h(-1). Tag-encoded FLX amplicon pyrosequencing was used to ... · incorporate H2S efficiently as...

31
Acido solfidrico nella letteratura internazionale Studi inseriti in PubMed nel mese di maggio 2016 (aggiornamento 10 giugno 2016) (1) Kinzurik MI, Herbst-Johnstone M, Gardner RC, Fedrizzi B. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide. Food Chem 2016 Oct 15;209:341-7. Abstract: Hydrogen sulfide (H2S) is produced by yeast during winemaking and possesses off-flavors reminiscent of rotten eggs. The production of H2S during fermentation has also been associated in the finished wine with the rise of additional volatile sulfur compounds (VSCs) with strong aromas of cooked onions and vegetables. To characterize these more complex VSCs produced from H2S, we performed fermentations in synthetic grape juice. H2S production was manipulated experimentally by feeding increasing concentrations of sulfate to mutant strains that are unable to incorporate H2S efficiently as part of the sulfur assimilation pathway. In finished wines from these mutants, three VSCs - ethanethiol, S-ethyl thioacetate and diethyl disulfide - increased proportionally to H2S. (34)S-labeled sulfate fed to the MET17-deleted strain was incorporated into same three VSCs, demonstrating that they are formed directly from H2S (2) Li D, Limwachiranon J, Li L, Du R, Luo Z. Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chem 2016 Oct 1;208:272-8. Abstract: In this study, the effect of hydrogen sulfide (H2S) on energy metabolism in postharvest banana fruit under chilling stress was investigated. Banana fruit, fumigated with optimal concentration (0.5mM) of aqueous sodium hydrosulfide (NaHS) solution for 24h, were initially stored at 7 degrees C for 14d and 20 degrees C for another 6d. H2S treated banana fruit showed both higher value of firmness and Hue angle, as well as lower value of electrolyte leakage, malondialdehyde (MDA) content and ethylene production. These indicated slower development of chilling injury compared with the control. Decrease in adenosine triphosphate (ATP) and energy charge was not noticeable in H2S treated banana fruit. Moreover, the activity of H(+)-ATPase, Ca(2+)-ATPase, cytochrome C oxidase (CCO) and succinate dehydrogenase (SDH), associated with energy metabolism, were significantly enhanced by H2S treatment. Therefore, it can be deduced that H2S can potentially alleviate chilling development in banana fruit by increasing enzymes activities, involved in energy metabolism, to maintain energy charge (3) Almenglo F, Bezerra T, Lafuente J, Gabriel D, Ramirez M, Cantero D. Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization. Chemosphere 2016 Aug;157:215-23. Abstract: Hydrogen sulfide removal from biogas was studied under anoxic conditions in a pilot-scale biotrickling filter operated under counter- and co-current gas-liquid flow patterns. The best performance was found under counter-current conditions (maximum elimination capacity of 140 gS m(-3) h(-1)). Nevertheless, switching conditions between co- and counter-current flow lead to a favorable redistribution of biomass and elemental sulfur along the bed height. Moreover, elemental sulfur was oxidized to sulfate when the feeding biogas was disconnected and the supply of nitrate (electron acceptor) was maintained. Removal of elemental sulfur was important to prevent clogging in the packed bed and, thereby, to increase the lifespan of the packed bed between maintenance episodes. The larger elemental sulfur removal rate during shutdowns was 59.1 gS m(-3)

Transcript of h(-1). Tag-encoded FLX amplicon pyrosequencing was used to ... · incorporate H2S efficiently as...

Acido solfidrico nella letteratura internazionale Studi inseriti in PubMed nel mese di maggio 2016

(aggiornamento 10 giugno 2016)

(1) Kinzurik MI, Herbst-Johnstone M, Gardner RC, Fedrizzi B. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide. Food Chem 2016 Oct 15;209:341-7. Abstract: Hydrogen sulfide (H2S) is produced by yeast during winemaking and possesses off-flavors reminiscent of rotten eggs. The production of H2S during fermentation has also been associated in the finished wine with the rise of additional volatile sulfur compounds (VSCs) with strong aromas of cooked onions and vegetables. To characterize these more complex VSCs produced from H2S, we performed fermentations in synthetic grape juice. H2S production was manipulated experimentally by feeding increasing concentrations of sulfate to mutant strains that are unable to incorporate H2S efficiently as part of the sulfur assimilation pathway. In finished wines from these mutants, three VSCs - ethanethiol, S-ethyl thioacetate and diethyl disulfide - increased proportionally to H2S. (34)S-labeled sulfate fed to the MET17-deleted strain was incorporated into same three VSCs, demonstrating that they are formed directly from H2S

(2) Li D, Limwachiranon J, Li L, Du R, Luo Z. Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chem 2016 Oct 1;208:272-8. Abstract: In this study, the effect of hydrogen sulfide (H2S) on energy metabolism in postharvest banana fruit under chilling stress was investigated. Banana fruit, fumigated with optimal concentration (0.5mM) of aqueous sodium hydrosulfide (NaHS) solution for 24h, were initially stored at 7 degrees C for 14d and 20 degrees C for another 6d. H2S treated banana fruit showed both higher value of firmness and Hue angle, as well as lower value of electrolyte leakage, malondialdehyde (MDA) content and ethylene production. These indicated slower development of chilling injury compared with the control. Decrease in adenosine triphosphate (ATP) and energy charge was not noticeable in H2S treated banana fruit. Moreover, the activity of H(+)-ATPase, Ca(2+)-ATPase, cytochrome C oxidase (CCO) and succinate dehydrogenase (SDH), associated with energy metabolism, were significantly enhanced by H2S treatment. Therefore, it can be deduced that H2S can potentially alleviate chilling development in banana fruit by increasing enzymes activities, involved in energy metabolism, to maintain energy charge

(3) Almenglo F, Bezerra T, Lafuente J, Gabriel D, Ramirez M, Cantero D. Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization. Chemosphere 2016 Aug;157:215-23. Abstract: Hydrogen sulfide removal from biogas was studied under anoxic conditions in a pilot-scale biotrickling filter operated under counter- and co-current gas-liquid flow patterns. The best performance was found under counter-current conditions (maximum elimination capacity of 140 gS m(-3) h(-1)). Nevertheless, switching conditions between co- and counter-current flow lead to a favorable redistribution of biomass and elemental sulfur along the bed height. Moreover, elemental sulfur was oxidized to sulfate when the feeding biogas was disconnected and the supply of nitrate (electron acceptor) was maintained. Removal of elemental sulfur was important to prevent clogging in the packed bed and, thereby, to increase the lifespan of the packed bed between maintenance episodes. The larger elemental sulfur removal rate during shutdowns was 59.1 gS m(-3)

2

h(-1). Tag-encoded FLX amplicon pyrosequencing was used to study the diversity of bacteria under co-current flow pattern with liquid recirculation and counter-current mode with a single-pass flow of the liquid phase. The main desulfurizing bacteria were Sedimenticola while significant role of heterotrophic, opportunistic species was envisaged. Remarkable differences between communities were found when a single-pass flow of industrial water was fed to the biotrickling filter

(4) El-Sayed SS, Zakaria MN, bdel-Ghany RH, bdel-Rahman AA. Cystathionine-gamma lyase-derived hydrogen sulfide mediates the cardiovascular protective effects of moxonidine in diabetic rats. Eur J Pharmacol 2016 Jul 15;783:73-84. Abstract: Blunted cystathionine-gamma lyase (CSE) activity (reduced endogenous H2S-level) is implicated in hypertension and myocardial dysfunction in diabetes. Here, we tested the hypothesis that CSE derived H2S mediates the cardiovascular protection conferred by the imidazoline I1 receptor agonist moxonidine in a diabetic rat model. We utilized streptozotocin (STZ; 55mg/kg i.p) to induce diabetes in male Wistar rats. Four weeks later, STZ-treated rats received vehicle, moxonidine (2 or 6mg/kg; gavage), CSE inhibitor DL-propargylglycine, (37.5mg/kg i.p) or DL-propargylglycine with moxonidine (6mg/kg) for 3 weeks. Moxonidine improved the glycemic state, and reversed myocardial hypertrophy, hypertension and baroreflex dysfunction in STZ-treated rats. Ex vivo studies revealed that STZ caused reductions in CSE expression/activity, H2S and nitric oxide (NO) levels and serum adiponectin and elevations in myocardial imidazoline I1 receptor expression, p38 and extracellular signal-regulated kinase, ERK1/2, phosphorylation and lipid peroxidation (expressed as malondialdehyde). Moxonidine reversed these biochemical responses, and suppressed the expression of death associated protein kinase-3. Finally, pharmacologic CSE inhibition (DL-propargylglycine) abrogated the favorable cardiovascular, glycemic and biochemical responses elicited by moxonidine. These findings present the first evidence for a mechanistic role for CSE derived H2S in the glycemic control and in the favorable cardiovascular effects conferred by imidazoline I1 receptor activation (moxonidine) in a diabetic rat model

(5) Aydin M, Ozen ME, Kirbiyik U, Evlice B, Ferguson M, Uzel I. A new measurement protocol to differentiate sources of halitosis. Acta Odontol Scand 2016 Jul;74(5):380-4. Abstract: OBJECTIVE: Three sources of halitosis exist, potentially in any combination: mouth, nasal cavity or alveolar breath. There has been no universally accepted protocol which differentiates and quantifies each odour source separately. In this study a new gas measurement protocol is described and tested to determine whether each odour source can be separately detected without contamination. MATERIALS AND METHODS: Ninety healthy volunteers were divided into three groups. Hydrogen sulphide (H2S), volatile organic compounds (VOCs) and hydrogen (H2) were artificially generated in the mouth, nose and pulmonary alveoli, respectively. VOC, ammonia (NH3), sulphur dioxide (SO2), H2S and H2 gas readings from mouth, nose and alveolar air were measured and compared. Measurements were taken before and during gas generation. RESULTS: Contamination of nasal air (2.8%) and alveolar air (5.0%) by oral H2S; alveolar air (2.06%) and oral air (4%) by nasal organic gas; nasal air (18.43%) and oral air (9.42%) by alveolar H2 was calculated. CONCLUSION: The results demonstrated that artificially generated oral H2S nasal VOC and alveolar H2 can be individually quantified. This gas measurement protocol can be used diagnostically or to gauge response to therapy in any medical or dental setting

(6) Perna AF, Di NA, Amoresano A, Pane F, Fontanarosa C, Pucci P, et al. Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients. Biochimie 2016 Jul;126:97-107. Abstract: Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine beta-synthase and cystathionine gamma-lyase in hydrogen sulfide biosynthesis, leading to the formation of

3

two sulfur metabolites, lanthionine and homolanthionine, considered stable indirect biomarkers of its production. Hydrogen sulfide is involved in the modulation of multiple pathophysiological responses. In uremia, we have demonstrated low plasma total hydrogen sulfide levels, due to reduced cystathionine gamma-lyase expression. Plasma hydrogen sulfide levels were measured in hemodialysis patients and healthy controls with three different techniques in comparison, allowing to discern the different pools of this gas. The protein-bound (the one thought to be the most active) and acid-labile forms are significantly decreased, while homolanthionine, but especially lanthionine, accumulate in the blood of uremic patients. The hemodialysis regimen plays a role in determining sulfur compounds levels, and lanthionine is partially removed by a single dialysis session. Lanthionine inhibits hydrogen sulfide production in cell cultures under conditions comparable to in vivo ones. We therefore propose that lanthionine is a novel uremic toxin. The possible role of high lanthionine as a contributor to the genesis of hyperhomocysteinemia in uremia is discussed

(7) Clark AC, Kontoudakis N, Barril C, Schmidtke LM, Scollary GR. Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes. Talanta 2016 Jul 1;154:431-7. Abstract: The presence of copper in wine is known to impact the reductive, oxidative and colloidal stability of wine, and techniques enabling measurement of different forms of copper in wine are of particular interest in understanding these spoilage processes. Electrochemical stripping techniques developed to date require significant pretreatment of wine, potentially disturbing the copper binding equilibria. A thin mercury film on a screen printed carbon electrode was utilised in a flow system for the direct analysis of labile copper in red and white wine by constant current stripping potentiometry with medium exchange. Under the optimised conditions, including an enrichment time of 500s and constant current of 1.0muA, the response range was linear from 0.015 to 0.200mg/L. The analysis of 52 red and white wines showed that this technique generally provided lower labile copper concentrations than reported for batch measurement by related techniques. Studies in a model system and in finished wines showed that the copper sulfide was not measured as labile copper, and that loss of hydrogen sulfide via volatilisation induced an increase in labile copper within the model wine system

