Haitao Quan (Peking University) in collaboration...

33
Path integral approach to quantum heat Haitao Quan (Peking University) The 5th KIAS Workshop on Quantum Information and Thermodynamics Nov. 10 - 13, 2019 Seminar Rm. 512, Hogil Kim Memoial Hall, POSTECH Haitao Quan (Peking University) in collaboration with: Ken Funo (Currently in RIKEN, Japan) based on K. Funo and H. T. Quan PRE, 98, 012113 (2018) K. Funo and H. T. Quan PRL, 121, 040602 (2018)

Transcript of Haitao Quan (Peking University) in collaboration...

Page 1: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Path integral approach to quantum heat

Haitao Quan (Peking University)

The 5th KIAS Workshop on

Quantum Information and Thermodynamics

Nov. 10 - 13, 2019 ㅣ Seminar Rm. 512, Hogil

Kim Memoial Hall, POSTECH

Haitao Quan (Peking University)

in collaboration with:

Ken Funo (Currently in RIKEN, Japan)

based on K. Funo and H. T. Quan PRE, 98, 012113 (2018)

K. Funo and H. T. Quan PRL, 121, 040602 (2018)

Page 2: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Outline

•Background and motivation

•Trajectory heat along every pair of Feynman paths

•Microscopic reversibility and Jarzynski equality•Microscopic reversibility and Jarzynski equality

•Quantum-classical correspondence of trajectory heat

and heat statistics

•Summary

Page 3: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

nonequilibrium

statistical

mechanics

P. Nalbach, M. Thorwart

PNAS 110, 2693 (2013)

light-harvesting cyclesMaxwell’s demon

measurement

Y. Masuyama, et al., arXiv:1709.00548

nanoscopic physics

bio physics

quantum

information

theory quantum information

processing technologies

PNAS 110, 2693 (2013)arXiv:1709.00548

Page 4: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

quantum thermodynamics: recent experiments

Trapped ions Circuit QED

S. An, et al., Nat. Phys. 11, 193 (2015)

P. A. Camati et al., PRL 117, 240502 (2016)

NMR

N. Cottet, et al., PNAS 114, 7561 (2017)

Y. Masuyama, et al., arXiv:1709.00548

measurement

Page 5: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Work, heat and Entropy as functionals of a trajectory

dttxH

dw λλ

λ &

∂∂= ))((

C. Jarzynski, Phys. Rev. Lett 78, 2690 (1997)

K. Sekimoto, J. Phys. Soc. Jap. 66, 1234 (1997)

dtxx

txHdq &

∂∂= ))((λWork: Heat:

Trajectory work and heat in classical stochastic systems

For overdamped Langevin Dynamics

Heat:

Work:Ken Sekimoto, Stochastic

Energetics (2010)

Page 6: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

• Work functional is defined along individual path, (Feynman)

• It is deeper than the two-point measurement method. (Schrodinger)

� quantum corrections to the classical work funcitonal

Feynman path approach to quantum trajectory work

� quantum-classical correspondence of the work statistics

K. Funo and H. T. Quan PRL, 121, 040602 (2018)

C. Aron, G. Biroli, and L. F. Cugliandolo, SciPost, 4, 008 (2018)

J. Yeo, arXiv: 1909.08212

Page 7: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

How about trajectory heat?

•Trajectory heat is more subtle than

trajectory work

•Even in classical systems, the strong

coupling regime is not well understood

work and heat:

trajectory

dependent

coupling regime is not well understood

•We restrict to weak coupling regime

•We study quantum Brownian motion

P. Talkner, P. Hanggi, PRE, 94, 022143 (2016)

Open system trajectories specify fluctuating work but not heat

Page 8: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Outline

•Background and motivation

•Trajectory heat along every pair of Feynman paths

•Microscopic reversibility and Jarzynski equality•Microscopic reversibility and Jarzynski equality

•Quantum-classical correspondence of heat functional

and heat statistics

•Summary

Page 9: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Quantum Brownian motion – Caldeira Leggett model

• Composite system (system + bath)

system Hamiltoniancounter term

bath Hamiltonian

interaction Hamiltonian

Page 10: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Quantum Brownian motion – Caldeira Leggett model

exactly solvable (spin-boson, HPZ master equation)

A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983)

� non-Markovian, non-rotating wave,

� exactly solvable (spin-boson, HPZ master equation)

& various calculation methodsB. L. Hu, J.P. Paz, Y. Zhang, PRD 45, 2843 (1992)

Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006)

� path integral method to study the reduced dynamicsC. Morais Smith and A. O. Caldeira, PRA 36, 3509 (1987)

H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115 (1988)

