Halo Effective Field Theory

35
06/11/22 v. Kolck, Halo EFT 1 Background by S. Hossenfelde Halo Effective Field Theory U. van Kolck University of Arizona Supported in part by US DOE

description

Halo Effective Field Theory. U. van Kolck. University of Arizona. Supported in part by US DOE. Background by S. Hossenfelder. Hnning. Outline. EFT Nucleon-alpha system Alpha-alpha system Other systems Outlook. Nuclear physics scales. expansion in. perturbative QCD. - PowerPoint PPT Presentation

Transcript of Halo Effective Field Theory

Page 1: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 1

Background by S. Hossenfelder

Halo Effective Field Theory

U. van Kolck

University of Arizona

Supported in part by US DOE

Page 2: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 2

Hnning

Page 3: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 3

Outline

EFT

Nucleon-alpha system

Alpha-alpha system

Other systems

Outlook

Page 4: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 4

Nuclear physics scales

expansion in

,4,,~ fmmM NQCD

~ , 1/ ,nuc NNM f r m

perturbative QCD

Qln

~1 GeV

~100 MeV

hadronic theory Chiral EFT

unknown;use brute force

(lattice, …)

QCDQ M

s

no small coupling constants!

Page 5: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 5

tripletscattering

length

Deuteron bindingenergy

Fukugita et al. ‘95Lattice QCD:quenched

EFT:

(incomplete) NLO

Beane, Bedaque, Savage + v.K. ’02

Large deuteron size because

cf. Beane et al ‘06

QCDm M

QCDMm m

nuc

m mM

m

unitarity limit

2a

1 4.5 fma

1/ 1 fmr m New scale

Page 6: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 6

Nuclear physics scales

expansion in

,4,,~ fmmM NQCD

~ , 1/ ,nuc NNM f r m

NNa1~

perturbative QCD

Qln

~1 GeV

~100 MeV

~30 MeV

hadronic theory

Contact EFT

Chiral EFT

unknown;use brute force

(lattice, …)

QCDQ M

nucQ M

s

no small coupling constants!

Page 7: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 7

r

r

3 0d Ar rV r

0r

0 3 0 3 0 30 0 0i i ji i jr r r r r r r rA d A d A d r

0 0qA 0D E 21

03 ij ij i jq r Q E

r

O 2

2r

O

Expansion in powers ofr

distance scale of underlying distribution

distance scale of interest

All possible interactions allowed by gauge invariance

Page 8: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 8

pionless EFT

• degrees of freedom: nucleons

• symmetries: Lorentz, B, P, T

• expansion in:

,N

nuc

QQQ

m

mM

multipole

non-relativistic

~ nucQ M

simplest formulation: auxiliary field for two-nucleon bound states

31d S

N N vector field d

10d S isovector field d

Kaplan ’97

v.K. ’99

4 2

3

2

0

0

2 2

8 2

EFN

T

N N

gN i N d d d NN N N d hd d N N

N N d i d

m

m m

L

omitting spin, isospinsign

Page 9: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 9

First orders applyalso to atoms 1nuc vdWM l

4

6( )

2vdWV rmr

l from

describes structure and reactions of bound states --

deuteron, triton, alpha particle

can be extended to p-shell nuclei with No-Core Shell Model

makes evident new phenomena --

from one-parameter three-body force at LO:

SO(4) invariance, limit-cycle behavior, Phillips line, Efimov spectrum

6A

Bedaque, Hammer + vK ’98, ’99, ‘00

Hammer, Platter + Meissner ’04Stetcu, Barrett + v.K. ’07

- many-body systems get complicated rapidly, just as for models

Page 10: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 10

Halo/Cluster states

loosely bound nucleons around tightly bound cores

new scale leads to proliferation of shallow states (near driplines):

2 2

2 2c

coreseN

pN m

EM

Em

O =Oseparation

energy

core excitation

energy

pn

n

n

pp

1

1 cM

pn

np

core

2

2 N

m

m

O

Page 11: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 11

He5

He6

resonance at 0.8 MeVnE 2/3p

0.97 MeVnnE

e.g.

8 Be 0.09 MeVE resonance at0s

12C

bound state at0s

0.38 MeVE 0s resonance at

He4 *

*

8 MeV 20 MeV

28 MeV

BE B B

B

18 MeVRk Em

38 V2 MeR nNmk E

1 eV2 95 Mc NM m E

m

1.6 MeVnE bound state at2/3p

5 Li resonance at 1.7 MeVpE 2/3p 56 V2 MeR pNmk E

6 Be 1.4 MeVppE 0s resonance at

0.19 MeVpE 9 B 2/3p resonance at

9 Be

Page 12: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 12

halo EFT

• degrees of freedom: nucleons, cores

• symmetries: Lorentz, B, P, T

• expansion in: non-relativistic

multipole

simplest formulation: auxiliary fields for core + nucleon states

e.g.

