Guardrail Design

download Guardrail Design

of 8

Transcript of Guardrail Design

  • 8/12/2019 Guardrail Design

    1/8

    ALUMINUM STAINLESS NICKEL-SILVER

    BRONZE STEEL MALLEABLE IRON

    J ULIUS BLUM & CO., INC.800 526 6293 www.juliusblum.com

    FAX 201 438 6003

    ENGINEERING DATA

    ALUM INUM NICKEL-SILVER STEEL

    BRONZE STAINLESS ACRYLIC / WOO

    Availab ility o f co mplete structural information ena bles architects anddesigners to make proper use of Blums component systems to pro-vide s afe , durab le hand rail insta lla tions. The des igner ca n engineerinsta llations to co nform to spec ific b uilding co de loa ding criteria o r canestablish design requirements for a given installation on the basis of

    anticipated traffic expos ure.

    The five major co nsiderations for the structural des ign of ha ndrails a re:1. S tructural loa ding criteria as esta blished by g overning b uilding

    cod es or special design requirements.2. Properties o f railing ma terials and allow ab le stress es for des ign.3. Elements of se ctions for railing c omponents.4. Load, stress, and deflec tion relationships expressed a s formulas for

    engineering design.5. Proper attachment and sound supporting structure.

    CODE REQUIREMENTS AND REGULATIONSS tructural req uirements for railings usually a re express ed in one o f twowa ys, depend ing on governing co des a nd regulations. Some of thesespecify an applied loading distributed uniformly along the rail while oth-ers sp ec ify loa ding co ncentra ted o n the top rail. The de signer should

    cons ult go verning c odes , local ordinances , project s pecifications, andregulatory authorities to d etermine req uirements for co mpliance.

    The Americans with Disabilities Act (ADA): Refer to page iii forinformation regarding handrail dimensions mentioned in the ADAAccessibility Guidelines and ANSI 117.1-2004.

    ALLOWABLE STRESSESTo provide a deq uate sa fety facto rs, the engineering profess ion as signsto ea ch ma terial an a llow ab le d esign stress which is usua lly expressedas a specific frac tion of minimum yield, or some times as a s maller frac -tion of minimum ultimate strength. Allowable stresses vary with thecompos ition and temper of the material and also, to s ome d egree, w iththe kind of s hape a nd the d irection of stress .

    Yield strength is the point of stress (in pounds per square inch) atwhich ma terial fails to return to its original pos ition a fter the stress hasbeen removed a nd ta kes a perma nent set. Minimum yield is d efined as

    the test va lue exceed ed by 99% of a large number of specimens. Fornon-ferrous meta ls, the yield po int is a rbitrarily d efined a s the point ofstress a t which permanent set is a spec ific frac tion of 1% of the lengthof the test piece (0.2% offset as shown below or 0.5% elongation).Ultima te s trength is co nsiderab ly higher (see gra ph).

    ELEMENTS OF SECTIONSP roperties of se ctions of JB handrail mouldings , pos ts, and supportsec tions a re listed on pag e 124. For properties o f ba rs, shapes , andtubes, se e pag es 105-122.

    owa e ress

    STRAIN (inches/inch)

    Minimumiel

    TypicalYield

    MinimumUltimate

    TypicalUltimate

    STRESS

    (lb/sqin

    0.2% OFGAUGE LENGTH

    h

    h1

    L

    h

    FVFH

    P

    w

    h1

    MECHANICAL PROPERTIES OF MATERIALSBelow is a table of metals used in the architectural componendes cribed in this ca talog, tog ether with their yields , a llowa ble stresseand moduli of elasticity. These mecha nica l properties have b eesta blished by producers of the various ma terials.

