H. Godfrin et al- Multiple-spin exchange in two dimensional systems

download H. Godfrin et al- Multiple-spin exchange in two dimensional systems

of 28

Transcript of H. Godfrin et al- Multiple-spin exchange in two dimensional systems

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    1/28

    A review on the magnetism of

    2D solid3

    He films

    Multiple-spin exchange

    in two dimensional systems

    CNRS - CRTBT

    Grenoble

    Ultra Low Temperature GroupH. Godfrin, Yu. Bunkov, E. Collin

    C. Winkelmann, V. Goudon, T. Prouv, J. Elbs

    COSLAB - ESF

    Chamrousse - December 17-22 2004

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    2/28

    NMR experiments down to 100K

    in the Nuclear Demagnetization Refrigerator DN1

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    3/28

    Multi-spin exchange

    and Condensed Matter Physics

    Bulk solid 3He

    Theory : Thouless, Roger, Delrieu, Hetherington, Ceperley,

    Experiments : Osheroff, Adams, H.G., Greywall, Fukuyama

    Two-dimensional 3He

    Theory : Roger, Delrieu, Hetherington, Bernu, Misguich, Experiments : H.G., Greywall, Saunders, Osheroff, Fukuyama, Ishimoto,

    3He in porous media (Aerogel, Vycor, ) in the audience!

    Wigner solid : Okamoto, Kawaji, Roger

    Quantum Hall Effect : R=1AsGa ferromagnetic heterostructures,Manfra et al 1996; Girvin, Sachdev, Brey,

    HTc superconductorsTheory : Roger, Gagliano, Experiments : S. Hayden,

    Phase transitions theory : Chubukov, Lhuillier, Misguich, Gagliano,Balseiro,

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    4/28

    Graphite substrates : Grafoil,

    Papyex, ZYX exfoliated graphites

    Large uniform platelets (5->50 nm)

    Strong adsorption potential

    Layer by layer absorption

    2D - 3He systems

    Adsorption isotherms, heat capacity,

    nuclear susceptibility,

    neutron scattering measurements.He-graphite adsorption potential

    3He adsorbed on graphite

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    5/28

    Phase diagram of 2D -3He

    Data from S

    eattle (O. Vilches), revisited by H.G. (1988) and D.S. Greywall (1990)

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    6/28

    Nuclear magnetism of two-dimensional

    solid 3He

    3He atom : nuclear spin 1/2

    Fermions!

    In the solid phases the atoms are

    quasi-localized

    Zero point energy is comparable to

    the potential well depth (about 10 K).

    Large tunneling of atoms (frequency

    of order MHz)

    Quantum exchange interactions

    J ~ 1 mK. He-He potential (Aziz)

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    7/28

    on the triangular lattice of 2D - 3He

    J2

    J3

    J4

    The Jn depend on the film density

    Multi-spin exchange interaction

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    8/28

    Multi-spin exchange :

    a fundamental description of quasi-localized Fermions

    - Identical particles- Hamiltonian without explicit spin-dependent interactions

    Pauli principle: the spin state is coupled

    to the parity of the wave function

    Permutation of spins &particles: Dirac (1947) :

    Effective Hamiltonian on spin variables:Hex = -7P (-1)p Jp P

    Two-particle permutations: P2 = (1 + Wi.Wj)

    Heisenberg Hamiltonian

    Multi-spin exchange in solid 3He (Thouless, 1965)

    Three-particle exchange is also HeisenbergP3 = (1 + Wi.Wj+ Wj.Wk+ Wk.Wi)

    Four-spin exchange introduces a new physics:

    P4 = (1 + 7W.WR + 7 ((Wi.Wj).(Wk.Wl) + (Wi.Wl).(Wj.Wk) -

    (Wi.Wk).(Wj.Wl)))

    All exchange coefficients J are positive

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    9/28

    Multi-spin exchange HTSE fits :

    thermodynamic data for T > J in solid

    3

    He films

    High temperature series expansions of order 5 in J/T for C and G

    (M. Roger, 1998)