He4

4 He N

fieldscalar

3

1

field 3/2-spin1

field 1/2-spin1

field 0-spin0

23

21

21

Tp

Tp

ss

~ cQ M

,

,N c

c

m mQ QQ

M Q m

Page 13: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 13

0 0

2 2

2

3 3

33

0

11 1 1

3

0

1

3 0

2 2

2( )

( ) H.c.2

( ) H.c.2

( ) H.c.2

EFN

N

T N i N i

T i T

gT S N N

gs

m m

m m

s s N

gT T T N N

L

Bertulani, Hammer + v.K. ’02

Bedaque, Hammer + v.K. ’03

spin transition operator

Page 14: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 14

nT =n + + …

=

3 3

3 33 32

2

2E

i i

k

reduced mass

2/3presonance at

and

if

~Q

33 0 22

323

1~ , ~ ,

4 cM

g

+ + …=

2 2~Q

2 2 3 2

2 2 2 2 2 2 2 2

4~ ~

4c c

Q Q Q Q

Q Q QM MQ

1 12

1~ , ~ ,c

c

a r MM

1

width

Page 15: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 15

0 0

1 13

1 1~ , ~ ,

1~ , ~ ,

c c

cc

a r

a

M

MM

r

M

2 20 1

1

2

0 ~ ~ ~ ,

1 1~ , ~ ,

4 4

c

c

g

M

g

M

other waves:

+ + …=

1~

cM

2 3

2

1 4 1~ ~

4c c c

Q Q

M M M

Q

2 2 3 3

2 2 2

1 4 1~ ~

4c c c cM

Q Q

M M

Q

MQ

21s

21p 1

~cM

Page 16: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 16

22 32 2 2

2 2 2 2 2 2

24~ 1 0

0 0 0

c

cn

c

c

M M

M MT

Q Q Q Q Q

Q Q Q

Q

2/1p

2/1s

2/3p

0 21

21

1~ cMa

10 ~ ca M

1 ~ cr M

11 ~ cM

P

10 ~ cr M

2 2 4 2 1

12 1

, 2 1 cos2 4l l

ll l

ll

rT lk k k kP i

ak

P

31 ~ ca M

etc.

Page 17: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 17

Bedaque, Hammer + v.K. ’03

Haesner et al. ‘83

NNDC, BNL

0

1

2

Page 18: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 18

except at2

cMQ

O where

3~ cM

+ + …

=

2 2 3

3 2 2 3

4~ ~

4c c

c

M M

M

2/3p

enhanced by cM

resum self-energy

2 ( ) 2

( ) 22 Rn

EiT

iE E E E

Page 19: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 19

1

mod 1

Bertulani, Hammer + v.K. ’02

Haesner et al. ‘83

NNDC, BNL

0

Page 20: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 20

Bertulani, Hammer + v.K. ’02

01 0

2

mod 1

1PSA, Arndt et al. ’73

1,0,1

0.80 MeVRE ( ) 0.55 MeVRE

scatt length only

Page 21: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 21

21

1~ cMa

10 ~ ca M

1 ~ cr M1

1 ~ cMP

10 ~ cr M

31 ~ ca M

Arndt et al ‘73

1 ~ cr Mcf.

100MeVcM

30MeVconsistent…

Page 22: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 22

p + electromagnetic interactionsEFT L

iZ eA

F

Coulomb p em Ckk

Z

k

kZ

Sommerfeldparameter

corrections

2

,pm

Q

m

O

transverse photons

NN iZ eA N

Higa, Bertulani + v.K. in progress

CG CG= + + + …

= +

3

22 2 24

4

1 4

4p

Qe

Q QZ Z

Q

non-perturbative for 1k

2

2

4p

Q

Z Z e

Q

Page 23: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 23

CT = CG 2 2 2csc exp ln csc 22 2C

ClT i

ki

11

ln2 1

l i

i l i

Coulombphase shift

pT = CT CST+

pureCoulomb

Coulomb/short-rangeinterference

CST = + + …

= CG

CG

CG

Page 24: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 24

0

2

H.c.4EFT d i d dm

g

L

Higa, Hammer + v.K. ’080 0 spin-0 field s d

3Rk deep non-perturbative Coulomb region!

20exp 22

2CS

C

C iT

Hk K

2 2

exp 2 1C

Sommerfeldfactor 2Re 1 ln

2

iH i C

2

0cot2

CK i H

CST =

0s

CG

CG

Landau-Smorodinskyfunction

Coulomb-corrected phase shift

Page 25: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 25

+ + …=

0Ck

2 2~Q

2 3 2

2 2 2 2 2 2 2 2

4~ ~

4c cQ Q

Q Q Q

M M

Q Q

1

unitarity limitin LO

( )2

2 3R g

D

2

( )

2

2

2 2

2 22

2C

C

R

Kg g

kk

0

1

a

0

2

2rk

2 Ck H ik

2

~cM

2

c

Q

M

Q

2( ) ~R

2

2

~4

cg M

: renorm scale4

0 4

k P

3

4

c

Q

M

2cM

O2

O

“usual” fine-tuning?