(8) Yang Y, Lei Y, Zhang X, Zhang S. A ratiometric strategy to detect hydrogen sulfide with a gold nanoclusters based fluorescent probe. Talanta 2016 Jul 1;154:190-6. Abstract: The emergence of ratiometric fluorescent probes have offered more convincing results to the bioanalytical field of research. In particular, using nanoparticles as scaffolds for the construction of ratiometric systems has received increasing attention. In this work, a novel design strategy was implemented for ratiometric sensing of hydrogen sulfide (H2S), in which bovine serum albumin templated gold nanoclusters (BSA-AuNCs) was served as the internal reference fluorophore and HSip-1, a azamacrocyclic Cu(2+) complex based fluorescent probe toward H2S, acted as both the signal indicator and specific recognition element. Under single wavelength excitation, the nanohybrid probe HSip-1@AuNC emitted dual fluorescence at 519 and 632nm, coming from HSip-1 and AuNCs respectively. The effective fluorescence response of organic dye to H2S and constant fluorescence of AuNCs enabled the proposed HSip-1@AuNC to achieve the ratiometric measurement with a dynamic linear range of 7-100muM and a detection limit of 0.73muM. This probe also possesses high selectivity, stability against pH change and continuously light illumination. In addition, we provided HSip-1@AuNC as a valuable tool to analyze sulfides in serum samples and perfect recoveries verified its potential in biological applications

(9) Peng L, Cao X, Xiong B, He Y, Yeung ES. A novel scattering switch-on detection technique for target-induced plasmon-coupling based sensing by single-particle optical anisotropy imaging. Chem Commun (Camb ) 2016 Jun 18;52(48):7616-9. Abstract: We reported a novel scattering switch-on detection technique using flash-lamp

4

polarization darkfield microscopy (FLPDM) for target-induced plasmon-coupling based sensing in homogeneous solution. With this method, we demonstrated sub-nM sensitivity for hydrogen sulfide (H2S) detection over a dynamic range of five orders of magnitude. This robust technique holds great promise for applications in toxic environmental pollutants and biological molecules

(10) Yamamoto H, Yamamoto T, Mito Y, Asaoka S. Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass. Mar Pollut Bull 2016 Jun 15;107(1):188-205. Abstract: Granulated coal ash (GCA), which is a by-product of coal thermal electric power stations, effectively decreases phosphate and hydrogen sulfide (H2S) concentrations in the pore water of coastal marine sediments. In this study, we developed a pelagic-benthic coupled ecosystem model to evaluate the effectiveness of GCA for diminishing the oxygen-deficient water mass formed in coastal bottom water of Hiroshima Bay in Japan. Numerical experiments revealed the application of GCA was effective for reducing the oxygen-deficient water masses, showing alleviation of the DO depletion in summer increased by 0.4-3mgl(-1). The effect of H2S adsorption onto the GCA lasted for 5.25years in the case in which GCA was mixed with the sediment in a volume ratio of 1:1. The application of this new GCA-based environmental restoration technique could also make a substantial contribution to form a recycling-oriented society

(11) Hartle MD, Delgado M, Gilbertson JD, Pluth MD. Stabilization of a Zn(ii) hydrosulfido complex utilizing a hydrogen-bond accepting ligand. Chem Commun (Camb ) 2016 Jun 8;52(49):7680-2. Abstract: Hydrogen sulfide (H2S) has gained recent attention as an important biological analyte that interacts with bioinorganic targets. Despite this importance, stable H2S or HS(-) adducts of bioinorganic metal complexes remain rare due to the redox activity of sulfide and its propensity to form insoluble metal sulfides. We report here reversible coordination of HS(-) to Zn(didpa)Cl2, which is enabled by an intramolecular hydrogen bond between the zinc hydrosulfido product and the pendant tertiary amine of the didpa ligand

(12) Montoya LA, Pluth MD. Organelle-Targeted H2S Probes Enable Visualization of the Subcellular Distribution of H2S Donors. Anal Chem 2016 Jun 7;88(11):5769-74. Abstract: Hydrogen sulfide (H2S) is an essential biological signaling molecule in diverse biological regulatory pathways. To provide new chemical tools for H2S imaging, we report here a fluorescent H2S detection platform (HSN2-BG) that is compatible with subcellular localization SNAP-tag fusion protein methodologies and use appropriate fusion protein constructs to demonstrate mitochondrial and lysosomal localization. We also demonstrate the efficacy of this detection platform to image endogenous H2S in Chinese hamster ovary (CHO) cells and use the developed constructs to report on the subcellular H2S distributions provided by common H2S donor molecules AP39, ADT-OH, GYY4137, and diallyltrisulfide (DATS). The developed constructs provide a platform poised to provide new insights into the subcellular distribution of common H2S donors and a useful tool for investigating H2S biochemistry

(13) Shamirian A, Samareh AH, Wu D, Miller LW, Snee PT. Ratiometric QD-FRET Sensing of Aqueous H2S in Vitro. Anal Chem 2016 Jun 7;88(11):6050-6. Abstract: We report a platform for the ratiometric fluorescent sensing of endogenously generated gaseous transmitter H2S in its aqueous form (bisulfide or hydrogen sulfide anion) based on the alteration of Forster resonance energy transfer from an emissive semiconductor quantum dot (QD) donor to a dithiol-linked organic dye acceptor. The disulfide bridge between the two chromophores is cleaved upon exposure to bisulfide, resulting in termination of FRET as the dye diffuses away from the QD. This results in enhanced QD emission and dye quenching. The resulting ratiometric response can be correlated quantitatively to the concentration of bisulfide and was found to have a

5

detection limit as low as 1.36 +/- 0.03 muM. The potential for use in biological applications was demonstrated by measuring the response of the QD-based FRET sensor microinjected into live HeLa cells upon extracellular exposure to bisulfide. The methodology used here is built upon a highly multifunctional platform that offers numerous advantages, such as low detection limit, enhanced photochemical stability, and sensing ability within a biological milieu

(14) Steiger AK, Pardue S, Kevil CG, Pluth MD. Self-Immolative Thiocarbamates Provide Access to Triggered HS Donors and Analyte Replacement Fluorescent Probes. J Am Chem Soc 2016 Jun 3. Abstract: Hydrogen sulfide (H2S) is an important biological signaling molecule, and chemical tools for H2S delivery and detection have emerged as important investigative methods. Key challenges in these fields include developing donors that are triggered to release H2S in response to stimuli and developing probes that do not irreversibly consume H2S. Here we report a new strategy for H2S donation based on self-immolation of benzyl thiocarbamates to release carbonyl sulfide, which is rapidly converted to H2S by carbonic anhydrase. We leverage this chemistry to develop easily modifiable donors that can be triggered to release H2S. We also demonstrate that this approach can be coupled with common H2S-sensing motifs to generate scaffolds which, upon reaction with H2S, generate a fluorescence response and also release caged H2S, thus addressing challenges of analyte homeostasis in reaction-based probes

(15) Touch N, Hibino T, Nakashita S, Nakamoto K. Variation in properties of the sediment following electrokinetic treatments. Environ Technol 2016 Jun 2;1-8. Abstract: Many studies have reported variation in properties of the sediment within electrokinetic treatments (EKTs). However, we aim to reveal the variation in properties of the sediment following EKTs through laboratory experiments. We collected sewage-derived sediment from a littoral region, and passed it through a 2-mm sieve. We used a potentiostat to cause electrical current in EKT. We measured the sediment properties such as pH, redox potential (ORP), and hydrogen sulphide (H2S) concentration at the end of EKT and at 30 days following EKT. Results showed decreases in pH, increases in ORP, and decreases in H2S concentration at the end of EKT. Compared with the sediment without EKT, the decrease in ORP for the sediment within EKT was higher at 30 days following EKT. These suggest that anaerobic digestion of organic compounds occurs in the sediment following EKT, of which the oxidants produced by EKT serve as electron acceptors and organic compounds serve as electron donors. Furthermore, we found that EKT can remove H2S from the sediment and reduce H2S production in the sediment within EKT when compared to the case without EKT. These ensure that EKT can be used to remove H2S and control H2S production in the sediment

(16) Maurer DL, Koziel JA, Harmon JD, Hoff SJ, Rieck-Hinz AM, Andersen DS. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT). Data Brief 2016 Jun;7:1413-29. Abstract: The livestock and poultry production industry, regulatory agencies, and researchers lack a current, science-based guide and data base for evaluation of air quality mitigation technologies. Data collected from science-based review of mitigation technologies using practical, stakeholders-oriented evaluation criteria to identify knowledge gaps/needs and focuses for future research efforts on technologies and areas with the greatest impact potential is presented in the Literature Database tab on the air management practices tool (AMPAT). The AMPAT is web-based (available at www.agronext.iastate.edu/ampat) and provides an objective overview of mitigation practices best suited to address odor, gaseous, and particulate matter (PM) emissions at livestock operations. The data was compiled into Excel spreadsheets from a literature review of 265 papers was performed to (1) evaluate mitigation technologies performance

6

for emissions of odor, volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), particulate matter (PM), and greenhouse gases (GHGs) and to (2) inform future research needs

(17) Shokuhi RA, Esfahanian M, Ganjian E, Tayebi HA, Novir SB. The polythiophene molecular segment as a sensor model for H2O, HCN, NH3, SO3, and H2S: a density functional theory study. J Mol Model 2016 Jun;22(6):127. Abstract: Studying the interaction of some atmospheric gases (H2O, HCN, NH3, SO3 and H2S) with 3PT oligomers is important in the development of polymeric sensors for gas detection. In the present study, we studied the relaxed geometries, interaction energies, charge analysis, HOMO-LUMO orbital analysis, and UV-vis spectra of all interacted systems using first-principles density functional theory (DFT). All these analyses indicated the potential of polythiophene as an inexpensive polymeric sensor for the analytes mentioned. Interaction energy values of -19.90, -19.66, -14.01, -8.70, and -4.76 kJ mol(-1) were achieved for adsorption of SO3, H2O, NH3, HCN, and H2S on 3PT, respectively. Consequently, clarification of their physical parameters became the major focus of this study

(18) Dhar S, Kranthi K, V, Choudhury TH, Shivashankar SA, Raghavan S. Chemical vapor deposition of MoS2 layers from Mo-S-C-O-H system: thermodynamic modeling and validation. Phys Chem Chem Phys 2016 Jun 1;18(22):14918-26. Abstract: A detailed thermodynamic analysis of the solid and gas phases of the Mo-S-C-O-H system used for large area chemical vapor deposition (CVD) of MoS2 is presented and compared with experimental results. Given the multivariable nature of the problem, excellent agreement is observed. Deviations, observed from thermodynamic predictions, mainly at low temperatures and high flow rates have been highlighted and discussed. CVD phase diagrams which predict parameter windows in which pure MoS2 can be synthesized have been provided for important gas phase chemistries. Pure H2 as a carrier gas is shown to facilitate the largest contamination free process window. CO presence is shown to significantly reduce the nucleation rate and enable large island sizes but at the cost of carbon contamination. Oxygen leaks are shown to result in sulphur contamination. The absence of H2S during cooling is shown to yield Mo due to the reduction of MoS2 by hydrogen. Oxidation of Mo causes oxide contamination

(19) Peng L, Jiang D, Wang Z, Hua L, Li H. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas. Talanta 2016 Jun 1;153:295-300. Abstract: Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in >/=60% relative humidity air could be obtained at </=79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system

(20) Dadlani AL, Acharya S, Trejo O, Prinz FB, Torgersen J. ALD Zn(O,S) Thin Films' Interfacial Chemical and Structural Configuration Probed by XAS. ACS Appl Mater Interfaces 2016 May 31.

7

Abstract: The ability to precisely control interfaces of atomic layer deposited (ALD) zinc oxysulfide (Zn(O,S)) buffer layers to other layers allows precise tuning of solar cell performance. The O K- and S K-edge X-ray absorption near edge structure (XANES) of approximately 2-4 nm thin Zn(O,S) films reveals the chemical and structural influences of their interface with ZnO, a common electrode material and diffusion barrier in solar cells. We observe that sulfate formation at oxide/sulfide interfaces is independent of film composition, a result of sulfur diffusion toward interfaces. Leveraging sulfur's diffusivity, we propose an alternative ALD process in which the zinc precursor pulse is bypassed during H2S exposure. Such a process yields similar results to the nanolaminate deposition method and highlights mechanistic differences between ALD sulfides and oxides. By identifying chemical species and structural evolution at sulfide/oxide interfaces, this work provides insights into increasing thin film solar cell efficiencies

(21) Vuong NM, Chinh ND, Huy BT, Lee YI. CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors. Sci Rep 2016;6:26736. Abstract: Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 degrees C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements

(22) Han B, Poppinga WJ, Zuo H, Zuidhof AB, Bos IS, Smit M, et al. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease. Sci Rep 2016;6:26928. Abstract: COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, beta2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-kappaB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress

(23) Sabino JP, Traslavina GA, Branco LG. Role of central hydrogen sulfide on ventilatory and cardiovascular responses to hypoxia in spontaneous hypertensive rats. Respir Physiol Neurobiol 2016 May 26.