    MSE Hamiltonian: Hex = J 7P2 + J4 7P4 - J57P5 + J6 7P6

    Effective pair exchange : J =J2 -2 J3

    Leading order in specific heat : Cv = 9/4 N kB ( Jc/ T )2

    Jc2= ( J2 - 2 J3 + 5/2 J4 - 7/2 J5 + 1/4 J6)

    2

    +2 (J4 - 2 J5 +1/16 J6)2

    + 23/8 J52

    -J5 J6 + 359/384 J62

    )

    Leading order in susceptibility : G = N c / (T- 5)

    c = Curie constant 5 = 3 JG = Curie temperature

    JG = - ( J2 - 2 J3 - 3 J4 - 5 J5 - 5/8 J6)

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    10/28

    STM image of Papyex U. of Tsukuba, 1996

    The graphite substrate has a large

    homogeneous surface + defects !

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    11/28

    The substrate defects can trap 3He atoms (essentially

    paramagnetic). These can be replaced by the non-magnetic

    isotope, by adding 4He

    0

    0.2

    0.4

    0.6

    0.8

    1

    6 6.5 7 7.5 8 8.5 9

    ccSTP3

    He

    ind

    efects

    amount of 4He ccSTP

    L

    F

    D

    -1,33

    0

    0.5

    1

    1.5

    2

    liqu

    id

    3He

    (ccSTP)

    L

    F

    D

    +0,79

    +1,00 +0,33

    Adding 4He changes

    the amount of liquid

    and solid 3He (in the

    second layer, in the

    case shown)

    and it removes the

    paramagnetic defects

    (of the 4/7 phase, in

    this example)

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    12/28

    Exchange in 2D-3He : first measurements

    (Grenoble, Bell Labs)

    and the concept of Quantum Frustration

    (M. Roger)

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    13/28

    Effective exchange interactions in 2D-3He

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    14/28

    2D - Ferromagnetic Heisenberg Hamiltonian

    Godfrin, Ruel and Osheroff, 1988

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    15/28

    2D-Heisenberg ferromagnet :Stanford measurements

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    16/28

    The 4/7 phase

    a family of

    registered

    phases

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    17/28

    The 4/7 phase :

    a spin-liquid?

    Large entropy at low

    temperatures, wellbelow J

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    18/28

    Measurements ofthe susceptibility

    and heat capacity

    of the 4/7 phase :

    a frustrated

    quantum

    antiferromagnet

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    19/28

    Intrinsic magnetization of the 4/7 phase

    3He/4He/graphite

    Low field (30.51 mT)cw - NMR measurements

    Dots : clean regime

    (2D liquid subtracted)

    Circles : impurity regime(liquid and defects subtracted)

    Note the very low values of M!0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.1 1 10 100

    M/

    Msat

    T(mK)

    E. Collin, PhD Thesis Grenoble (2002)

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    20/28

    High temperature (T >2mK) MSE analysis

    We determine the main exchange

    constants with an accuracy of 0.1 mK :

    J2 = -2.8 mK, J4 = 1.4 mK,

    J5 = 0.45 mK, J6 = 1.25 mK.

    JG = 0.07 +/- 0.1 mK:strongly frustrated system!

    The Curie-Weiss temperature :

    5 = 3JG = +0.2 mKis different from the

    Curie-Weiss fit and has the opposite

    sign 5 = -0.9 mKas a result of the

    strong cancellation of the Heisenberg

    term due to multiple spin exchange.

    Our data for3He/ 3He/ graphite (2000)

    J /J4 = -1.67

    J5/J4 = 0.34J6/J4 = 0.83

    and (black dot) 3He/ 4He/ graphite (2001)

    J /J4 = -2

    J5/J4 = 0.32

    J6/J4 = 0.89

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    21/28

    MSE coefficients

    for different 2D-3He 4/7 phases

    E. Collin, PhD Thesis, Grenoble 2002

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    22/28

    Low temperature thermodynamics

    Test of the prediction of a spin-liquid state with a gap ( in

    the triplet excitations (Misguich et al.)