Page 11: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Definition of the heat probability distribution

final energy

initial energy transition probability

• Two-point energy measurements

initial probability

heat probability distribution

initial energy transition probability

Page 12: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Characteristic function of heat

characteristic function of heat

Page 13: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Path integral method

unitary dynamics

nonunitary dynamics

• Feynman-Vernon influence functional

bath correlation function

nonunitary dynamics

(environmental effect)

Page 14: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Path integral expression of heat statistics

characteristic function of heat

time-evolutionheat functional

Page 15: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Outline

•Background and motivation

•Trajectory heat along every pair of Feynman paths

•Microscopic reversibility and Jarzynski equality•Microscopic reversibility and Jarzynski equality

•Quantum-classical correspondence of heat functional

and heat statistics

•Summary

Page 16: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Microscopic reversibility in classical Brownian motion

L. Onsager, S. Machlup, Phys. Rev. 91, 1505 (1953).

Lars Onsager

All nonequilibrium work fluctuation theorems can be derived from this relation!

Page 17: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

( )( )

( )W FR

F

P We

P Wβ− − ∆− =

)(

),(

),(

0

0 FW

xxWP

xxWP eR

F ∆−−→−

→ =∗∗β

τ

τ

W Fe eβ β− − ∆=( )

0

( )U

W ee

Z

τββ

τδ− Γ

−Γ − Γ =%

%

T. M. Hoang, …, H. T. Quan, and T. Li, Phys. Rev. Lett 120, 080602 (2018)

Page 18: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Microscopic reversibility in quantum Brownian motion

microscopic reversibility

conditional path probability distribution

Page 19: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Asymmetric part of the influence functional

• Forward path • Backward path

related to the

heat functional

time symmetric

time asymmetric

Page 20: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Asymmetric part of the influence functional

• Forward path • Backward path

time asymmetric

Page 21: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Microscopic reversibility

• heat functional satisfies the microscopic reversibility

• heat functional as a measure of time-asymmetry along Feynman paths

• key relation for showing fluctuation theorems and Jarzynski’s equality

• when there is no heat bath, influence functional equals to 1, heat vanishes

K. Funo and H. T. Quan PRE, 98, 012113 (2018)

Page 22: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Definition of the internal energy functional

• initial state: canonical distribution [imaginary path integral]

initial energy functional

classical limit

K. Funo and H. T. Quan PRE, 98, 012113 (2018)

Page 23: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Detailed fluctuation theorem and Jarzynski’s equality

• definition of work (weak coupling)

• detailed fluctuation theorem

• Jarzynski’s equality

K. Funo and H. T. Quan PRE, 98, 012113 (2018)

Page 24: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Outline

•Background and motivation

•Trajectory heat along every pair of Feynman paths

•Microscopic reversibility and Jarzynski equality•Microscopic reversibility and Jarzynski equality

•Quantum-classical correspondence of heat functional

and heat statistics

•Summary

Page 25: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Properties of the heat functional: classical limit

Trajectory heat

classical limit

Ohmic spectrumOhmic spectrum

Sekimoto (1998)Weak coupling strength

heat statistics

� Quantum-classical correspondence

Page 26: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

•We define trajectory heat along every pair of Feynman paths,

and find the first law of thermodynamics along Feynman paths

•The microscopic reversibility can be proven for the quantum

Brownian motion (Caldeira-Leggett model)

Summary

•Jarzynski equality in quantum Brownian motion model can be

formulated based on the trajectory heat along Feynman paths

•Correspondence between quantum trajectory heat and

classical trajectory heat are established in this model

Page 27: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional
Page 28: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Classical coordinate and thermal noise

from the Caldeira-Leggett model

(properties are discussed later)

Page 29: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Classical limit of the trajectory heat

Trajectory heat

weak coupling

Page 30: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Classical limit of the trajectory heat

heat functional

classical fluctuating heat (non-Markovian)

Ohmic spectrumSekimoto (1998)

weak coupling

Page 31: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Classical limit of the Caldeira-Leggett model

thermal noise via Stratonovich-Hubbard transformation

classical bath correlation function

Page 32: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Classical limit of the characteristic function of heat

classical trajectory satisfying non-Markovian Langevin equation

Wigner function

Page 33: Haitao Quan (Peking University) in collaboration withevents.kias.re.kr/ckfinder/userfiles/201911/files/Haitao Quan(1).pdf · Ken Sekimoto, Stochastic Energetics (2010) • Work functional

Classical limit of the characteristic function of heat

characteristic function of heat

quantum-classical correspondence principle of the heat statisticsquantum-classical correspondence principle of the heat statistics