8

Abstract: Central hydrogen sulfide (H2S) has been reported to act as a gaseous neuromodulator involved in the ventilatory and cardiovascular control of normotensive rats, whereas no information is available in spontaneously hypertensive rats (SHR). We recorded minute ventilation (VE), mean arterial pressure (MAP) and heart rate (HR) before and after blocking of enzyme Cystathionine beta-synthase (CBS) producing H2S in neural tissue by microinjection of aminooxyacetate (inhibitor of CBS) into the fourth ventricle of Wistar normotensive rats (WNR) and SHR followed by 30minutes of normoxia (21% inspired O2) or hypoxia (10% inspired O2) exposure. Microinjection of AOA or saline (1muL) did not change VE, MAP and HR during normoxia in both WNR and SHR. In WNR, hypoxia caused an increase in VE, HR and a decrease in MAP and these responses were unaltered by AOA. In SHR, hypoxia produced a higher increase of VE, and decrease in MAP and HR when compared to WNR, and these responses were all blunted by AOA. In conclusion, endogenous H2S plays important modulatory roles on hypoxia-induced ventilatory and cardiovascular responses, inhibiting the cardiovascular and stimulating the respiratory systems in SHR

(24) Wedmann R, Onderka C, Wei S, Szijarto IA, Miljkovic JL, Mitrovic A, et al. Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci 2016 May 25;7(5):3414-26. Abstract: Hydrogen sulfide (H2S) has emerged as a signalling molecule capable of regulating several important physiological functions such as blood pressure, neurotransmission and inflammation. The mechanisms behind these effects are still largely elusive and oxidative posttranslational modification of cysteine residues (protein persulfidation or S-sulfhydration) has been proposed as the main pathway for H2S-induced biological and pharmacological effects. As a signalling mechanism, persulfidation has to be controlled. Using an improved tag-switch assay for persulfide detection we show here that protein persulfide levels are controlled by the thioredoxin system. Recombinant thioredoxin showed an almost 10-fold higher reactivity towards cysteine persulfide than towards cystine and readily cleaved protein persulfides as well. This reaction resulted in H2S release suggesting that thioredoxin could be an important regulator of H2S levels from persulfide pools. Inhibition of the thioredoxin system caused an increase in intracellular persulfides, highlighting thioredoxin as a major protein depersulfidase that controls H2S signalling. Finally, using plasma from HIV-1 patients that have higher circulatory levels of thioredoxin, we could prove depersulfidase role in vivo

(25) Sei S, Invidia M, Giannetto M, Gorbi G. Acartia tonsa eggs as a biomonitor to evaluate bioavailability/toxicity of persistent contaminants in anoxic/sulfidic conditions: The case of cadmium and nickel. Ecotoxicol Environ Saf 2016 May 25;132:1-8. Abstract: The evaluation of toxicity due to persistent pollutants in anoxic aquatic environments has met with various problems, as most test organisms can not withstand oxygen lack and exposure to free sulfide. We evaluated the suitability of the eggs of the brackish copepod Acartia tonsa for bioassays in anoxic/sulfidic conditions: when exposed to deep hypoxia and free sulfide, the eggs become quiescent and are able to resume hatching after restoring normoxic conditions. Tests with cadmium and nickel were performed in normoxic and deeply hypoxic conditions and in anoxic water containing H2S or H2S+FeSO4 on an equimolar basis. Active and quiescent eggs showed equivalent sensitivity to the metals, both suffering significant reductions in hatching success at 89muM Cd and 17muM Ni. As expected on the basis of the SEM/AVS model, Cd toxicity was almost completely suppressed in presence of sulfides. Dissolved Cd concentration drastically dropped and hatching success was generally >80%, as against values <6% observed in sulfide-free water, indicating that the applied experimental procedure can simulate metal-sulfide interaction. Ni toxicity was only slightly reduced by the presence of sulfides. High dissolved Ni concentrations were detected and mean hatching percentages were </=32%, suggesting that Ni bioavailability/toxicity was only partially controlled by excess reactive sulfides. The results suggest that A. tonsa eggs could be a useful

9

biomonitor to evaluate toxicity due persistent contaminants in anoxic conditions and the role of sulfides in reducing metal bioavailability/toxicity

(26) Kreitman GY, Danilewicz JC, Jeffery DW, Elias RJ. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation. J Agric Food Chem 2016 May 25;64(20):4095-104. Abstract: Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 muM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 muM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of approximately 1.4:1 H2S/Cu and approximately 2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine

(27) Kang J, Li Z, Organ CL, Park CM, Yang CT, Pacheco A, et al. pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury. J Am Chem Soc 2016 May 25;138(20):6336-9. Abstract: Hydrogen sulfide (H2S) is a critical signaling molecule that regulates many physiological and/or pathological processes. Modulation of H2S levels could have potential therapeutic value. In this work, we report the rational design, synthesis, and biological evaluation of a class of phosphonamidothioate-based H2S-releasing agents (i.e., H2S donors). A novel pH-dependent intramolecular cyclization was employed to promote H2S release from the donors. These water-soluble compounds showed slow, controllable, and pH-sensitive production of H2S in aqueous solutions. The donors also showed significant cytoprotective effects in cellular models of oxidative damage. Most importantly, the donors were found to exhibit potent cardioprotective effects in an in vivo murine model of myocardial ischemia-reperfusion (MI/R) injury through a H2S-related mechanism

(28) bd El GM, Shi X, Li Y, Ansari HR, Hill-Cawthorne GA, Ho YS, et al. Genomic and Phenotypic Analysis Reveal the Emergence of an Atypical Salmonella Senftenberg Variant in China. J Clin Microbiol 2016 May 25. Abstract: Human infections with Salmonella enterica subspecies enterica serovar Senftenberg are often associated with exposure to poultry flocks, farm environments or contaminated food. The recent emergence of multidrug-resistant isolates has raised public health concerns. In this study comparative genomics and phenotypic analysis were used to characterize 14 clinical Salmonella Senftenberg isolates recovered from multiple outbreaks in Shenzhen and Shanghai, China between 2002 and 2011. Single nucleotide polymorphism analyses identified two phylogenetically distinct clades of S. Senftenberg, designated SC1 and SC2, harboring variations in Salmonella Pathogenicity Island-1 and 2 and exhibiting distinct biochemical and phenotypic signatures. Although both variants shared an identical serotype, the SC2 isolates of sequence type-14 (ST14) harbored intact SPI-1 and 2 and hence were characterized by possessing efficient invasion capabilities. In contrast, the SC1 isolates had structural deletion patterns in both SPI-1 and 2 that correlated with an impaired capacity to invade human cultured cells and also the year of their isolation. These atypical SC1 isolates also lacked the capacity to produce hydrogen sulfide. These findings highlight the emergence of atypical Salmonella Senftenberg variants in China and provide genetic validation that variants lacking SPI-1and regions of SPI-2, leading to impaired invasion capacity, can still cause clinical

10

disease. These data have identified an emerging public health concern and highlight the need to strengthen surveillance to detect the prevalence and transmission of non-Typhoidal Salmonella species

(29) Wenzhong W, Tong Z, Hongjin L, Ying C, Jun X. Role of Hydrogen Sulfide on Autophagy in Liver Injuries Induced by Selenium Deficiency in Chickens. Biol Trace Elem Res 2016 May 24. Abstract: Selenium (Se) is an indispensable trace mineral that was associated with liver injuries in animal models. Hydrogen sulfide (H2S) is involved in many liver diseases, and autophagy can maintain liver homeostasis with a stress stimulation. However, little is known about the correlation between H2S and autophagy in the liver injury chicken models induced by Se deficiency. In this study, we aimed to investigate the correlation between H2S and autophagy in the liver injury chicken models. We randomly divided 120 1-day-old chickens into two equal groups. The control group was fed with complete food with a Se content of 0.15 mg/kg, and the Se-deficiency group (lab group) was fed with a Se-deficient diet with a Se content of 0.033 mg/kg. When the time comes to 15, 25, and 35 days, the chickens were sacrificed (20 each). The liver tissues were gathered and examined for pathological observations, the mRNA and protein levels of H2S synthases (CSE, CBS, and 3-MST) and the mRNA and protein levels of autophagy-related genes. The results showed that the expression of CSE, CBS, and 3-MST and H2S production were higher in the lab group than in the control group. Swellings, fractures, and vacuolizations were visible in the mitochondria cristae in the livers of the lab group and autophagosomes were found as well. In addition, the expression of autophagy-related genes (ATG5, LC3-I, LC3-II, Beclin1, and Dynein) was higher in the lab group than in the control group (p < 0.05) while TOR decreased significantly in the lab group (p < 0.05). The results showed that H2S and autophagy were involved in the liver injury chicken models, and H2S was correlated with autophagy

(30) Pogoda K, Kameritsch P, Retamal MA, Vega JL. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision. BMC Cell Biol 2016;17 Suppl 1:11. Abstract: Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S

(31) Mataloni F, Badaloni C, Golini MN, Bolignano A, Bucci S, Sozzi R, et al. Morbidity and mortality of people who live close to municipal waste landfills: a multisite cohort study. Int J Epidemiol 2016 May 24.

11

Abstract: BACKGROUND: The evidence on the health effects related to residing close to landfills is controversial. Nine landfills for municipal waste have been operating in the Lazio region (Central Italy) for several decades. We evaluated the potential health effects associated with contamination from landfills using the estimated concentration of hydrogen sulphide (H2S) as exposure. METHODS: A cohort of residents within 5 km of landfills was enrolled (subjects resident on 1 January 1996 and those who subsequently moved into the areas until 2008) and followed for mortality and hospitalizations until 31 December 2012. Assessment of exposure to the landfill (H2S as a tracer) was performed for each subject at enrolment, using a Lagrangian dispersion model. Information on several confounders was available (gender, age, socioeconomic position, outdoor PM10 concentration, and distance from busy roads and industries). Cox regression analysis was performed [Hazard Ratios (HRs), 95% confidence intervals (CIs)]. RESULTS: The cohort included 242 409 individuals. H2S exposure was associated with mortality from lung cancer and respiratory diseases (e.g. HR for increment of 1 ng/m3 H2S: 1.10, 95% CI 1.02-1.19; HR 1.09, 95% CI 1.00-1.19, respectively). There were also associations between H2S and hospitalization for respiratory diseases (HR = 1.02, 95% CI 1.00-1.03), especially acute respiratory infections among children (0-14 years) (HR = 1.06, 95% CI 1.02-1.11). CONCLUSIONS: Exposure to H2S, a tracer of airborne contamination from landfills, was associated with lung cancer mortality as well as with mortality and morbidity for respiratory diseases. The link with respiratory disease is plausible and coherent with previous studies, whereas the association with lung cancer deserves confirmation

(32) Kanaya G, Uehara T, Kikuchi E. Effects of sedimentary sulfide on community structure, population dynamics, and colonization depth of macrozoobenthos in organic-rich estuarine sediments. Mar Pollut Bull 2016 May 24. Abstract: An annual field survey and in situ recolonization experiment revealed the effects of sedimentary sulfide (H2S) on macrozoobenthos in a eutrophic brackish lagoon. Species diversity was much lower throughout the year in muddy opportunist-dominant sulfidic areas. Mass mortality occurred during warmer months under elevated H2S levels. An enclosure experiment demonstrated that sedimentary H2S modified community composition, size structure, and colonization depth of macrozoobenthos. Species-specific responses to each sediment type (sand, sulfidic mud, and mud with H2S removed) resulted in changes in the established community structure. Dominant polychaetes (Hediste spp., Pseudopolydora spp., and Capitella teleta) occurred predominantly in a thin surface layer in the presence of H2S. On the other hand, organic-rich mud facilitated settlement of polychaete larvae if it does not contain H2S. These results demonstrate that sediment characteristics, including H2S level and organic content, were key structuring factors for the macrozoobenthic assemblage in organically polluted estuarine sediments

(33) Li X, Jiang X, Zhou Q, Jiang W. Effect of S/N Ratio on the Removal of Hydrogen Sulfide from Biogas in Anoxic Bioreactors. Appl Biochem Biotechnol 2016 May 23. Abstract: Both biogas desulfurization and wastewater denitrification can be achieved simultaneously, when nitrate/nitrite is used as the electron acceptor for H2S oxidation. The main objective of this study was to investigate the influence of the molar ratio of sulfide/nitrate (S/N) on biogas desulfurization performance in a biotrickling filter (BTF) and a biobubble column (BBC). The results show that with the decrease of the S/N ratios from 3.6 to 0.7, the removal efficiencies of H2S increased from about 66 to 100 %, while the removal of nitrate decreased from 100 to 70 % in the two bioreactors. The BTF has a better and more stable desulfurization performance than the BBC does, which could be attributed to their different gas-liquid contacting modes. With the increase of the S/N ratios from 1.0 to 2.5 in the BTFs, the removal of H2S in biogas was affected slightly, while the percentages of the produced sulfate decreased evidently. In addition, different supplying methods of nitrate wastewater, i.e., intermittent and continuous, did not affect the removal of H2S significantly, while the intermittent addition of nitrate wastewater increased the percentages of sulfate and denitrification performance