    We assume that the excitations are spin-wave-like S=1

    bosons, with a dispersion relation[ = ( + J.S(k-k0)

    n + gNWB

    The low temperature, low field magnetization is then

    M(T) E (T /J.S)(2/n - 1) exp(-(/T)

    The logarithmic derivative of M(T) with respect to 1/T is

    -d lnM/ d (1/T) = ( n).T

    (method suggested by Troyer et al., 1994)

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    23/28

    Low temperature magnetization

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.01 0.1 1 10 100

    MT

    (arb.units)

    Temperature (mK)

    Curie Law

    spin waves

    0

    0.05

    0.1

    0.15

    0.01 0.1 1 10 100

    M

    T

    Gapped spin-waves with ( = 75 K and n = 6

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    24/28

    Spin-gap = 75 K

    -0,4

    -0,3

    -0,2

    -0,1

    0

    0,1

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

    -dlnM/

    d(1/T)

    T (mK)

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    25/28

    Tokyo

    susceptibility

    measurements :

    - No spin gap?

    - Impurities?

    New measurementsneeded!

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    26/28

    Conclusions

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    27/28

    Conclusions on the Spin-Liquid phase

    The 4/7 phase of3He/4He/graphite displays unusual magnetic properties

    Dirac-Thouless multi-spin exchange describes well HT thermodynamics

    Magnetic phase-diagram (Misguich, Bernu, Lhuillier, Waldmann)

    : consistent with experiments

    Spin-liquid ground state? Several experimental indications!

    Magnetic impurities : can be reduced adequately (in this T range)

    Heat capacity (Fukuyama) double peak structure, large density ofstates (dominated presumably by S=0 excitations)

    Susceptibility varying very slowly : 5

  • 8/3/2019 H. Godfrin et al- Multiple-spin exchange in two dimensional systems

    28/28

    ReferencesP.A.M Dirac, The Principles of Quantum Mechanics (Oxford: Clarendon) (1947).

    D.J. Thouless, Proc. Phys. Soc. {86}, 893 (1965).

    M. Roger, J.H. Hetherington and J.M. Delrieu, Rev. Mod. Phys. {55}, 1 (1983).

    H. Franco, R. E. Rapp, and H. Godfrin, Phys. Rev. Lett. {57}, 1161 (1986).

    M. Roger, Phys. Rev. Lett. {64}, 297 (1990).

    D. Greywall, Phys. Rev. B {41}, 1842 (1990).

    P. Schiffer, M.T. O'Keefe, D.D. Osheroff, and H. Fukuyama, Phys. Rev. Lett. {71}, 1403 (1993).

    M. Siqueira, C.P. Lusher, B.P. Cowan, and J. Saunders, Phys. Rev. Lett. {71}, 1407 (1993).

    H. Godfrin and R. E. Rapp, Advances in Physics, {44}, 113-186 (1995).

    M. Roger, Phys. Rev. B. {56}, R2928 (1997).

    K. Ishida, M. Morishita, K. Yawata, and H. Fukuyama, Phys. Rev. Lett. {79}, 3451 (1997).

    M. Roger, C. Bauerle, Yu.M. Bunkov, A.S. Chen, and H. Godfrin, Phys. Rev. Lett. {80}, 1308 (1998).

    G. Misguich, B.Bernu, C. Lhuillier and C. Waldmann, Phys. Rev. Lett. {81}, 1098 (1998).

    A. Casey, H. Patel, J. Nyki, B.P. Cowan, and J. Saunders, J. of Low Temp. Phys. {113}, 265 (1998).

    T. Momoi, H. Sakamoto, K. Kubo, Phys. Rev. B, {59}, 9491 (1999)

    C. Bauerle, Y. M. Bunkov, A.-S. Chen, D. J. Cousins, H. Godfrin, M. Roger, S. Triqueneaux, Physica B, {280}, 95 (2000)

    E. Collin, S. Triqueneaux, R. Harakaly, M. Roger, C. Bauerle, Yu.M. Bunkov and H. Godfrin, Phys. Rev. Lett. {86}, 2447(2001).

    R. Masutomi, Y. Karaki, and H. Ishimoto, J. of Low Temp. Phys. {126}, 241 (2002) ) and Phys. Rev. Lett. 92, p? (2004).

    Spin Waves : M. Troyer, H. Tsunetsugu and D. Wrtz, Phys. Rev. B. {50}, 13515 (1994).

    and special thanks to Grgoire Misguich, Bruce Normand and Michel Roger!