.; Cot, J.; Manich, A.; Parra,J. L. Liposomes in leather dyeing: stability ofdye–liposome systems and applications. J. Am.Leather Chem. Assoc. 1992, 87, 459–465.

33. Tonogai, Y.; Ito, Y.; Iwaida, M.; Tati, M.; Ose, Y.;Hori, M. Studies on the toxicity of coal-tar dyes. III.Reason of acute toxicity to fish caused by coal-tardyes and their industrial effluents. J. Toxicol. Sci.1980, 5, 23–33.

34. Tonogai, Y.; Iwaida, M.; Tati, M.; Ose, Y.; Sato, T.Biochemical decomposition of coal-tar dyes. II. Acutetoxicity of coal-tar dyes and their decomposedproducts. J. Toxicol. Sci. 1978, 3, 205–214.

35. Matthews, E. J.; Contrera, J. F. A new highly specificmethod for predicting the carcinogenic potential ofpharmaceuticals in rodents using enhanced MCASEQSAR-ES software. Regul. Toxicol. Pharmacol.1998, 28, 242–264.

36. Fu, Z. D.; Chen, W. R.; Gu, L. J.; Gu, Z. W. Theinfluence of the extent of target organs on sensitivitiesof methods for screening rodent carcinogens.Mutat.Res. 1995, 331, 99–117.

37. Ashby, J.; Paton, D. The influence of chemicalstructure on the extent and sites of carcinogenesisfor 522 rodent carcinogens and 55 different humancarcinogen exposures. Mutat. Res. 1993, 286, 3–74.

38. Gold, L. S.; Slone, T. H.; Stern, B. R.; Bernstein, L.Comparison of target organs of carcinogenicity formutagenic and non-mutagenic chemicals. Mutat.Res. 1993, 286, 75–100.

39. Hansen,W.H.;Long,E.L.;Davis,K. J.;Nelson,A.A.;Fitzhugh, O. G. Chronic toxicity of three foodcolorings: Guinea Green B, Light Green SFYellowish, and Fast Green FCF in rats, dogs andmice. Food Cosmet. Toxicol. 1966, 4, 389–410.

40. Kirkland, D.; Aardema, M.; Henderson, L.; Mueller,L. Evaluation of the ability of a battery of threein vitro genotoxicity tests to discriminate rodentcarcinogens and non-carcinogens. I. Sensitivity,specificity and relative predictivity. Mutat. Res.2005, 584, 1–256.

41. Klopman, G.; Frierson, M. R.; Rosenkranz, H. S. Thestructural basis of the mutagenicity of chemicals inSalmonella typhimurium: the Gene-Tox data base.Mutat. Res. 1990, 228, 1–50.

42. Cameron, T. P.; Hughes, T. J.; Kirby, P. E.; Fung, V.A.; Dunkel, V. C. Mutagenic activity of 27 dyes andrelated chemicals in the Salmonella/microsome andmouse lymphoma TKþ /� assays.Mutat. Res. 1987,189, 223–261.

Light Green SF Yellowish 263

Page 4: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

LOLO 1

CAS Registry Number 305802-06-6

Chemical Structure

+

++

+

4 I_

N

CH

(H2C)3

N (CH2)3 N

(CH2)3

N

CH

SN NS

N NH3C CH3

H3C

CH3

CH3

H3C

Br Br

CA Index Name Thiazolo[4,5-b]pyridinium, 2,20-[1,3-propanediylbis[(dimethyliminio)-3,1-propanediyl-1(4H)-quinolinyl-4-ylidenemethylidyne]]bis[6-bromo-4-methyl]-, tetraiodide

Other Names LOLO 1, LOLO iodide

Merck Index Number Not listed

Chemical/Dye Class Cyanine

Molecular Formula C47H54Br2I4N8S2

Molecular Weight 1462.54

Physical Form Yellow-brown powder

Solubility Soluble in dimethyl sulfoxide

Melting Point >250 �CAbsorption (lmax) 565 nm

Emission (lmax) 579 nm

Synthesis Synthetic method1

Staining Applications Nucleic acids;2–5 cells;6 hairs7

Biological Applications Nucleic acid hybridiza-tion;3,8,9 detecting nucleic acids,2–5 cells,6 pathogens;10

DNA sequencing5

Industrial Applications Not reported

Safety/Toxicity No data available

REFERENCES

1. Haugland, R. P.; Yue, S. T. Aza-benzazolium-containing cyanine dyes and their use in fluorescentbiological stains. PCT Int. Appl. WO 2000066664,2000; Chem. Abstr. 2000, 133, 351506.

2. Exner,M.;Rogers,A.Methods for identifying nucleicacids and determining melting temperature usingmultiple fluorophores and FRET. U.S. Pat. Appl.Publ. US 2007172836, 2007; Chem. Abstr. 2007,147, 182489.

3. Atkinson, I. J.; Erikson, G. H.; Daksis, J. I.; Picard, P.Kits and methods for purification of nucleic acidsusing heteropolymeric capture probes and duplex,triplex or quadruplex hybridization in soln.utilizing fluorescent intercalating dyes. U.S. Pat.Appl. Publ. US 2003049673, 2003; Chem. Abstr.2003, 138, 232955.