12

(34) Zhou Q, Jiang X, Li X, Jiang W. The control of HS in biogas using iron ores as in situ desulfurizers during anaerobic digestion process. Appl Microbiol Biotechnol 2016 May 21. Abstract: In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency

(35) Chen J, Chen S, Mao W. A Case of Survival: Myocardial Infarction and Ventricular Arrhythmia Induced by Severe Hydrogen Sulfide Poisoning. Cardiology 2016 May 19;135(1):43-7. Abstract: Most cases of acute hydrogen sulfide (H2S) poisoning in China are caused by sewage processing. With the rapid development of urbanization in China, H2S poisoning is showing an increasing trend. Here, we report a case of survival from severe H2S poisoning. A 40-year-old worker was found in the underground sewer lines. He was unresponsive with bilaterally dilated pupils and had poor oxygen saturation. After intubation, he was transferred to the intensive care unit. He developed respiratory failure, acute myocardial infarction, ventricular arrhythmia and left ventricular function impairment, requiring artificial ventilation with highly concentrated oxygen, hyperbaric oxygen treatment and drug therapy. Consequently, he completely recovered from the respiratory and cardiac failure. Cases of survival after severe H2S intoxication have been rarely reported. Such exposures may bring about severe myocardial impairment, which is most likely to benefit from angiotensin-converting enzyme inhibition and beta-blocker

(36) Liu Y, Meng F, He L, Liu K, Lin W. A dual-site two-photon fluorescent probe for visualizing lysosomes and tracking lysosomal hydrogen sulfide with two different sets of fluorescence signals in the living cells and mouse liver tissues. Chem Commun (Camb ) 2016 May 19;52(43):7016-9. Abstract: Herein, we have developed a novel dual-site two-photon fluorescent probe as the first paradigm of the probes, which can concurrently report lysosomes and lysosomal H2S with two different sets of fluorescence signals in the living cells and tissues

(37) Wu S, Ni Y, Li H, Pan L, Yang D, Baccarelli AA, et al. Short-term exposure to high ambient air pollution increases airway inflammation and respiratory symptoms in chronic obstructive pulmonary disease patients in Beijing, China. Environ Int 2016 May 19;94:76-82. Abstract: BACKGROUND: Few studies have investigated the short-term respiratory effects of ambient air pollution in chronic obstructive pulmonary disease (COPD) patients in the context of high pollution levels in Asian cities. METHODS: A panel of 23 stable COPD patients was repeatedly measured for biomarkers of airway inflammation including exhaled nitric oxide (FeNO) and exhaled hydrogen sulfide (FeH2S) (215 measurements) and recorded for daily respiratory symptoms (794person-days) in two study periods in Beijing, China in January-September 2014. Daily ambient air pollution data were obtained from nearby central air-monitoring stations. Mixed-effects models were used to estimate the associations between exposures and health measurements with adjustment for potential confounders including temperature and relative humidity. RESULTS: Increasing levels of air pollutants were associated with significant increases in both FeNO and FeH2S. Interquartile range (IQR) increases in PM2.5 (76.5mug/m3, 5-day), PM10 (75.0mug/m3, 5-day) and SO2 (45.7mug/m3, 6-day) were associated with maximum increases in FeNO of 13.6% (95% CI: 4.8%, 23.2%), 9.2% (95% CI: 2.1%, 16.8%) and

13

34.2% (95% CI: 17.3%, 53.4%), respectively; and the same IQR increases in PM2.5 (6-day), PM10 (6-day) and SO2 (7-day) were associated with maximum increases in FeH2S of 11.4% (95% CI: 4.6%, 18.6%), 7.8% (95% CI: 2.3%, 13.7%) and 18.1% (95% CI: 5.5%, 32.2%), respectively. Increasing levels of air pollutants were also associated with increased odds ratios of sore throat, cough, sputum, wheeze and dyspnea. CONCLUSIONS: FeH2S may serve as a novel biomarker to detect adverse respiratory effects of air pollution. Our results provide potential important public health implications that ambient air pollution may pose risk to respiratory health in the context of high pollution levels in densely-populated cities in the developing world

(38) Pyeon JJ, Kim SH, Jeong DS, Baek SH, Kang CY, Kim JS, et al. Wafer-scale growth of MoS2 thin films by atomic layer deposition. Nanoscale 2016 May 19;8(20):10792-8. Abstract: The wafer-scale synthesis of MoS2 layers with precise thickness controllability and excellent uniformity is essential for their application in the nanoelectronics industry. Here, we demonstrate the atomic layer deposition (ALD) of MoS2 films with Mo(CO)6 and H2S as the Mo and S precursors, respectively. A self-limiting growth behavior is observed in the narrow ALD window of 155-175 degrees C. Long H2S feeding times are necessary to reduce the impurity contents in the films. The as-grown MoS2 films are amorphous due to the low growth temperature. Post-annealing at high temperatures under a H2S atmosphere efficiently improves the film properties including the crystallinity and chemical composition. An extremely uniform film growth is achieved even on a 4 inch SiO2/Si wafer. These results demonstrate that the current ALD process is well suited for the synthesis of MoS2 layers for application in industry

(39) Rabbani KA, Charles W, Kayaalp A, Cord-Ruwisch R, Ho G. Biofilter for generation of concentrated sulphuric acid from HS. Environ Sci Pollut Res Int 2016 May 18. Abstract: Biofilters are used for the conversion of odorous hydrogen sulphide to odourless sulphate in wastewater treatment plants under the right conditions of moisture and pH. One of the consequences of maintaining the suitable pH and moisture content is the production of large volumes of weakly acidic leachate. This paper presents a biofilter with a maximum H2S elimination capacity of 16.3 g m-3 h-1 and removal efficiency greater than 95 % which produces small volumes (1 mL of solution L-1 of reactor day-1) of sulphuric acid with a concentration greater than 5.5 M after 150 days of continuous operation. The concentrated sulphuric acid was produced by intermittently trickling a minimum amount of nutrient solution down the upflow biofilter which created a moisture and pH gradient within the biofilter resulting in an environment at the top for the bacterial conversion of H2S, while sulphuric acid was accumulated at the base. Genetic diversity profiling of samples taken from different sections of the biofilter confirms that the upper sections of the biofilter had the best environment for the bacteria to convert H2S to sulphate. The formation of concentrated sulphuric acid presents an opportunity for the recovery of sulphur from the waste stream as a usable product

(40) Zhu YL, Zheng GD, Gao D, Chen TB, Wu FK, Niu MJ, et al. Odor composition analysis and odor indicator selection during sewage sludge composting. J Air Waste Manag Assoc 2016 May 18. Abstract: On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon

14

disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modeling and evaluating odor pollution from sewage sludge composting facilities

(41) Choi SA, Park CS, Kwon OS, Giong HK, Lee JS, Ha TH, et al. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish. Sci Rep 2016;6:26203. Abstract: Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic 'naphthalene' moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems

(42) Callac N, Oger P, Lesongeur F, Rattray J, Vannier P, Michoud G, et al. Pyrococcus kukulkanii sp. nov., a novel hyperthermophilic piezophilic archaeon isolated from a deep-sea hydrothermal vent at the Guaymas Basin. Int J Syst Evol Microbiol 2016 May 17. Abstract: A novel hyperthermophilic, piezophilic anaerobic archaeon, designated as NCB100T, was isolated from a hydrothermal vent flange fragment collected in the Guaymas basin at the hydrothermal vent site named "Rebecca's Roost" at a depth of 1997 m. Enrichment and isolation were done at 100 degrees C under atmospheric pressure. Cells of strain NCB100T are highly motile irregular cocci with a diameter of ~1 microm. Growth was recorded between 70 and 112 degrees C (optimum 105 degrees C) and hydrostatic pressures of 0.1-80 MPa (optimum 40-50 MPa). Growth was observed at pH 3.5-8.5 (optimum 7), and in 1.5% - 7% NaCl (optimum at 2.5-3%). Strain NCB100T was strictly anaerobic chemoorganoheterotroph and grew on complex proteinaceous substrates such as yeast extract, peptone or tryptone, as well as on glycogen and starch. Elemental sulfur was required for growth and was reduced to hydrogen sulfide. The fermentations products from complex proteinaceous substrates are gluconic acid, pyruvate, CO2 and H2. The G+C content of the genomic DNA was 41.3%. Phylogenetic analysis of the 16S rRNA genes revealed that strain NCB100T belongs to the genus Pyrococcus, showing 99% of similarity with the other described Pyrococcus. Based on

15

the physiological characteristics, G+C content, similarity level between ribosomal proteins and ANI value of 79%, strain NCB100T represents a novel species for which, the name of Pyrococcus kukulkanii sp. nov. is proposed. The type strain is NCB100T (=DSM 101590; Souchotheque de Bretagne BG1337)

(43) Li F, Luo J, Wu Z, Xiao T, Zeng O, Li L, et al. Hydrogen sulfide exhibits cardioprotective effects by decreasing endoplasmic reticulum stress in a diabetic cardiomyopathy rat model. Mol Med Rep 2016 May 17. Abstract: Endoplasmic reticulum (ER) stress is critical in the occurrence and development of diabetic cardiomyopathy (DC). Hydrogen sulfide (H2S) has been found to be the third gaseous signaling molecule with antiER stress effects. Previous studies have shown that H2S acts as a potent inhibitor of fibrosis in the heart of diabetic rats. This study aimed to demonstrate whether H2S exhibits protective effects on the myocardium of streptozotocin (STZ)induced diabetic rats by suppressing ER stress. In this study, diabetic models were established by intraperitoneal (i.p.) injection of 40 mg/kg STZ. The STZtreated mice were divided into three groups, and subsequently treated with normal saline, 30 micromol/kg or 100 micromol/kg NaHS, i.p., respectively, for 8 weeks. The extent of myocyte hypertrophy was measured using hematoxylin and eosinstained sections and collagen components were investigated using immunostaining. The expression of glucose-regulated protein (Grp78), C/EBPhomologous protein (CHOP) and caspase12 in the heart tissue of each group was detected by western blot analysis. It was demonstrated that H2S could improve myocardial hypertrophy and myocardial collagen deposition in diabetic rats. In addition, it could reduce the expression of Grp78, caspase-12 and CHOP. In conclusion, these findings demonstrate that H2S suppresses STZinduced ER stress in the hearts of rats, and it may serve as a novel cardioprotective agent for DC

(44) Wei Y, Kenyon C. Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2016 May 17;113(20):E2832-E2841. Abstract: In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H2S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H2S and ROS. These kri-1-dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H2S and, remarkably, kri-1-dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1-dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity

(45) Wu C, Xu Z, Huang K. Effects of Dietary Selenium on Inflammation and Hydrogen Sulfide in the Gastrointestinal Tract in Chickens. Biol Trace Elem Res 2016 May 13. Abstract: Selenium (Se) is an essential trace element for humans and animals and is associated with many physiological functions. Previous studies have shown that low-Se diet may affect inflammatory cytokine productions and histology in the digestive system and that sulfide hydrogen (H2S) may contribute to the protection against tissue injury and the inhibition of inflammation in the gastrointestinal tract. In this study, we investigated the relationship between Se deficiency-induced inflammation and H2S production in the small intestine in chickens. One hundred twenty 1-day-old chickens were fed with diets with different Se concentrations (0.15 mg/kg in the control and 0.028 mg/kg in the low-Se-diet group). Chickens were euthanized and small intestinal tissues were extracted. We observed histology, measured H2S concentration, and evaluated the mRNA

16

expression of H2S-producing enzymes cystathionine gamma-lyase (CSE), cystathionine beta-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST), and inflammatory factors TNF-alpha, NF-kappaB p50, COX-2, and PTGES. Our results showed that chickens fed with low-Se diet exhibited histological changes, lower H2S production, and lower mRNA expression of H2S-producing enzymes (CSE, CBS, and 3-MST) whereas higher mRNA expression of intestinal inflammatory factors (TNF-alpha, NF-kappaB p50, COX-2, and PTGES) compared to controls. Our results indicate that low-Se diet could impact H2S, H2S-producing enzymes, and inflammatory factors in the small intestine, implying that Se is important in maintaining intestinal functions and H2S production is downregulated in Se deficiency-induced inflammation. The downregulation exacerbates the inflammation and impacts H2S-mediated intestinal functions