Page 26: Halo Effective Field Theory

04/22/23 26

2 4

3

22

6 60 exp 2 1C

CC C

kk

k

k

k

k iH

0Ck

2 120 MeVC ck M

0

0

40

212

2 4C a

krKk

k P

2

~cM

2

c

Q

M

0 0

1

3 Ckr r 0 30

1

15 Ck P P

2

c

Q

M

3

4

c

Q

M

3

4

c

Q

M

since 1 1R Ck kCoulomb “short-

ranged”

+ + …

= CG

exponentially suppressed

Page 27: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 27

0exp 2 22

22CS

R

E

E

i

E ET

iE

2 ( )

2 ( )02

2

11 1

1 4

R

R

k

C

kR R Rk

ee

eE E E E E

P

02 ( )

0

2

0

4 11

1R

CR

Rk

k

r e r

kE

P

02

0 0 0

2

0

11

2RR

a r a r

kE

P

0 0a

0 0r 0

1

3 C

rk

0

Expansion around pole:

exponential suppression

Page 28: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 28

Higa, Hammer + v.K. ‘08

92.07 0.03 keVRE

5.57 0.25 eVRE

fitted with 0 0,a r

Extrafitting parameters

0P

none

Wuestenbecker et al. ‘92

‘69

Page 29: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 29

Rasche ‘67

Higa,

Hammer

+ v.K. ‘08

30 ~ cM P1

0 ~ cr M cf.

150MeVcM

consistent…

0 0

10.13fm

3 Ckr r

fine-tuning of 1 in 10!

but

1~ cM 11.21fm

3 Ck

1~ 10 cM

RE

also,

Page 30: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 30

0

12 fm

2 Cka

O

1

0 2000fm 1000 2 Ca k

naturalness

Fine-tuning of 1 in a 1000between strong and electromagnetic

interactions!!

( )2 1 3

2 ln 12 3 4 2 2C

CE

R

Dk

k

gC

D

2

0 ( )2 R

ga

2cM

O2

O

2 cCk M

O

Higa,

Hammer

+ v.K. ‘08

20 200fmcaM

O

previousfine-tuning

Extra fine-tuning of 1 in 100!

Rasche ‘67

RE

Page 31: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 31

6 4He b.s. He n n

12 4 4 4C b.s. He He He

9 4 4Be b.s. He He n

Next: three-body states

6 4Be res. He p p

9 4 4B res. He He p

Rotureau + v.K., in progress

Main issue: three-body force in LO?

3He b.s. p p n

3H b.s. p n n

cf.

in pionless EFT

Bedaque, Hammer + v.K., ‘98

Ando + Birse, ’10Koenig + Hammer, ‘11

: yes (preliminary)6 He

Page 32: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 32

Other cores 8 7Li b.s. Li n

7 Li2.0 MeV

nE 7 Li

2 60 MeVR N nmk E

Rupak + Higa, ’11Fernando, Higa + Rupak,

in preparation

7 7Li Li 2.5 MeVtE B E

n p d cf.in pionless EFT

Chen, Rupak + Savage, ’99

Rupak, ‘00

7 Li95 M V4 ec NM m E

7 7Li Li* 0.48 MeVB B

other s-, p-waveparameters fit toscattering data,binding energy

one-parameter fit

7 8Li , Lin

7 8Be , Bp Goal:

field included for excited core state

Page 33: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 33

11 10Be b.s. Be n

10 Be

0.2 MeV

0.5 MeVnE

10 Be

2 30 MeVR nNk Em

Hammer + Phillips, ‘11

Coulomb dissociation of 11Be

s-, p-wave

parameters fit to

1 2

1 2

binding energies,

B(E1) transition strength

10 10 10 *Be Be Be 3.4 MeVE B B 10 Be

2 80 MeVc NM m E

Page 34: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 34

2Z b.s. ZA A n n Canham + Hammer, ’08, ’10

with spin

0

s-wave interaction

( 1)3 0nB

( 1)3 0nB

( 1)3 0nB

at least one

Efimov state

(negative energies:virtual states)

Page 35: Halo Effective Field Theory

04/22/23 v. Kolck, Halo EFT 35

ForecastQCD

Pionful

EFT

lattice

Pionless

EFT

Halo/cluster

EFT

Extrapolates torealistically small

r

m

Low-energy

reactions

SM

Extrapolateto larger

and larger

, ,

, ,

QCD

QCD

nuc u d

u d

M m m

Mm m

M

m

,nucM m

,cc nuM M NCSM, …

Faddeev* eqs, …