4. Erikson, G. H.; Daksis, J. I.; Kandic, I.; Picard, P.Conditions for formation of three- and four-stranded

nucleic acid complexes and their detection andanalytical use. PCT Int. Appl. WO 2002103051,2002; Chem. Abstr. 2002, 138, 50812.

5. Williams, J. G. K.; Anderson, J. P. Field-switch singlemolecule DNA sequencing in a two-electrodechamber. PCT Int. Appl. WO 2005111240, 2005;Chem. Abstr. 2005, 143, 474548.

6. Anderson,A. L.;Knutson,C.R.;Mueth,D.; Plewa, J.;Tanner, E.Methods for staining cells for identificationand sorting. U.S. Pat. Appl. Publ. US 2006172315,2006; Chem. Abstr. 2006, 145, 183714.

7. Lagrange, A. Hair dye compositions containing apolycationic direct dye. Fr. Demande FR 2848840,2004; Chem. Abstr. 2004, 141, 76344.

8. Erikson, G. H.; Daksis, J. I. Improving the signal/noise ratio of nucleic acid hybridization assays bypreincubation of primer and target with nucleic acidbinding agents. U.S. Pat. Appl. Publ. US

264 LOLO 1

Page 5: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

2004180345, 2004; Chem. Abstr. 2004, 141,255469.

9. Erikson, G. H. Method for modifying transcriptionand/or translation in an organism byheteropolymeric probes and duplex, triplex orquadruplex hybridization for therapeutic,

prophylactic and/or analytic uses. U.S. Pat. Appl.Publ. US 2003181412, 2003; Chem. Abstr. 2003,139, 272000.

10. Vannier, E. Methods for detection of pathogens in redblood cells. PCT Int. Appl. WO 2006031544, 2006;Chem. Abstr. 2006, 144, 307966.

LOLO 1 265

Page 6: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

LUCIFER YELLOW CH

CAS Registry Number 67769-47-5

Chemical Structure

N O

NH

O

NH2

SO3LiLiO3S

C NH

O

NH2

CA Index Name 1H-Benz[de]isoquinoline-5,8-disul-fonic acid, 6-amino-2-[(hydrazinylcarbonyl)amino]-2,3-dihydro-1,3-dioxo-, lithium salt (1 : 2)

Other Names 1H-Benz[de]isoquinoline-5,8-disulfonicacid, 6-amino-2-[(hydrazinocarbonyl)amino]-2,3-dihy-dro-1,3-dioxo-, dilithium salt; Lucifer YellowCH; LuciferYellow carbohydrazide

Merck Index Number 5594

Chemical/Dye Class Naphthalimide

Molecular Formula C13H9Li2N5O9S2

Molecular Weight 457.25

Physical Form Orange powder

Solubility Soluble in water; soluble in ethanol

Melting Point >200 �CAbsorption (lmax) 280 nm, 428 nm

Emission (lmax) 540 nm

Synthesis Synthetic methods1,2

Staining Applications Avidin;4 bovine serum albu-min;4 bacteria;5 cardiac fibers;6 cells;3,7,8 cell surfaceglycoconjugates;9 cholesterol;10 phospholipids;10 exocy-totic secretory processes;11 gangliosides;12 glycopro-tein;13 islet cells;14 liposomes;15 mitochondria;16 neu-rons;2,3 oxidized antibody;17 plant cell;18,19 proto-plasts;18,19 potato tuber storage tissues;20 proteins;21 reti-na;22–24 saccharides;25,26 skeletal muscle cells;27 skin;28

tissues;29 plant vacuoles30–34

Biological Applications Antiviral agents35,36

Industrial Applications Optical nanosensors;37 print-ing plates38

Safety/Toxicity Carcinogenicity39

REFERENCES

1. Stewart, W. W. Synthesis of 3,6-disulfonated 4-aminonaphthalimides. J. Am. Chem. Soc. 1981,103, 7615–7620.

2. Stewart, W. W. Functional connections between cellsas revealed by dye-coupling with a highly fluorescentnaphthalimide tracer. Cell 1978, 14, 741–759.

3. Stewart, W. W. Lucifer dyes: highly fluorescent dyesfor biological tracing. Nature 1981, 292, 17–21.

4. Heldt, J. M.; Fischer-Durand, N.; Salmain, M.;Vessieres, A.; Jaouen, G. The use of glycidol tointroduce aldehyde functions into proteins—application to the fluorescent labelling of bovineserum albumin and avidin. Eur. J. Org. Chem.2007, 5429–5433.

5. Drevets, D.A.; Elliott, A.M. Fluorescence labeling ofbacteria for studies of intracellular pathogenesis. J.Immunol. Methods 1995, 187, 69–79.

6. DeMello, W. C.; Gonzalez Castillo, M.; Van Loon, P.Intercellular diffusion of Lucifer Yellow CH in

mammalian cardiac fibers. J. Mol. Cell. Cardiol.1983, 15, 637–643.