(46) Delgermurun D, Yamaguchi S, Ichii O, Kon Y, Ito S, Otsuguro KI. Hydrogen sulfide activates TRPA1 and releases 5-HT from epithelioid cells of the chicken thoracic aorta. Comp Biochem Physiol C Toxicol Pharmacol 2016 May 13;187:43-9. Abstract: Epithelioid cells in the chicken thoracic aorta are chemoreceptor cells that release 5-HT in response to hypoxia. It is likely that these cells play a role in chemoreception similar to that of glomus cells in the carotid bodies of mammals. Recently, H2S was reported to be a key mediator of carotid glomus cell responses to hypoxia. The aim of the present study was to reveal the mechanism of action of H2S on 5-HT outflow from chemoreceptor cells in the chicken thoracic aorta. The 5-HT outflow induced by NaHS, an H2S donor, and Na2S3, a polysulfide, was measured by using a HPLC equipped with an electrochemical detector. NaHS (0.3-3mM) caused a concentration-dependent increase in 5-HT outflow, which was significantly inhibited by the removal of extracellular Ca2+. 5-HT outflow induced by NaHS (0.3mM) was also significantly inhibited by voltage-dependent L- and N-type Ca2+ channel blockers and a selective TRPA1 channel blocker. Cinnamaldehyde, a TRPA1 agonist, mimicked the secretory response to H2S. 5-HT outflow induced by Na2S3 (10muM) was also inhibited by the TRPA1 channel blocker. Furthermore, the expression of TRPA1 was localized to 5-HT-containing chemoreceptor cells in the aortic wall. These findings suggest that the activation of TRPA1 and voltage-dependent Ca2+ channels is involved in H2S-evoked 5-HT release from chemoreceptor cells in the chicken aorta

(47) Hu Q, Wu D, Ma F, Yang S, Tan B, Xin H, et al. Novel angiogenic activity and molecular mechanisms of ZYZ-803, a slow releasing hydrogen sulfide-nitric oxide hybrid molecule. Antioxid Redox Signal 2016 May 12. Abstract: AIMS: Revascularization strategies and gene therapy for treatment of ischemic diseases remain to be fully optimized for use in human and veterinary clinical medicine. The continued evolution of such strategies must take into consideration two compounds which act as critical effectors of angiogenesis by endothelial cells. Nevertheless the nature of interaction between H2S and NO remains undefined at the time of this writing. RESULTS: The present study utilizes ZYZ-803, a novel, synthetic H2S-NO hybrid molecule, which, under physiologic conditions, slowly decomposes to release H2S and NO. This is observed to dose-dependently mediate cell proliferation, migration and tube-like structure formation in vitro, along with increased angiogenesis in rat aortic rings, matrigel plug in vivo and in a murine ischemic hindlimb model. The effects of ZYZ-803 exhibited significantly greater potency than that of H2S and/or NO donor alone. The compound stimulated CSE expression and eNOS activity, to produce H2S and NO. Blocking CSE and/or eNOS, suppressed both H2S and NO generation as well as the pro-angiogenic effect of ZYZ-803. SIRT1, CSE and/or an eNOS siRNA, suppressed the angiogenic effect of ZYZ-803-induced SIRT1 expression, VEGF and cGMP levels. These gasotransmitters cooperatively regulated angiogenesis through a SIRT1/VEGF/cGMP pathway. Innovation and conclusion: H2S and NO exert mutual influence on biological functions mediated by both compounds. Functional convergence occurs in the SIRT1-dependent, pro-angiogenic processes. These 2 gasotransmitters are mutually required for physiological regulation of endothelial homeostasis. These ongoing

17

characterizations of mechanisms by which ZYZ-803 influences angiogenesis, provide expanding insight into strategies for treatment of ischemic diseases

(48) Amin A, Ahmed I, Habib N, Abbas S, Xiao M, Hozzein WN, et al. Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan. Antonie Van Leeuwenhoek 2016 May 11. Abstract: A Gram-staining positive, non-spore forming, non-pigmented and non-motile bacterium, designated as NCCP-1340T, was isolated from a hot water spring, Tatta Pani, Pakistan. Cells of strain NCCP-1340T were observed to be aerobic, rod shaped, catalase and urease positive but H2S production and oxidase negative. Growth was observed at pH 6.0-8.0 (optimum pH 7.0) and at 20-40 degrees C (optimum 37 degrees C). The strain could tolerate 0-8 % NaCl (optimum 2 %, w/v). Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain NCCP-1340T belongs to the genus Nocardioides and is closely related to Nocardioides iriomotensis JCM 17985T (96.8 %), Nocardioides daedukensis KCTC 19601T (96.6 %), Nocardioides jensenii KCTC 9134T (96.1 %) and Nocardioides daejeonensis KCTC 19772T (96.1 %). The DNA-DNA relatedness values of strain NCCP-1340T with N. iriomotensis JCM 17985T, N. daedukensis KCTC 19601T and N. jensenii KCTC 9134T were found to be less than 53 %. The DNA G+C content of strain NCCP-1340T was determined to be 71.8 mol %. The affiliation of strain NCCP-1340T to the genus Nocardioides was further supported by chemotaxonomic data which showed the presence of MK-8(H4) as major menaquinone system; iso-C16:0, C17:0, C16:0 10-methyl, iso-C15:0 and C 15:0 as major cellular fatty acids; and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and unidentified glycolipids and polar lipids in the polar lipids profile. The cell wall peptidoglycan contained LL-diaminopimelic acid as the diagnostic amino acid. On the basis of physiological and biochemical characteristics and the phylogenetic analyses, strain NCCP-1340T can be distinguished from the closely related taxa and thus represents a novel species of the genus Nocardioides, for which the name Nocardioides pakistanensis sp. nov. is proposed with the type strain NCCP-1340T (= DSM 29942T = JCM 30630T)

(49) Hartle MD, Pluth MD. A practical guide to working with HS at the interface of chemistry and biology. Chem Soc Rev 2016 May 11. Abstract: Hydrogen sulfide (H2S) is the most recently accepted endogenously produced gasotransmitter and is now implicated in a variety of physiological functions. In this tutorial review, our goal is to provide researchers new to the field of H2S chemical biology with practical considerations, pitfalls, and best practices to enable smooth entry into investigations focused on biological H2S. We present practical handling and safety considerations for working with this reactive biomolecule, and cover basic roles of H2S biogenesis and action. Experimental methods for modulating H2S levels, including enzymatic knockout, RNA silencing, enzymatic inhibition, and use of small molecule H2S donors are highlighted. Complementing H2S modulation techniques, we also highlight current strategies for H2S detection and quantification

(50) Kwong RW, Kumai Y, Perry SF. Neuroendocrine control of ionic balance in zebrafish. Gen Comp Endocrinol 2016 May 11. Abstract: Zebrafish (Danio rerio) is an emerging model for integrative physiological research. In this mini-review, we discuss recent advances in the neuroendocrine control of ionic balance in this species, and identify current knowledge gaps and issues that would benefit from further investigation. Zebrafish inhabit a hypo-ionic environment and therefore are challenged by a continual loss of ions to the water. To maintain ionic homeostasis, they must actively take up ions from the water and reduce passive ion loss. The adult gill or the skin of larvae are the primary sites of ionic regulation. Current models for the uptake of major ions in zebrafish incorporate at least three types of ion transporting cells (also called ionocytes); H+-ATPase-rich cells for Na+ uptake, Na+/K+-ATPase-rich cells for Ca2+ uptake, and Na+/Cl--cotransporter expressing cells

18

for both Na+ and Cl- uptake. The precise molecular mechanisms regulating the paracellular loss of ions remain largely unknown. However, epithelial tight junction proteins, including claudins, are thought to play a critical role in reducing ion losses to the surrounding water. Using the zebrafish model, several key neuroendocrine factors were identified as regulators of epithelial ion movement, including the catecholamines (adrenaline and noradrenaline), cortisol, the renin-angiotensin system, parathyroid hormone and prolactin. Increasing evidence also suggests that gasotransmitters, such as H2S, are involved in regulating ion uptake

(51) McManus S, Tejera N, Awwad K, Vauzour D, Rigby N, Fleming I, et al. Differential effects of EPA vs. DHA on postprandial vascular function and the plasma oxylipin profile in men. J Lipid Res 2016 May 11. Abstract: Our objective was to investigate the impact of EPA versus DHA, on arterial stiffness and reactivity, and underlying mechanisms (with a focus on plasma oxylipins), in the postprandial state. In a 3-arm cross-over acute test meal trial men (n=26, 35-55y) at increased CVD risk, received a high fat (42.4g) test meal providing 4.16 g of EPA or DHA or control oil in random order. At 0 h and 4 h, blood samples were collected to quantify plasma fatty acids, LCn-3PUFAs derived oxylipins, nitrite and hydrogen sulfide and serum lipids and glucose. Vascular function was assessed using blood pressure, Reactive Hyperaemia Index (RHI), Pulse Wave Velocity and Augmentation Index (AIx). The DHA-rich oil significantly reduced AIx by 13% (P=0.047) with the decrease following EPA-rich oil intervention not reaching statistical significance. Both interventions increased EPA and DHA derived oxylipins in the acute postprandial state, with an (1.3 fold) increase in 19,20-DiHDPA evident after DHA intervention (P < 0.001). In conclusion, a single dose of DHA significantly improved postprandial arterial stiffness as assessed by AIx, which if sustained would be associated with a significant decrease in CVD risk. The observed increases in oxylipins provide a mechanistic insight for the AIx effect

(52) Liang S, Zhang L, Jiang F. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage. Water Res 2016 May 11;100:421-8. Abstract: Nitrate dosing is commonly used to control hydrogen sulfide production in sewer systems. However, quick rebound of the sulfide concentration after nitrate depletion has been observed and results in more serious odor and corrosion problem. To investigate the mechanism of sulfide regeneration in the nitrate-free period, a laboratory-scale sewer reactor was run for 30 days to simulate sulfide production and oxidation with intermittent nitrate addition. The results show that nitrate addition substantially reduced the sulfide concentration, but the produced elemental sulfur was then quickly reduced back to sulfide in nitrate-free periods. This induced more and more sulfide production in the sewer reactor. Elemental sulfur and polysulfide reductions were found in the sewage in nitrate-free periods, showing their contributions to the sulfide regeneration. Through batch tests, polysulfide was confirmed as the key intermediate for accelerating sulfur reduction during the nitrate-free period in the sewer. Sulfide production rates significantly increased by 65% and 59% in the presences of tetrasulfide and sulfur with sulfide, respectively, at the beginning of the test. While polysulfide formation was prevented by the ferrous chloride addition, the sulfur reduction rate remarkably decreased from 12.8 mgS/L-h to 1.8 mgS/L-h. This indicates that direct sulfur reduction was significantly slower than the indirect sulfur reduction via polysulfide; the latter process could be the cause for the quick rebound of the sulfide concentration in the sewer with intermittent nitrate dosing. Thus, the pathways of sulfur transformations in a sewer, both in the presence and absence of nitrate, were proposed. Microbial community analysis results reveal that some common sulfate-reducing bacteria (SRB) genera in sewer sediment were possible sulfur reducers. According to this finding, the effect and strategy of nitrate dosing for hydrogen sulfide control in sewers should be re-evaluated and re-considered

19

(53) Yao Y, Zhang X, Chen HP, Li L, Xie W, Lan G, et al. MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine gamma-lyase in THP-1 macrophages. Atherosclerosis 2016 May 10;250:122-32. Abstract: BACKGROUND AND AIMS: Several studies suggest that cardiomyocyte-enriched miR-186 is involved in cardiac injury and myocardial infarction, and also plays an important role in atherosclerotic diseases, but the underlying mechanism is unknown. Cystathionine-gamma-lyase (CSE) is the predominant enzyme to produce H2S in the cardiovascular system. Here, miR-186 was identified to bind to the 3'UTR of CSE. In this study, we aimed at exploring whether miR-186 affects lipid accumulation and secretion of pro-inflammatory cytokines by targeting CSE and its underlying mechanism in human THP-1 macrophages and peripheral blood monocyte-derived macrophages (PBMDM). PBMDM just as a control group for the comparison with the THP-1 macrophages. METHODS: MiR-186 target genes, CSE 3'UTR sequence and free energy were predicted and analyzed by bioinformatics analyses and dual-luciferase reporter assays. The expression of CSE mRNA and protein were measured by real-time quantitative PCR and western blot analyses. The lipid accumulation in THP-1 macrophages was detected by high performance liquid chromatography (HPLC). The effects of miR-186 on secretion of IL-6, IL-1beta and TNF-alpha were examined by ELISA. Endogenous H2S was detected by spectrophotometry. Using small interfering RNA (siRNA) approach to decrease the expression of CSE protein and mRNA. RESULTS: We found that miR-186 directly inhibited CSE protein and mRNA expression through targeting CSE 3'UTR by bioinformatics analyses and dual-luciferase reporter assays. HPLC assays showed that miR-186 increased the lipid accumulation in human THP-1 macrophages. We also showed that miR-186 enhanced secretion of pro-inflammatory cytokines in human THP-1 macrophages. Using siRNA approach, we found that CSE siRNA could inhibit the miR-186 inhibitor-induced decrease in the expression of LPL protein and mRNA in human THP-1 macrophages, which was accompanied a decrease in the level of H2S. CONCLUSIONS: MicroRNA-186 promotes macrophage lipid accumulation and pro-inflammatory cytokine secretion by targeting cystathionine gamma-lyase in THP-1 macrophages