7. O’Driscoll, D.; Wilson, G.; Steer, M. W. LuciferYellow and fluorescein isothiocyanate uptake bycells of Morinda citrifolia in suspension cultures isnot confined to the endocytotic pathway. J. Cell Sci.1991, 100, 237–241.

8. El-Fouly, M. H.; Trosko, J. E.; Chang, C. C. Scrape-loading and dye transfer. A rapid and simpletechnique to study gap junctional intercellularcommunication. Exp. Cell Res. 1987, 168, 422–430.

9. Spiegel, S.;Wilchek,M.; Fishman, P.H. Fluorescencelabeling of cell surface glycoconjugates with LuciferYellow CH. Biochem. Biophys. Res. Commun. 1983,112, 872–877.

10. Nothnagel, E. A. Synthesis and characterization offluorescent Lucifer Yellow-lipid conjugates.Biochim. Biophys. Acta, Biomembr. 1989, 980,209–219.

266 Lucifer Yellow CH

Page 7: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

11. Kawasaki, Y.; Saitoh, T.; Okabe, T.; Kumakura, K.;Ohara-Imaizumi, M. Visualization of exocytoticsecretory processes of mast cells by fluorescencetechniques. Biochim. Biophys. Acta, Biomembr.1991, 1067, 71–80.

12. Spiegel, S.; Kassis, S.; Wilchek, M.; Fishman, P. H.Direct visualization of redistribution and capping offluorescent gangliosides on lymphocytes. J. Cell Biol.1984, 99, 1575–1581.

13. Lee, J. A.; Fortes, P. A. G. Labeling of theglycoprotein subunit of sodium–potassium ATPasewith fluorescent probes. Biochemistry 1985, 24,322–330.

14. Meda, P. Tracer microinjections into islet cells.Methods Diabet. Res. 1984, 1, 193–204.

15. Scieszka, J. F.; Cho, M. J. Cellular uptake of afluid-phase marker by human neutrophils fromsolutions and liposomes. Pharm. Res. 1988, 5,352–358.

16. Bowman, C. L.; Tedeschi, H. Kinetics of LuciferYellow CH efflux in giant mitochondria. Biochim.Biophys. Acta, Biomembr. 1983, 731, 261–266.

17. Keener, C. R.; Wolfe, C. A. C.; Hage, D. S.Optimization of oxidized antibody labeling withLucifer Yellow CH. BioTechniques 1994, 16,894–895, 897.

18. Wright, K. M.; Oparka, K. J. Uptake of LuciferYellow CH into plant-cell protoplasts: aquantitative assessment of fluid-phase endocytosis.Planta 1989, 179, 257–264.

19. Hillmer, S.; Quader, H.; Robert-Nicoud, M.;Robinson, D. G. Lucifer Yellow uptake in cells andprotoplasts of Daucas carota visualized by laserscanning microscopy. J. Exp. Bot. 1989, 40,417–423.

20. Oparka, K. J.; Prior, D. A. M. Movement of LuciferYellow CH in potato tuber storage tissues: acomparison of symplastic and apoplastic transport.Planta 1988, 176, 533–540.

21. Chen, R. F.; Scott, C. H. Atlas of fluorescence spectraand lifetimes of dyes attached to protein. Anal. Lett.1985, 18, 393–421.

22. Negishi, K.; Teranishi, T.; Kato, S.Opposite effects ofammonia and carbon dioxide on dye couplingbetween horizontal cells in the carp retina. BrainRes. 1985, 342, 330–339.

23. Layer, P. G.; Vollmer, G. Lucifer Yellow stainsdisplaced amacrine cells of the chicken retinaduring embryonic development. Neurosci. Lett.1982, 31, 99–104.

24. Detwiler, P. B.; Sarthy, P. V. Selective uptake ofLucifer Yellow by bipolar cells in the turtle retina.Neurosci. Lett. 1981, 22, 227–232.

25. Jackson, P. Analysis of carbohydrates and kitstherefore. PCT Int. Appl. WO 9302356, 1993;Chem. Abstr. 1993, 118, 142985.

26. Caprioli, R. M.; Phoebe, C. H., Jr.; Jarrell, J. A.Derivatization and identification of saccharidesusing Lucifer Yellow CH and related compounds.PCT Int. Appl. WO 9118912, 1991; Chem. Abstr.1992, 116, 231337.

27. Bondi, A. Y.; Chiarandini, D. J. Intracellular markingof skeletal muscle cells with horseradish peroxidasein combination with a stain for cholinesterase. StainTechnol. 1980, 55, 105–109.

28. Mansbridge, J. N.; Knapp, A. M. Penetration ofLucifer Yellow into human skin: a lateral diffusionchannel in the stratum corneum. J. Histochem.Cytochem. 1993, 41, 909–914.

29. Rogers, R. A. Method for imaging tissue. PCT Int.Appl. WO 2000020846, 2000; Chem. Abstr. 2000,132, 248259.

30. Klein,M.;Martinoia, E.;Weissenbock, G. Transportof Lucifer Yellow CH into plant vacuoles: evidencefor direct energization of a sulfonated substance andimplications for the design of newmolecular probes.FEBS Lett. 1997, 420, 86–92.