(54) Banik GD, De A, Som S, Jana S, Daschakraborty SB, Chaudhuri S, et al. Hydrogen sulphide in exhaled breath: a potential biomarker for small intestinal bacterial overgrowth in IBS. J Breath Res 2016;10(2):026010. Abstract: There is a pressing need to develop a novel early-detection strategy for the precise evolution of small intestinal bacterial overgrowth (SIBO) in irritable bowel syndrome (IBS) patients. The current method based on a hydrogen breath test (HBT) for the detection of SIBO is highly controversial. HBT has many limitations and drawbacks. It often fails to indentify SIBO when IBS individuals have 'non-hydrogen-producing' colonic bacteria. Here, we show that hydrogen sulphide (H2S) in exhaled breath is distinctly altered for diarrhea-predominant IBS individuals with positive and negative SIBO by the activity of intestinal sulphate-reducing bacteria. Subsequently, by analyzing the excretion kinetics of breath H2S, we found a missing link between breath H2S and SIBO when HBT often fails to diagnose SIBO. Moreover, breath H2S can track the precise evolution of SIBO, even after the eradication of bacterial overgrowth. Our findings suggest that the changes in H2S in the bacterial environment may contribute to the pathogenesis of SIBO and the breath H2S as a potential biomarker for non-invasive, rapid and precise assessment of SIBO without the endoscopy-based microbial culture of jejunal aspirates, and thus may open new perspectives into the pathophysiology of SIBO in IBS subjects

(55) Lin S, Visram F, Liu W, Haig A, Jiang J, Mok A, et al. GYY4137, a slow-releasing hydrogen sulfide donor, ameliorates renal damage associated with chronic obstructive uropathy. J Urol 2016 May 10. Abstract: PURPOSE: Chronic obstructive uropathy can cause irreversible kidney injury,

20

atrophy, and inflammation, which can ultimately lead to fibrosis. Epithelial-mesenchymal transition (EMT) is a key trigger of fibrosis and is caused by upregulation of transforming growth factor beta 1 (TGF-beta1) and angiotensin II (ANGII). Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter with cytoprotective properties. The present study aims to elucidate the effects of the slow-releasing H2S donor GYY4137 on chronic ureteral obstruction and evaluate potential mechanisms. MATERIALS AND METHODS: Following unilateral ureteral obstruction (UUO), male Lewis rats were given daily intraperitoneal (IP) administration of phosphate buffered saline (PBS) vehicle (UUO group) or PBS+200mumol/kg GYY4137 (UUO+GYY4137 group) for 30 days. Urine and serum samples were collected to determine physiological parameters of renal function and injury. Kidneys were removed on post-operative day 30 for evaluation of histopathology and protein expression. EMT in pig kidney epithelial cells (LLC-PK1) was induced with TGF-beta1 and treated with GYY4137 to evaluate potential mechanisms via in vitro scratch wound assays. RESULTS: H2S treatment decreased serum creatinine and urine protein/creatinine excretion ratio following UUO. In addition, H2S mitigated cortical loss, inflammatory damage, and tubulointerstitial fibrosis. Tissues exhibited decreased expression of EMT markers upon H2S treatment. EMT progression in LLC-PK1 was alleviated upon in vitro administration of GYY4137. CONCLUSIONS: Our findings demonstrate, for the first time, the protective effects of H2S in chronic obstructive uropathy and may represent a potential therapeutic solution to ameliorate renal damage and improve clinical outcomes of urinary obstruction

(56) Shi HQ, Zhang Y, Cheng MH, Fan BS, Tian JS, Yu JG, et al. Sodium Sulfide, a Hydrogen Sulfide-Releasing Molecule, Attenuates Acute Cerebral Ischemia in Rats. CNS Neurosci Ther 2016 May 9. Abstract: AIMS: Acute cerebral ischemia may lead to ischemic stroke, which is a major cause of death and disability worldwide. Hydrogen sulfide (H2 S) functions importantly in mammalian systems. The present work was designed to study the effect of sodium sulfide, a donor of H2 S, on acute cerebral ischemia. METHODS: Acute cerebral focal ischemia was produced by middle cerebral artery occlusion (MCAO) in Sprague-Dawley (SD) rats. Bilateral vertebral arteries and common carotid arteries were blocked to establish cerebral global ischemia in SD rats. Acute cerebral anoxia was produced by hypobaric anoxia in C57BL/6 mice and hypoxic anoxia in SD rats. Nimodipine and aspirin were set as positive control separately. RESULTS: Infarct size after MCAO was decreased by sodium sulfide. Sodium sulfide improved cerebral energy metabolism after cerebral global ischemia and prolonged survival time of animals with acute cerebral anoxia. In addition, increased cerebral blood flow and decreased cerebrovascular resistance, blood viscosity, and thrombogenesis were observed in animals treated with sodium sulfide. In cultured neurons, sodium sulfide increased cell viability and decreased cell apoptosis induced by oxygen-glucose deprivation. CONCLUSION: Sodium sulfide, a H2 S donor, presents protective effect on acute cerebral ischemia, and might be a promising therapeutic drug

(57) Chang KY, Fias S, Ramakrishnan R, von Lilienfeld OA. Fast and accurate predictions of covalent bonds in chemical space. J Chem Phys 2016 May 7;144(17):174110. Abstract: We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated sigma bonding to hydrogen, as well as sigma and pi bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy ( approximately 1 kcal/mol). Second order estimates deteriorate the prediction. If initial

21

and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H2 (+) single bond with 1 electron

(58) Koike S, Kayama T, Yamamoto S, Komine D, Tanaka R, Nishimoto S, et al. Polysulfides protect SH-SY5Y cells from methylglyoxal-induced toxicity by suppressing protein carbonylation: A possible physiological scavenger for carbonyl stress in the brain. Neurotoxicology 2016 May 6;55:13-9. Abstract: The formation of advanced glycation end products (AGEs) is associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease and schizophrenia. Methylglyoxal (MG), a highly reactive dicarbonyl compound, is known to be a major precursor for AGEs in modified proteins. Thus, a scavenger of MG might provide beneficial effects by suppressing the accumulation of AGEs and the occurrence of diseases induced by carbonyl stress. Meanwhile, polysulfides, one of the typical bound sulfur species, are oxidized forms of hydrogen sulfide (H2S) and may play a variety of roles in the brain. Herein, we assessed the scavenging ability of polysulfides against neuronal carbonyl stress induced by MG. First, we showed that polysulfides could protect differentiated (df)-SH-SY5Y cells from MG-induced cytotoxicity. When cells were pretreated with polysulfides, MG-induced cytotoxicity was attenuated with a rapid decrease in intracellular MG levels. Moreover, we found that polysulfides significantly suppressed the formation of MG-modified proteins in df-SH-SY5Y cells. Although polysulfide treatment increased endogenous GSH levels in the neuronal cells, its effects on MG-induced cytotoxicity were not affected by GSH concentration. Our results demonstrated that polysulfides had the direct potentials to protect neuronal cells against MG separate to the enzymatic detoxification system that required GSH

(59) Yan X, Li B, Lei F, Feng X, Pang B. Enhanced deodorization and sludge reduction in situ by a humus soil cooperated anaerobic/anoxic/oxic (A2O) wastewater treatment system. Environ Sci Pollut Res Int 2016 May 4. Abstract: Simultaneous sludge reduction and malodor abatement in humus soil cooperated an anaerobic/anoxic/oxic (A2O) wastewater treatment were investigated in this study. The HSR-A2O was composed of a humus soil reactor (HSR) and a conventional A2O (designated as C-A2O).The results showed that adding HSR did not deteriorate the chemical oxygen demand (COD) removal, while total phosphorus (TP) removal efficiency in HSR-A2O was improved by 18 % in comparison with that in the C-A2O. Both processes had good performance on total nitrogen (TN) removal, and there was no significant difference between them (76.8 and 77.1 %, respectively). However, NH4 +-N and NO3 --N were reduced to 0.3 and 6.7 mg/L in HSR-A2O compared to 1.5 and 4.5 mg/L. Moreover, adding HSR induced the sludge reduction, and the sludge production rate was lower than that in the C-A2O. The observed sludge yield was estimated to be 0.32 kg MLSS/day in HSR-A2O, which represent a 33.5 % reduction compared to a C-A2O process. Activated sludge underwent humification and produced more humic acid in HSR-A2O, which is beneficial to sludge reduction. Odor abatement was achieved in HSR-A2O, ammonium (NH3), and sulfuretted hydrogen (H2S) emission decreased from 1.34 and 1.33 to 0.06 mg/m3, 0.025 mg/m3 in anaerobic area, with the

22

corresponding reduction efficiency of 95.5 and 98.1 %. Microbial community analysis revealed that the relevant microorganism enrichment explained the reduction effect of humus soil on NH3 and H2S emission. The whole study demonstrated that humus soil enhanced odor abatement and sludge reduction in situ

(60) Trabue S, Kerr B, Scoggin K. Odor and Odorous Compound Emissions from Manure of Swine Fed Standard and Dried Distillers Grains with Soluble Supplemented Diets. J Environ Qual 2016 May;45(3):915-23. Abstract: This study was conducted to determine the impact of diets containing dried distillers grains with solubles (DDGS) on emissions of odor and odorous compounds from swine manure storage. Twenty-four pigs were fed either a corn-soybean meal (CSBM) diet or a diet containing 35% DDGS over a 42-d feeding trial. Their waste was collected and transferred to individual manure storage containers. Manure from pigs fed diets containing DDGS had significantly lower odorant emissions expressed in animal units for hydrogen sulfide (HS) and ammonia (NH) ( < 0.05) compared with pigs fed the CSBM diet, but emissions of volatile fatty acids and phenolic compounds were significantly higher ( < 0.05) for manures from animals fed the DDGS diet. There was no significant difference for indole compound emissions due to the dietary treatment applied. Emissions of volatile organic compounds (VOCs) from manure accounted for less than 0.1% of carbon consumed for either diet. There were no significant differences in odor emissions for either diet as quantified with human panels or measured as the sum total of the odor activity value. Manure odors from pigs fed the CSBM diet were dominated by HS, whereas animals fed the diet containing DDGS were dominated by VOCs

(61) Christianson LE, Schipper LA. Moving Denitrifying Bioreactors beyond Proof of Concept: Introduction to the Special Section. J Environ Qual 2016 May;45(3):757-61. Abstract: Denitrifying bioreactors are organic carbon-filled excavations designed to enhance the natural process of denitrification for the simple, passive treatment of nitrate-nitrogen. Research on and installation of these bioreactors has accelerated within the past 10 years, particularly in watersheds concerned about high nonpoint-source nitrate loads and also for tertiary wastewater treatment. This special section, inspired by the meeting of the Managing Denitrification in Agronomic Systems Community at the 2014 Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, aims to firmly establish that denitrifying bioreactors for treatment of nitrate in drainage waters, groundwater, and some wastewaters have moved beyond the proof of concept. This collection of 14 papers expands the peer-reviewed literature of denitrifying bioreactors into new locations, applications, and environmental conditions. There is momentum behind the pairing of wood-based bioreactors with other media (biochar, corn cobs) and in novel designs (e.g., use within treatment trains or use of baffles) to broaden applicability into new kinds of waters and pollutants and to improve performance under challenging field conditions such as cool early season agricultural drainage. Concerns about negative bioreactor by-products (nitrous oxide and hydrogen sulfide emissions, start-up nutrient flushing) are ongoing, but this translates into a significant research opportunity to develop more advanced designs and to fine tune management strategies. Future research must think more broadly to address bioreactor impacts on holistic watershed health and greenhouse gas balances and to facilitate collaborations that allow investigation of mechanisms within the bioreactor "black box."

(62) bou-Hamdan A, Ransy C, Roger T, Guedouari-Bounihi H, Galardon E, Bouillaud F. Positive feedback during sulfide oxidation fine-tunes cellular affinity for oxygen. Biochim Biophys Acta 2016 Apr 29. Abstract: Sulfide (H2S in the gas form) is the third gaseous transmitter found in mammals. However, in contrast to nitric oxide (NO) or carbon monoxide (CO), sulfide is oxidized by a sulfide quinone reductase and generates electrons that enter the mitochondrial respiratory chain arriving ultimately at cytochrome oxidase, where they combine with

23

oxygen to generate water. In addition, sulfide is also a strong inhibitor of cytochrome oxidase, similar to NO, CO and cyanide. The balance between the electron donor and the inhibitory role of sulfide is likely controlled by sulfide and oxygen availability. The present study aimed to evaluate if and how sulfide release and oxidation impacts on the cellular affinity for oxygen. RESULTS: i) when sulfide delivery approaches the maximal sulfide oxidation rate cells become exquisitely dependent on oxygen; ii) a positive feedback makes the balance between sulfide-releasing and -oxidizing rates the relevant parameter rather than the absolute values of these rates, and; iii) this altered dependence on oxygen is detected with sulfide concentrations that remain in the low micromolar range. CONCLUSIONS: i) within the context of continuous release of sulfide stemming from cellular metabolism, alterations in the activity of the sulfide oxidation pathway fine-tunes the cell's affinity for oxygen, and; ii) a decrease in the expression of the sulfide oxidation pathway greatly enhances the cell's dependence on oxygen concentration

(63) Li D, Xiong Q, Peng J, Hu B, Li W, Zhu Y, et al. Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARalpha. Int J Mol Sci 2016;17(5). Abstract: ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H(2)S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H(2)S regulates ABCA1 expression. The effect of H(2)S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE(-/-) mice with a high-cholesterol diet. NaHS (an exogenous H(2)S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H(2)S generator cystathionine gamma-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE(-/-) mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor alpha (PPARalpha) nuclear translocation. H(2)S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARalpha, providing a fundamental mechanism for the anti-atherogenic activity of H(2)S. H(2)S may be a promising potential drug candidate for the treatment of atherosclerosis

(64) McCune CD, Chan SJ, Beio ML, Shen W, Chung WJ, Szczesniak LM, et al. "Zipped Synthesis" by Cross-Metathesis Provides a Cystathionine beta-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model. ACS Cent Sci 2016 Apr 27;2(4):242-52. Abstract: The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine beta-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a "zipped" approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C 2-symmetric CBS product (l,l)-cystathionine. The "zipped" concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine-imine interchange. It is demonstrated that the most potent "zipped" inhibitor 6S reduces H2S production in SH-SY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; approximately 70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia

24

(65) Ravindran S, Ansari BS, Kurian GA. Hydrogen sulfide preconditioning shows differential protection towards interfibrillar and subsarcolemmal mitochondria from isolated rat heart subjected to revascularization injury. Cardiovasc Pathol 2016 Apr 25;25(4):306-15. Abstract: BACKGROUND: Hydrogen sulfide (H2S) is well known to protect the heart from ischemia reperfusion injury by specifically modulating the mitochondrial adenosine-triphosphate-linked potassium channel, thereby preserving mitochondrial function. The present study is designed to investigate the H2S preconditioning effect specifically on the mitochondrial subpopulation, namely, interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria. METHODS: Isolated heart perfusion model with the method of Langendorff was used to induce reperfusion injury in rat hearts. The animals were randomly divided into five groups: normal, ischemia (ISC), reperfusion (IR), preconditioning (IPC), and H2S preconditioning (HIPC). All the groups, except normal and ischemia, were subjected to 30-min global ischemia followed by 60-min reperfusion with Krebs-Henseleit buffer. RESULTS: Our study results show that H2S at a dose of 20 muM significantly (P<.05) reduced the infarct size (59%) and the creatine kinase and lactate dehydrogenase activity in cardiac tissue. DNA fragmentation as observed in ischemia reperfusion control was absent in case of H2S-preconditioned heart. On comparing the classical protection provided by IPC with H2S, a significant recovery was seen in the IFM fraction in case of HIPC, whereas the SSM could not recover as evidenced by better mitochondrial respiration rate and electron chain enzyme activities. Studies on isolated mitochondrial subpopulation from normal, IR, and IPC hearts exposed to H2S in vitro support the above observation. CONCLUSION: The present study concluded that IFM shows major contribution towards H2S-mediated cardioprotection, whereas classical IPC recovered both subpopulations from IR injury

(66) Laureano-Marin AM, Moreno I, Romero LC, Gotor C. Negative regulation of autophagy by sulfide in Arabidopsis thaliana is independent of reactive oxygen species. Plant Physiol 2016 Apr 14. Abstract: Accumulating experimental evidence in mammalian - and recently plant - systems has led to a change in our understanding of the role played by hydrogen sulfide in life processes. In plants, hydrogen sulfide mitigates stress and regulates important plant processes such as photosynthesis, stomatal movement and autophagy, although the underlying mechanism is not well known. In this study, we provide new experimental evidence that, together with our previous findings, demonstrates the role of hydrogen sulfide in regulating autophagy. We used GFP fluorescence associated with autophagic bodies and immunoblot analysis of the ATG8 protein to show that sulfide (and no other molecules such as sulfur-containing molecules or ammonium) was able to inhibit the autophagy induced in Arabidopsis thaliana roots under nitrogen deprivation. Our results showed that sulfide was unable to scavenge reactive oxygen species generated by nitrogen limitation, in contrast to well-established reducers. In addition, reducers were unable to inhibit the accumulation of autophagic bodies and ATG8 protein forms to the same extent as sulfide. Therefore, we conclude that sulfide represses autophagy via a mechanism that is independent of redox conditions

(67) Li Y, Maegdefessel L. My heart will go on-beneficial effects of anti-MiR-30 after myocardial infarction. Ann Transl Med 2016 Apr;4(7):144. Abstract: MicroRNAs play key roles in the regulation of diverse cellular processes and during cardiovascular disease development and progression, such as myocardial infarction (MI) and heart failure (HF). A recent manuscript by Shen and colleagues provided evidence that the miR-30-CSE-H2S axis contributes to the protection against cardiomyocyte ischemic injury by regulating hydrogen sulfide (H2S) production. Inhibition of the miR-30 family after MI injury offers potential therapeutic value to 'keep our heart going on'. As this study highlights miRNAs as promising future therapeutic targets, their translational applicability to utilization in humans needs to be viewed with caution

25

(68) Kumar G, Chhabra A, Mishra S, Kalam H, Kumar D, Meena R, et al. H2S Regulates Hypobaric Hypoxia-Induced Early Glio-Vascular Dysfunction and Neuro-Pathophysiological Effects. EBioMedicine 2016 Apr;6:171-89. Abstract: Hypobaric Hypoxia (HH) is an established risk factor for various neuro-physiological perturbations including cognitive impairment. The origin and mechanistic basis of such responses however remain elusive. We here combined systems level analysis with classical neuro-physiological approaches, in a rat model system, to understand pathological responses of brain to HH. Unbiased 'statistical co-expression networks' generated utilizing temporal, differential transcriptome signatures of hippocampus-centrally involved in regulating cognition-implicated perturbation of Glio-Vascular homeostasis during early responses to HH, with concurrent modulation of vasomodulatory, hemostatic and proteolytic processes. Further, multiple lines of experimental evidence from ultra-structural, immuno-histological, substrate-zymography and barrier function studies unambiguously supported this proposition. Interestingly, we show a significant lowering of H2S levels in the brain, under chronic HH conditions. This phenomenon functionally impacted hypoxia-induced modulation of cerebral blood flow (hypoxic autoregulation) besides perturbing the strength of functional hyperemia responses. The augmentation of H2S levels, during HH conditions, remarkably preserved Glio-Vascular homeostasis and key neuro-physiological functions (cerebral blood flow, functional hyperemia and spatial memory) besides curtailing HH-induced neuronal apoptosis in hippocampus. Our data thus revealed causal role of H2S during HH-induced early Glio-Vascular dysfunction and consequent cognitive impairment

(69) Moser H, Genner A, Ofner J, Schwarzer C, Strasser G, Lendl B. Application of a ring cavity surface emitting quantum cascade laser (RCSE-QCL) on the measurement of H<sub>2</sub>S in a CH<sub>4</sub> matrix for process analytics. Opt Express 2016 Mar 21;24(6):6572-85. Abstract: The present work reports on the first application of a ring-cavity-surface-emitting quantum-cascade laser (RCSE-QCL) for sensitive gas measurements. RCSE-QCLs are promising candidates for optical gas-sensing due to their single-mode, mode-hop-free and narrow-band emission characteristics along with their broad spectral coverage. The time resolved down-chirp of the RCSE-QCL in the 1227-1236 cm<sup>-1</sup> (8.15-8.09 microm) spectral range was investigated using a step-scan FT-IR spectrometer (Bruker Vertex 80v) with 2 ns time and 0.1 cm<sup>-1</sup> spectral resolution. The pulse repetition rate was set between 20 and 200 kHz and the laser device was cooled to 15-17 degrees C. Employing 300 ns pulses a spectrum of ~1.5 cm<sup>-1</sup> could be recorded. Under these laser operation conditions and a gas pressure of 1000 mbar a limit of detection (3sigma) of 1.5 ppmv for hydrogen sulfide (H<sub>2</sub>S) in nitrogen was achieved using a 100 m Herriott cell and a thermoelectric cooled MCT detector for absorption measurements. Using 3 micros long pulses enabled to further extend the spectral bandwidth to 8.5 cm<sup>-1</sup>. Based on this increased spectral coverage and employing reduced pressure conditions (50 mbar) multiple peaks of the target analyte H<sub>2</sub>S as well as methane (CH<sub>4</sub>) could be examined within one single pulse

(70) Zhou J, Lian J, Li HX, Hong GL, Zhao GJ, Zhi SC, et al. [Mechanism research and effect of ulinastatin in the brain tissue injury of acute hydrogen sulfide intoxicated rats]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2016 Mar 20;34(3):166-72. Abstract: OBJECTIVE: To observe the effect of Ulinastatin (UTI) in the dynamic changes of aquaporin 4 (AQP4) and cyclooxygenase-2 (COX-2) in the brain tissue injury of acute hydrogen sulfide (H2S) intoxicated, to explore the Mechanism of brain tissue injury of acute H2S-intoxicated and the protection effect of UTI. METHODS: A total of 96 SD rats of clean grade were divided randomly into four groups: normal control group (NS group, n=8) , UTI control group (UTI group, n=8) , H2S-intoxicated model group (H2S group, n=40) , UTI treatment group (H2S+UTI group, n=40). The H2S group and H2S+UTI

26

group were exposed to H2S (284 mg/m(3)) by inhalation for 1 h, then H2S+UTI group was intraperitoneally exposed to UTI at the dose of 10(5) U/kg for 2 h, H2S group and H2S+UTI group were sacrificed at 2, 6, 12, 24 and 48 h after exposure, respectively. Remove the brain tissue, observe the rats behavioral changes at each time points. The mRNA expression of AQP4COX-2 and NSE in the brain tissue were measured by RT-PCR method, and the protein expression of AQP4COX-2 and NSE in the brain tissue were detected by immunohistochemical Streptavidin-perosidase method. Pathological changes of brain tissue were observed by lightmicroscope. RESULTS: 1Nerve cells in the H2S group rats had edema, degeneration, focal inflammatory cell infiltrate, capillary hyperplasia, expansion. Compared with NS group, the cerebral NSE mRNA and protein expression at each time point in H2S group after exposure were significantly increased (P<0.01). 2Compared with NS group, the cerebral AQP4 and COX-2 mRNA and protein expression at each time point in H2S group after exposure were significantly increased (P<0.01). 3The degree of brain damage was significantly decreased in H2S+UTI group than that in H2S group. Compared with H2S group, the cerebral NSE mRNA and protein expression at 6, 12, 24 and 48 h in H2S+UTI group after exposure were significantly decreased (P<0.01) , no significantly difference at 2h (P>0.05). 4Compared with the H2S group, the cerebral AQP4 and COX-2 mRNA and protein expression at 6, 12, 24 and 48 h in H2S+UTI group after exposure were significantly decreased (P<0.01) , slightly decreased at 2 h. CONCLUSION: The mechanism of brain injury of acute hydrogen sulfide intoxicated associated with abnormal expression of the cerebral AQP4, COX-2 levels. Intervention of UTI can reduce the cerebral AQP4 and COX-2 levels after hydrogen sulfide intoxicated, reduce the degree of brain injury

(71) Sekiguchi F, Sekimoto T, Ogura A, Kawabata A. Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells. Biol Pharm Bull 2016;39(5):887-90. Abstract: Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and beta-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions

(72) Liu J, Wu J, Sun A, Sun Y, Yu X, Liu N, et al. Hydrogen sulfide decreases high glucose/palmitate-induced autophagy in endothelial cells by the Nrf2-ROS-AMPK signaling pathway. Cell Biosci 2016;6:33. Abstract: BACKGROUND: Excessive autophagy induced by extravagant oxidative stress is the main reason for diabetes-induced vascular endothelial cells dysfunction. Hydrogen sulfide (H2S) has anti-oxidative effects but its regulation on excessive autophagy of vascular endothelial cells is unclear. METHODS: In this study, aorta of db/db mice (28 weeks old) and rat aortic endothelial cells (RAECs) treated with 40 mM glucose and 500 muM palmitate acted as type II diabetic animal and cellular models, respectively, and 100 muMNaHS was used as an exogenous H2S donor. The apoptosis level was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) staining and Hoechst 33342/PI staining. The activities of SOD, CAT and respiratory