31. Saito, M.; Ohi, A.; Matsuoka, H. Microinjection offluorescent dye in a plant cell and its intercellulartranslocation using a multichannel microelectrodesystem. Biochim. Biophys. Acta, Gen. Sub. 1996,1289, 1–4.

32. Wright, K. M.; Davies, T. G. E.; Steele, S. H.; Leigh,R. A.; Oparka, K. J. Development of a probenecid-sensitive Lucifer Yellow transport system invacuolating oat aleurone protoplasts. J. Cell Sci.1992, 102, 133–139.

33. Oparka, K. J.; Robinson, D.; Prior, D. A.M.; Derrick,P.; Wright, K. M. Uptake of Lucifer Yellow CH intointact barley roots: evidence for fluid-phaseendocytosis. Planta 1988, 176, 541–547.

34. Madore, M. A.; Lucas, W. J. Characterization of thesource leaf symplast by means of Lucifer Yellow CH.Plant Biol. 1986, 1, 129–133.

35. Rideout, D. C. Lucifer Yellow analogs as newantiviral agents. PCT Int. Appl. WO 9409773,1994; Chem. Abstr. 1994, 121, 50082.

36. Rideout, D. C.; Elder, J. Antiviral Lucifer Yellowderivative conjugates and pharmaceuticalscontaining their self-assembling precursors. PCT

Lucifer Yellow CH 267

Page 8: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

Int. Appl. WO 9004394, 1990; Chem. Abstr. 1991,114, 75181.

37. Borisov, S. M.; Mayr, T.; Klimant, I. Poly(styrene-block-vinylpyrrolidone) beads as a versatile materialfor simple fabrication of optical nanosensors. Anal.Chem. 2008, 80, 573–582.

38. Naarmann, H.; Huemmer, W. Photopolymerizablesystem with conductive polymer support. Ger.

Offen. DE 3844451, 1990; Chem. Abstr. 1991,114, 72332.

39. Zeilmaker, M. J.; Yamasaki, H. Inhibition ofjunctional intercellular communication as apossible short-term test to detect tumor-promotingagents: results with nine chemicals tested by dyetransfer assay in Chinese hamster V-79 cells.Cancer Res. 1986, 46, 6180–6186.

268 Lucifer Yellow CH

Page 9: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

LUCIFER YELLOW VS

CAS Registry Number 71231-14-6

Chemical Structure

N OO

NH2

SO3LiLiO3S

S CH

O

O

CH2

CA Index Name 1H-Benz[de]isoquinoline-5,8-disul-fonic acid, 6-amino-2-[3-(ethenylsulfonyl)phenyl]-2,3-dihydro-1,3-dioxo-, lithium salt (1 : 2)

Other Names 1H-Benz[de]isoquinoline-5,8-disulfonicacid, 6-amino-2-[3-(ethenylsulfonyl)phenyl]-2,3-dihy-dro-1,3-dioxo-, dilithium salt; Lucifer Yellow VS

Merck Index Number 5594

Chemical/Dye Class Naphthalimide

Molecular Formula C20H12Li2N2O10S3

Molecular Weight 550.39

Physical Form Dark yellow powder

Solubility Soluble in water; insoluble in ethanol

Melting Point >200 �CAbsorption (lmax) 280 nm, 428 nm

Emission (lmax) 540 nm

Synthesis Synthetic methods1,2

Staining Applications Cells;3 neurons;3 albumin;4,5

cholesterol;6 phospholipids;6 collagenase;7 polynucleo-tides;8 proteins;9,10 progesterone derivative;11 testoster-one;12 estriol12

Biological Applications Detecting nucleic acids;8,13

lipid probes;6 measuring collagenase,7 target nucleic acidsequence;13 fluorescent immunoassays4,5,11,12

Industrial Applications Not reported

Safety/Toxicity No data available

REFERENCES

1. Stewart, W. W. Synthesis of 3,6-disulfonated 4-aminonaphthalimides. J. Am. Chem. Soc. 1981,103, 7615–7620.

2. Stewart, W. W. Functional connections between cellsas revealed by dye-coupling with a highly fluorescentnaphthalimide tracer. Cell 1978, 14, 741–759.

3. Stewart, W. W. Lucifer dyes. Highly fluorescent dyesfor biological tracing. Nature 1981, 292, 17–21.

4. Bailey, M. P.; Rocks, B. F.; Riley, C. Homogeneousfluoroimmunoassay using Lucifer Yellow VS:determination of albumin plasma. Ann. Clin.Biochem. 1984, 21, 59–63.

5. Bailey, M. P.; Rocks, B. F.; Riley, C. Use of Luciferyellow VS as a label in fluorescent immunoassaysillustrated by the determination of albumin in serum.Ann. Clin. Biochem. 1983, 20, 213–216.

6. Nothnagel, E. A. Synthesis and characterization offluorescent Lucifer Yellow-lipid conjugates.

Biochim. Biophys. Acta, Biomembr. 1989, 980,209–219.

7. Tang, L. X.; Rowell, F. J. Flow injection fluorescencemeasurement of collagenase using a mini-bioreactorwith immobilized collagen labeled with LuciferYellow. Anal. Proc. 1995, 32, 255–256.

8. Heller, M. J. Polynucleotides conjugated withchromophores and fluorophores for determinationof nucleic acid. PCT Int. Appl. WO 9309128,1993; Chem. Abstr. 1993, 119, 242929.

9. Zvetkova, E.; Valet, G.; Katzarova, E.; Ianeva, E.;Neronov, A. Fluorescent and flow cytometric analysisof cellular biochemical content of basic (cationic)cytoplasmic proteins in granulocytes. Acta Cytobiol.Morphol. 1993, 3, 25–28.

10. Chen, R. F.; Scott, C. H. Atlas of fluorescence spectraand lifetimes of dyes attached to protein. Anal. Lett.1985, 18, 393–421.

Lucifer Yellow VS 269

Page 10: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

11. Kirk,D.N.;Miller, B.W.The synthesis of a conjugateof progesterone with Lucifer Yellow VS: a potentialprobe for fluoroimmunoassay of steroids. J. Chem.Soc., Perkin Trans. 1 1988, 2979–2982.

12. Desfosses, B.; Urios, P.; Christeff, N.; Rajkowski, K.M.; Cittanova, N. The use of disulfonatonaph-thalimide fluorescent dyes for the fluorescence

polarization immunoassay of steroids. Anal.Biochem. 1986, 159, 179–186.

13. Di Cesare, J. L. Fluorescence detection assay forhomogeneous PCR hybridization systems. PCT Int.Appl. WO 9729210, 1997; Chem. Abstr. 1997, 127,215941.

270 Lucifer Yellow VS

Page 11: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

LUCIGENIN

CAS Registry Number 2315-97-1

Chemical Structure

N

CH3

N

CH3

+

+

2NO3

_

CA Index Name 9,90-Biacridinium, 10,100-dimethyl-,nitrate (1 : 2)

Other Names 10,100-Dimethyl-9,90-biacridinium dini-trate; N,N0-Dimethyl-9,90-biacridinium dinitrate; 9,90-Biacridinium, 10,100-dimethyl-, dinitrate; 9,90-Bis(N-methylacridinium nitrate); Bis-N-methylacridinium ni-trate; L 6868; Lucigenin; Lucigenin nitrate; Lucigenine;N,N0-Dimethyl-9,90-biacridinium dinitrate; NSC 151912

Merck Index Number Not listed

Chemical/Dye Class Acridine

Molecular Formula C28H22N4O6

Molecular Weight 510.50

Physical Form Yellow powder with orange to browncast

Solubility Soluble in water, ethanol, dimethyl sulfoxide

Melting Point >330 �CAbsorption (lmax) 455 nm

Emission (lmax) 505 nm

Synthesis Synthetic methods1–8

Staining Applications Chloride ions;14–18 mitochon-dria;9–12 nuclei13

Biological Applications Chloride indicator;14–18 diag-nosis of hemostatic disorders;19 detecting bacteria,20,21

nucleic acids,22 proteins,22 pathogens;23 identifying respi-ratory infections;24 generating and detecting reactive ox-ygen species;10–12,25–34 chemiluminescent indicator;35–43

chemiluminescence determination of chromium,44 co-balt,45 arsenic,46 iron,47 vanadium,48 molybdenum49

Industrial Applications Lamp;50 optical nanosensor51

Safety/Toxicity Bacterial toxicity;52 bone marrow tox-icity;53 carcinogenicity;54,55 cytotoxicity;56,57 hemato-toxicity;58 hepatotoxicity;59 nephrotoxicity;60 neurotox-icity;61 immunotoxicity;61 cardiovascular toxicity;62,63

respiratory toxicity;63,64 vascular toxicity65

REFERENCES

1. Suzuki, H.; Takahashi, T.; Aratani, G.; Katsuragi, H.;Hosogoe, M. Production method of chemilumi-nescence reagent. Jpn. Kokai Tokkyo Koho JP2001115155, 2001; Chem. Abstr. 2001, 134, 318436.

2. Yamada, S.; Kubo,M.; Fuke, H.; Tsubaki, N.;Maeda,K. Photochemical ring closure of 10,100-disubstituted9,90(10H,100H)-biacridinylidenes followed bydehydrogenation. Bull. Chem. Soc. Jpn. 1993, 66,1834–1836.

3. Shen, J.; Sun, T.; Chen, R.; Xu, X. Reagentsfor chemiluminescence—synthesis of luminol,isoluminol, lucigenin and ABEI. Huaxue Shiji1988, 10, 178–179; Chem. Abstr. 1989, 110, 154249.

4. Amiet, R. G. The preparation of lucigenin: anexperiment with charm. J. Chem. Educ. 1982, 59,163–164.

5. Gleu, K.; Schaarschmidt, R. Further biacridenes andbiacridylium salts.Ber.Dtsch. Chem.Ges. 1940, 73B,909–915; Chem. Abstr. 1941, 35, 20345.