27

complexes were also measured. The mRNA levels of SOD and CAT were detected by real-time PCR. AMPK-siRNA was used to detect the effect of AMPK on autophagy. Western blotting was used to detected the protein level. RESULTS: H2S production was decreased (p < 0.05, p < 0.01) both in vitro and in vivo; NaHS treatment rescued this impairment (p < 0.05, p < 0.01). The expression of adhesive proteins was increased (p < 0.05, p < 0.01) both in vitro and in vivo; NaHS attenuated (p < 0.05, p < 0.01) these alterations. NaHS could protect endothelial cells against apoptosis induced by type II diabetes (p < 0.05, p < 0.01). Furthermore, the expressions and activities of SOD and CAT were impaired (p < 0.05, p < 0.01) in endothelial cells of diabetes II; NaHS treatment attenuated (p < 0.05) this impairment. NaHS also increased ATP production (p < 0.05) and activities of respiratory complexes (p < 0.05), and the ratio of p-AMPK to AMPK was also decreased by NaHS (p < 0.01). The level of autophagy in endothelial cells was also decreased (p < 0.05, p < 0.01) by NaHS treatment and AMPK-siRNA treatment. The expression of Nrf2 in the nuclei was increased (p < 0.05) by NaHS treatment. CONCLUSION: Exogenous H2S might protect arterial endothelial cells by suppressing excessive autophagy induced by oxidative stress through the Nrf2-ROS-AMPK signaling pathway

(73) Guo FF, Yu TC, Hong J, Fang JY. Emerging Roles of Hydrogen Sulfide in Inflammatory and Neoplastic Colonic Diseases. Front Physiol 2016;7:156. Abstract: Hydrogen sulfide (H2S) is a toxic gas that has been recognized as an important mediator of many physiological processes, such as neurodegeneration, regulation of inflammation, blood pressure, and metabolism. In the human colon, H2S is produced by both endogenous enzymes and sulfate-reducing bacteria (SRB). H2S is involved in the physiological and pathophysiological conditions of the colon, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), which makes the pharmacological modulation of H2S production and metabolism a potential chemical target for the treatment of colonic diseases. However, the exact mechanisms and pathways by which H2S-mediates normal physiological function and disease in the colon are not fully understood. Besides, the production and release of H2S are modulated by both endogenous and exogenous factors. This review will discuss the production and storage of H2S, its biological roles and the emerging importance in physiology and pathology of IBD and CRC

(74) Wang M, Liao W. Carbon Monoxide as a Signaling Molecule in Plants. Front Plant Sci 2016;7:572. Abstract: Carbon monoxide (CO), a gaseous molecule, has emerged as a signaling molecule in plants, due to its ability to trigger a series of physiological reactions. This article provides a brief update on the synthesis of CO, its physiological functions in plant growth and development, as well as its roles in abiotic stress tolerance such as drought, salt, ultraviolet radiation, and heavy metal stress. CO has positive effects on seed germination, root development, and stomatal closure. Also, CO can enhance plant abiotic stress resistance commonly through the enhancement of antioxidant defense system. Moreover, CO shows cross talk with other signaling molecules including NO, phytohormones (IAA, ABA, and GA) and other gas signaling molecules (H2S, H2, CH4)

(75) Reich M, Shahbaz M, Prajapati DH, Parmar S, Hawkesford MJ, De Kok LJ. Interactions of Sulfate with Other Nutrients As Revealed by H2S Fumigation of Chinese Cabbage. Front Plant Sci 2016;7:541. Abstract: Sulfur deficiency in plants has severe impacts on both growth and nutrient composition. Fumigation with sub-lethal concentrations of H2S facilitates the supply of reduced sulfur via the leaves while sulfate is depleted from the roots. This restores growth while sulfate levels in the plant tissue remain low. In the present study this system was used to reveal interactions of sulfur with other nutrients in the plant and to ascertain whether these changes are due to the absence or presence of sulfate or rather to changes in growth and organic sulfur. There was a complex reaction of the mineral

28

composition to sulfur deficiency, however, the changes in content of many nutrients were prevented by H2S fumigation. Under sulfur deficiency these nutrients accumulated on a fresh weight basis but were diluted on a dry weight basis, presumably due to a higher dry matter content. The pattern differed, however, between leaves and roots which led to changes in shoot to root partitioning. Only the potassium, molybdenum and zinc contents were strongly linked to the sulfate supply. Potassium was the only nutrient amongst those measured which showed a positive correlation with sulfur content in shoots, highlighting a role as a counter cation for sulfate during xylem loading and vacuolar storage in leaves. This was supported by an accumulation of potassium in roots of the sulfur-deprived plants. Molybdenum and zinc increased substantially under sulfur deficiency, which was only partly prevented by H2S fumigation. While the causes of increased molybdenum under sulfur deficiency have been previously studied, the relation between sulfate and zinc uptake needs further clarification

(76) Ayswarya A, Kurian GA. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment. Indian J Pharm Sci 2016 Jan;78(1):151-8. Abstract: Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 muM) for 20 min, followed by incubation with 10 muM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the mitochondria with hydrogen sulfide preserved the enzyme activity in the in vitro conditions

(77) Bian JS, Olson KR, Zhu YC. Hydrogen Sulfide: Biogenesis, Physiology, and Pathology. Oxid Med Cell Longev 2016;2016:6549625.

(78) Finnbjornsdottir RG, Carlsen HK, Thorsteinsson T, Oudin A, Lund SH, Gislason T, et al. Association between Daily Hydrogen Sulfide Exposure and Incidence of Emergency Hospital Visits: A Population-Based Study. PLoS One 2016;11(5):e0154946. Abstract: BACKGROUND: The adverse health effects of high concentrations of hydrogen sulfide (H2S) exposure are well known, though the possible effects of low concentrations have not been thoroughly studied. The aim was to study short-term associations between modelled ambient low-level concentrations of intermittent hydrogen sulfide (H2S) and emergency hospital visits with heart diseases (HD), respiratory diseases, and stroke as primary diagnosis. METHODS: The study is population-based, using data from patient-, and population-registers from the only acute care institution in the Reykjavik capital area,

29

between 1 January, 2007 and 30 June, 2014. The study population was individuals (>/=18yr) living in the Reykjavik capital area. The H2S emission originates from a geothermal power plant in the vicinity. A model was used to estimate H2S exposure in different sections of the area. A generalized linear model assuming Poisson distribution was used to investigate the association between emergency hospital visits and H2S exposure. Distributed lag models were adjusted for seasonality, gender, age, traffic zones, and other relevant factors. Lag days from 0 to 4 were considered. RESULTS: The total number of emergency hospital visits was 32961 with a mean age of 70 years. In fully adjusted un-stratified models, H2S concentrations exceeding 7.00mug/m3 were associated with increases in emergency hospital visits with HD as primary diagnosis at lag 0 risk ratio (RR): 1.067; 95% confidence interval (CI): 1.024-1.111, lag 2 RR: 1.049; 95%CI: 1.005-1.095, and lag 4 RR: 1.046; 95%CI: 1.004-1.089. Among males an association was found between H2S concentrations exceeding 7.00mug/m3, and HD at lag 0 RR: 1.087; 95%CI: 1.032-1.146 and lag 4 RR: 1080; 95%CI: 1.025-1.138; and among those 73 years and older at lag 0 RR: 1.075; 95%CI: 1.014-1.140 and lag 3 RR: 1.072; 95%CI: 1.009-1.139. No associations were found with other diseases. CONCLUSIONS: The study showed an association between emergency hospital visits with HD as primary diagnosis and same day H2S concentrations exceeding 7.00mug/m3, more pronounced among males and those 73 years and older than among females and younger individuals

(79) Tu X, Li J, Feng R, Sun G, Guo J. Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of pH on the Bacterial Communities. PLoS One 2016;11(5):e0155593. Abstract: Although biotrickling filters (BTFs) applied under acidic condition to remove H2S from waste gases have been reported, the removal behavior of the acidic BTF under transient condition which was normal in most industry processes, and corresponding bacterial community have not been thoroughly studied. In the present study, two BTFs were run under neutral (BTFn) and acidic (BTFa) conditions, respectively. The results revealed that the removal performance of BTFa under transient condition was superior to that of BTFn; the maximum H2S eliminating capacities (ECs) achieved by BTFa and BTFn were 489.9 g/m3 h and 443.6 g/m3 h, respectively. High-throughput sequencing suggested that pH was the critical factor and several other factors including nutrient and the inlet loadings also had roles in shaping bacterial community structure. Acidithiobacillus was the most abundant bacterial group. The results indicated that BTF acclimation under acidic condition may facilitate generating microbial community with high H2S-degrading capability

(80) Ahmad A, Sattar MA, Azam M, Abdulla MH, Khan SA, Hashmi F, et al. Cystathione gamma lyase/Hydrogen Sulphide Pathway Up Regulation Enhances the Responsiveness of alpha1A and alpha1B-Adrenoreceptors in the Kidney of Rats with Left Ventricular Hypertrophy. PLoS One 2016;11(5):e0154995. Abstract: The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of alpha1A and alpha1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of alpha1A and alpha1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione beta synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of alpha1A-adrenergic receptors to adrenergic agonists was increased

30

(P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while alpha1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of alpha1A and alpha1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development

(81) Chertok VM, Zenkina VG. [Regulation of Ovarian Function: Part of the Gas Transmitters NO, CO and H2S]. Usp Fiziol Nauk 2015 Oct;46(4):74-89. Abstract: This review discusses the management of ovarian function and participation in the process of a new class of cellular regulators--Gasotransmitters (NO, CO and H2S). According to modern concepts in regulatory processes, in addition to hypothalamic-pituitary mechanisms involved a large and diverse group of ovary cells (interstitial, internal theca and atretic bodies, follicular epithelium, teka-luteal and granulosa-luteal cells of the corpus luteum), which not only mediate the gonadotropic stimulation, but satisfy the for the production of a wide range of biologically active substances. These materials are expected to participate in all these processes gaseous mediators. However, our knowledge of topochemistry, mechanisms and the role of these substances in the important organs of the reproductive system-ovary, fragmentary and do not allow to form a holistic understanding of the cellular mechanisms by which Gasotransmitters have a regulating effect on the individual structures of the ovary in normal functioning of the body and disease. Creation of an experimental model for studying the mechanisms of gaseous mediators in different cell types of ovarian, including endothelial and smooth muscle cells of blood vessels, in which the functional significance of these substances may be particularly significant, will provide fundamental knowledge for the development of new approaches to the treatment of diseases of the reproductive system

(82) Gusakova SV, Kovalev IV, Smagliy LV, Birulina YG, Nosarevi AV, Petrova IV, et al. [Gas Signalling in Mammalian Cells]. Usp Fiziol Nauk 2015 Oct;46(4):53-73. Abstract: At the end of the last century after the discovery of signaling functions of nitric oxide (NO, II), a new class of biologically active substances was admitted. It includes so-called gas transmitters acting as intercellular and intracellular regulators of different physiological functions. Currently, this class includes such gases as NO, carbon monoxide (CO) and hydrogen sulfide (H2S). It was found that these gases regulate not only functions of the. gastrointestinal tract and the cardiovascular system, where it has been determined initially, but also affect the function of the central and peripheral nervous.systems. Apparently, they constitute a single complex of gas transmitters, which easily penetrates through the membrane and regulates numerous enzymatic and non enzymatic cells reactions. This review presents the mechanisms of gas transmitters' influence on the electrical and contractile properties of smooth muscle cells (SMC) as a possible new ways to interact with the "classical" intracellular signaling cascades (Ca2+, cyclic nucleotides) and effectors systems. On account of their interactions the role of cyclic nucleotides and calcium ions in the implementation of the signal gas molecules functions is analyzed. We summarize the literature data and the results of our own research on the role of SMC membrane ion-transporting systems in myogenic effects of NO, CO and H2S and describe possible reasons of gas transmitters multidirectional influence on the excitation-contraction coupling in SMC

(83) Bulaev AG, Kanaeva ZK, Kanaev AT, Kondrat'eva TF. [Biooxidation of a Double-Refractory Gold-Bearing Sulfide Ore Concentrate]. Mikrobiologiia 2015 Sep;84(5):561-9. Abstract: The efficiency of biooxidation for treatment of a double-refractory gold-bearing

31

sulfide ore concentrate from the Bakyrchik deposit (East Kazakhstan) was defined. The experiments were conducted in two different modes, i.e., with the standard liquid medium and the medium imitating the chemical composition of the Bakyrchik deposit groundwater and containing high concentrations of sodium, magnesium, and chloride. The concentrate contained 17.5% of organic carbon, 6% of pyrite and 13% arsenopyrite. Gold content was 57.5 g t@-1@. Direct gold recovery by cyanidation was very low (2.8%). While biooxidation was efficient in both cases (approximately 90% of sulfide sulfur was oxidized), the efficiency of cyanidation was low (39 and 32%, respectively). This fact suggests high efficiency of biooxidation is insufficient for efficient treatment of double-refractory gold-bearing sulfide ore concentrates