6. Gleu, K.; Schubert, A. Reaction of phosphorusoxychloride-acridones with Grignard reagents. Ber.Dtsch.Chem.Ges. 1940, 73B, 805–811;Chem.Abstr.1941, 35, 20344.

7. Gleu, K.; Nitzsche, S. Methylated and methoxylatedN,N0-dimethyldiacridines and N,N0-dimethyldiac-ridylium salts. J. Prakt. Chem. 1939, 153, 233–241.

8. Decker, H.; Dunant, G. Reduction of cyclaminones.II. Biacridyl. Ber. Dtsch. Chem. Ges. 1909, 42,1176–1178; Chem. Abstr. 1909, 3, 11580.

9. Hattori, F.; Fukuda, K. Method for selectingmyocardial cells using intracellular mitochondrialabeled with fluorescent indicator. PCT Int. Appl.

Lucigenin 271

Page 12: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

WO 2006022377, 2006; Chem. Abstr. 2006, 144,270175.

10. Li, Y.; Stansbury, K. H.; Zhu, H.; Trush, M. A.Biochemical characterization of lucigenin (bis-N-methylacridinium) as a chemiluminescent probefor detecting intramitochondrial superoxide anionradical production. Biochem. Biophys. Res.Commun. 1999, 262, 80–87.

11. Li,Y.;Zhu,H.;Trush,M.A.Detectionofmitochondria-derived reactive oxygen species production by thechemilumigenic probes lucigenin and luminol.Biochim. Biophys. Acta 1999, 1428, 1–12.

12. Rembish, S. J.; Trush, M. A. Further evidence thatlucigenin-derived chemiluminescence monitorsmitochondrial superoxide generation in rat alveolarmacrophages. Free Radical Biol. Med. 1994, 17,117–126.

13. Horobin, R. W.; Stockert, J. C.; Rashid-Doubell, F.Fluorescent cationic probes for nuclei of living cells:why are they selective? A quantitative structure–activity relations analysis. Histochem. Cell Biol.2006, 126, 165–175.

14. Ruedas-Rama, M. J.; Hall, E. A. H. A quantum dot-lucigenin probe for Cl�. Analyst 2008, 133,1556–1566.

15. Graefe, A.; Stanca, S. E.; Nietzsche, S.; Kubicova, L.;Beckert, R.; Biskup, C.;Mohr, G. J. Development andcritical evaluation of fluorescent chloridenanosensors. Anal. Chem. 2008, 80, 6526–6531.

16. Jorg, G.; Bertau, M. Thiol-tolerant assay forquantitative colorimetric determination of chloridereleased from whole-cell biodehalogenations. Anal.Biochem. 2004, 328, 22–28.

17. Jiang, J.; Song, Y.; Bai, C.; Koller, B. H.; Matthay, M.A.; Verkman, A. S. Pleural surface fluorescencemeasurement of Naþ and Cl� transport across theair space–capillary barrier. J. Appl. Physiol. 2003, 94,343–352.

18. Wissing, F.; Smith, J. A. C. Vacuolar chloridetransport in Mesembryanthemum crystallinum L.measured using the fluorescent dye lucigenin. J.Membr. Biol. 2000, 177, 199–208.

19. Kraus, M.; Schelp, C.; Wiegand, A. Method fordiagnosis of hemostatic disorders by fluorescenceenergy transfer spectroscopy. Eur. Pat. Appl. EP924523, 1999; Chem. Abstr. 1999, 131, 41806.

20. Olstein, A. D.; Feirtag, J. M. Antibiotic–metalcomplexes in the detection of gram-negativebacteria and other biological analytes. PCT Int.Appl. WO 2001027628, 2001; Chem. Abstr. 2001,134, 307594.

21. Manome, I.; Ikedo,M.; Tamura, S. Bacteria detectionby chemiluminescence method. Jpn. Kokai TokkyoKoho JP 10210998, 1998; Chem. Abstr. 1998, 129,200168.

22. Levison, D. W. K.; Moller, U.; Levison, S.Chemiluminescent olefin probes and methods fordetection of nucleic acids or proteins and theirpotential use in diagnosis of disease. U.S. Pat.Appl. Publ. US 2004014043, 2004; Chem. Abstr.2004, 140, 107763.

23. Olstein, A. D.; Feirtag, J. Bacteriocin–metalcomplexes in the detection of pathogens and otherbiological analytes. U.S. Pat. Appl. Publ. US2003175207, 2003; Chem. Abstr. 2003, 139,260316.

24. Magrisso, M.; Marks, R. S. Chemiluminescentmethod for identifying respiratory infections ofdifferent origins. PCT Int. Appl. WO 2008026205,2008; Chem. Abstr. 2008, 148, 302864.

25. Kopprasch, S.; Pietzsch, J.; Graessler, J. Validation ofdifferent chemilumigenic substrates for detectingextracellular generation of reactive oxygen speciesby phagocytes and endothelial cells. Luminescence2003, 18, 268–273.

26. Myhre, O.; Andersen, J. M.; Aarnes, H.; Fonnum, F.Evaluation of the probes 20,70-dichlorofluoresceindiacetate, luminol, and lucigenin as indicators ofreactive species formation. Biochem. Pharmacol.2003, 65, 1575–1582.

27. Lenaerts, I.; Braeckman, B. P.; Matthijssens, F.;Vanfleteren, J. R. A high-throughput microtiterplate assay for superoxide dismutase based onlucigenin chemiluminescence. Anal. Biochem.2002, 311, 90–92.

28. Barbacanne, M. A.; Souchard, J. P.; Darblade, B.;Iliou, J. P.; Nepveu, F.; Pipy, B.; Bayard, F.; Arnal, J.F. Detection of superoxide anion released extra-cellularly by endothelial cells using cytochrome creduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques. FreeRadical Biol. Med. 2000, 29, 388–396.

29. Li, Y.; Zhu, H.; Kuppusamy, P.; Roubaud, V.; Zweier,J. L.; Trush, M. A. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe fordetecting superoxide anion radical production byenzymic and cellular systems. J. Biol. Chem. 1998,273, 2015–2023.

30. Hasegawa, H.; Suzuki, K.; Nakaji, S.; Sugawara, K.Analysis and assessment of the capacity ofneutrophils to produce reactive oxygen species in a96-well microplate format using lucigenin- and

272 Lucigenin

Page 13: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

luminol-dependent chemiluminescence. J. Immunol.Methods 1997, 210, 1–10.

31. Brandes, R. P.; Barton, M.; Philippens, K. M. H.;Schweitzer, G.; Muegge, A. Endothelial-derivedsuperoxide anions in pig coronary arteries:evidence from lucigenin chemiluminescence andhistochemical techniques. J. Physiol. 1997, 500,331–342.

32. Liochev, S. I.; Fridovich, I. Lucigenin luminescenceas a measure of intracellular superoxide dismutaseactivity in Escherichia coli. Proc. Natl. Acad. Sci.U.S.A. 1997, 94, 2891–2896.

33. McKinney, K. A.; Lewis, S. E. M.; Thompson, W.Reactive oxygen species generation in human sperm:luminol and lucigenin chemiluminescence probes.Arch. Androl. 1996, 36, 119–125.

34. Supari, F.; Ungerer, T.; Harrison, D. G.; Williams, J.K. Fish oil treatment decreases superoxide anions inthe myocardium and coronary arteries ofatherosclerotic monkeys. Circulation 1995, 91,1123–1128.

35. Vladimirov, Y. A.; Proskurnina, E. V.; Izmailov, D. Y.Chemiluminescence as a method for detection andstudy of free radicals in biological systems.Bull. Exp.Biol. Med. 2007, 144, 390–396.

36. Lee, J.M.; Karim,M.M.; Lee, S. H. Determination ofcatechin in aqueous solution by chemiluminescencemethod. J. Fluoresc. 2005, 15, 735–739.

37. Vaidya, N. A. Use of chemiluminescence incosmetics & chromatography. U.S. Pat. Appl. Publ.US 2005118123, 2005; Chem. Abstr. 2005, 142,487195.

38. Pavelkova, M.; Kubala, L. Luminol-, isoluminol- andlucigenin-enhanced chemiluminescence of rat bloodphagocytes stimulated with different activators.Luminescence 2004, 19, 37–42.

39. Kitagawa, R. R.; Raddi, M. S. G.; Khalil, N. M.;Vilegas, W.; Marcos da Fonseca, L. Effect of theisocoumarin paepalantine on the luminol andlucigenin amplified chemiluminescence of ratneutrophils. Biol. Pharm. Bull. 2003, 26, 905–908.

40. Bunting, J. P.; Gray, D. A. Development of a flowinjection chemiluminescent assay for thequantification of lipid hydroperoxides. J. Am. OilChem. Soc. 2003, 80, 951–955.

41. Perez-Ruiz, T.; Martinez-Lozano, C.; Tomas, V.;Fenoll, J. Chemiluminescence determination ofglucose, fructose and their mixture by the stopped-flow mixing technique. Mikrochim. Acta 2003, 141,73–78.

42. Kricka, L. J. Application of bioluminescence andchemiluminescence in biomedical sciences.Methods Enzymol. 2000, 305, 333–345.

43. Kournikakis, B.; Simpson, M. Optimization of aphagocyte microplate chemiluminescent assay. J.Biolumin. Chemilumin. 1995, 10, 63–67.

44. Du, J. X.; Li, Y. H.; Guan, R. Chemiluminescencedetermination of chromium(III) and total chromiumin water samples using the periodate–lucigeninreaction. Microchim. Acta 2007, 158, 145–150.

45. Du, J.; Lu, J.; Zhang, X. Flow-injection chemilumi-nescence determination of cobalt using a cobalt(II)(1,10-phenanthroline)3complex-catalyzed lucigenin–periodate reaction. Microchim. Acta 2006, 153,21–25.

46. Li,M.; Lee, S. H. Determination of As(III) andAs(V)ions by chemiluminescence method. Microchem. J.2005, 80, 237–240.

47. Lee, S. H.; Nam, M. S. Determination of Fe(II) ionand Fe(III) ion by chemiluminescence method. J.Korean Chem. Soc. 2002, 46, 509–514.

48. Sukhan, V. V.; Zaporozhets, O. A.; Lipkovskaya, N.A.; Pogasii, L. B.; Chuiko, A. A. Solid-phasechemiluminescent reagent for determination ofvanadium(IV) by flow methods. Zh. Anal. Khim.1994, 49, 700–703;Chem. Abstr. 1994, 121, 194435.

49. Zhu, Z. J. Chemiluminescence determination ofmolybdenum by on-line reduction with a flowinjection system. Chin. Chem. Lett. 2000, 11,427–430.

50. Hou, R.; Zhao, X. High energy chemical lamp.Faming Zhuanli Shenqing Gongkai ShuomingshuCN 1157313, 1997; Chem. Abstr. 1999, 132,16978.

51. Borisov, S. M.; Mayr, T.; Klimant, I. Poly(styrene-block-vinylpyrrolidone) beads as a versatile materialfor simple fabrication of optical nanosensors. Anal.Chem. 2008, 80, 573–582.

52. Barsukov,A.A.; Zhukhovitskii, V.G.; Shcherbakova,E. G.; Zemskov, V. M.; Diashev, A. N. New data onthe effect of Helicobacter pylori on oxygenmetabolism in human neutrophils. Bull. Exp. Biol.Med. 2005, 139, 70–72.

53. Twerdok, L. E.; Mosebrook, D. R.; Trush, M. A.Comparison of oxidant-generation and BP-diolactivation by bone marrow cells from C57Bl/6 andDBA/2 mice: implications for risk of bone marrowtoxicity induced by polycyclic hydrocarbons.Toxicol. Appl. Pharmacol. 1992, 112, 266–272.

Lucigenin 273

Page 14: Handbook of Biological Dyes and Stains (Synthesis and Industrial Applications) || L

54. Er, T. K.; Tsai, S. M.; Wu, S. H.; Chiang, W.; Lin, H.C.; Lin, S. F.; Wu, S. H.; Tsai, L. Y.; Liu, T. Z.Antioxidant status and superoxide anion radicalgeneration in acute myeloid leukemia. Clin.Biochem. 2007, 40, 1015–1019.

55. Bouvier, G.; Hergenhahn, M.; Polack, A.;Bornkamm, G. W.; Bartsch, H. Validation of twotest systems for detecting tumor promoters and EBVinducers: comparative responses of several agents inDR-CAT Raji cells and in human granulocytes.Carcinogenesis 1993, 14, 1573–1578.

56. Van, D. K.; Patel, S.; Vallyathan, V. Lucigeninchemiluminescence assay as an adjunctive tool forassessment of various stages of inflammation: a studyof quiescent inflammatory cells. J. Biosci. 2003, 28,115–119.

57. Blake, T.; Castranova, V.; Schwegler-Berry, D.;Baron, P.; Deye, G. J.; Li, C.; Jones, W. Effect offiber length on glass microfiber cytotoxicity. J.Toxicol. Environ. Health, Part A 1998, 54, 243–259.

58. Miesel, R.; Dietrich, A.; Ulbrich, N.; Kroeger, H.;Mitchison, N. A. Assessment of collagen type IIinduced arthritis in mice by whole bloodchemiluminescence. Autoimmunity 1994, 19,153–159.

59. Caraceni,P.;Rosenblum,E.R.;Van,T.D.H.;Borle,A.B. Reoxygenation injury in isolated rat hepatocytes:relation to oxygen free radicals and lipid peroxidation.Am. J. Physiol. 1994, 266, G799–G806.

60. Zhang, J. G.; Lindup, W. E. Differential effects ofcisplatin on the production of NADH-dependentsuperoxide and the activity of antioxidant enzymesin rat renal cortical slices in vitro. Pharmacol.Toxicol. 1996, 79, 191–198.

61. Aam, B. B.; Fonnum, F. (þ /�)-2-Chloropropionicacid elevates reactive oxygen species formation inhuman neutrophil granulocytes. Toxicology 2006,228, 124–134.

62. Borowiec, J. W.; Lahtinen, M.; Venge, P.; Henze, A.;Stiernstrom, H. Inflammatory response duringsimulated extracorporeal circulation with additionof nitric oxide. J. Cardiovasc. Surg. 2000, 41,207–213.

63. Aam, B. B.; Fonnum, F. ROS scavenging effects oforganic extract of diesel exhaust particles on humanneutrophil granulocytes and rat alveolarmacrophages. Toxicology 2007, 230, 207–218.

64. Brehm, M.; Schiller, E.; Zeller, W. J. Quantificationof reactive oxygen species generated by alveolarmacrophages using lucigenin-enhanced chemilu-minescence—methodical aspects. Toxicol. Lett.1996, 87, 131–138.

65. Skatchkov,M. P.; Sperling,D.;Hink,U.;Anggard, E.;Munzel, T. Quantification of superoxide radicalformation in intact vascular tissue using aCypridina luciferin analog as an alternative tolucigenin. Biochem. Biophys. Res. Commun. 1998,248, 382–386.

274 Lucigenin