    Allo wa b le Exp ec te d Mo duluB end ing S tre ss Minimum Ela sti

    Materia l for Des ign (ps i) Yield (ps i) (psi x 1

    Aluminum 6061-T6, shapes major axis 19,500 35,000 10shapes minor axis 27,700 35,000 10

    Aluminum 6063-T6, shapes major axis 15,200 25,000 10shapes minor axis 19,700 25,000 10

    Aluminum 6063-T52, ba rs and shapes 12,600 16,000 10

    Aluminum 6063-T52, tubing 11,300 16,000 10

    Aluminum 6063-T832, dra wn pipe 24,800 35,000 10

    Bronze C38500, extruded 9,700 16,000 14Bronze C38500, handrail mouldingand tubing 14,500 24,000 14

    Bronze C38500, rectangular tubing,ba rs and shapes 21,200 35,000 14

    Red B rass C23000, draw n pipe,

    ASTM B43 11,000 18,000 17Nickel-S ilver C79800, extruded 24,000 40,000 18

    Sta inless Stee l type 304, extruded ,AS TM A276 15,000 25,000 28

    S tainless S teel type 304, hot-rolled ,AS TM A276 18,000 30,000 28

    S ta inle ss S teel type 304, c old -fo rmed 15,100 28,000 28

    S tainless S teel type 304 round tubing(as welded) 30,000 55,000 28

    Ca rbon S teel C1010, roll-formed,AS TM A29 16,800 28,000 29

    Ca rbon S teel C1010, hot-rolled,AS TM A29 16,800 28,000 29

    Acrylic/Wood 3,760 4,975 1

    LOADING DIAGRAM

    EXPLANATION OF SYMBOLS

    w* = Uniform horizontal loading, perpendicular to the rail (lb/ft).L = S pan betw een centerlines of pos ts or brac kets (in).P = Horizonta l force, perpendicular to rail applied at top of pos t (lb).FH = Horizonta l force , perpend icular to rail at any point a long the railing (lb).FV = Vertica l force, perpendicular to rail at any point betw een pos ts (lb).h = Height of post. Distance from point of load applica tion ab ove top of

    attachment (in).h1 = Distance from top of pos t atta chment to top of reinforcing insert (in).Sx &Sy = Se ction modulus a bout the x- or y-axis respec tively (in3).lx &ly = Moment of inertia abo ut the x- or y-axis respec tively (in4).k = Stiffness of member.C = Dista nce from the neutral axis to the extreme fiber of any section (in).E = Modulus of elas ticity (ps i x 106).R = Stiffness ratio.P f = Lo ad pro po rtio n fa cto r.Fr = Rea ction Fa ctor.* Values for w (uniform loa d in lb/ft) a re co nverted to lb/in by d ividing b y 12.

    ALUM INUM NICKEL-SILVER STEEL

    BRONZE STAINLESS ACRYLIC / WOO

    http://www.juliusblum.com/http://www.juliusblum.com/
  • 8/12/2019 Guardrail Design

    2/8

    HANDRAIL AND POST PROPERTIES ELEMENTS OF SECTIONSJuliusBlum&Co.Inc.

    JULIUS BLUM & CO., INC. 800 526 6293 www.juliusblum.com

    FAX 201 438 60034

    ALUMINUM NICKEL-SILVER STEEL

    BRONZE STAINLESS ACRYLIC / WOOD

    HANDRAIL Minor Axis Major AxisS hape Area Ix S x Cx Iy S y Cy

    4488 0.284 0.011 0.046 0.250 0.107 0.107 1.0006501 1.054 0.017 0.067 0.256 0.629 0.457 1.3756502 0.740 0.008 0.033 0.235 0.314 0.280 1.1256503 0.739 0.014 0.050 0.341 0.126 0.168 0.7506511 0.386 0.006 0.031 0.238 0.189 0.137 1.3756512 0.291 0.008 0.034 0.236 0.136 0.121 1.1254416 0.927 0.021 0.073 0.291 0.232 0.231 1.0004428 0.569 0.017 0.041 0.416 0.209 0.215 0.9694429 0.403 0.008 0.022 0.375 0.104 0.119 0.8754435 0.746 0.018 0.044 0.406 0.349 0.328 1.0624441 0.594 0.024 0.055 0.432 0.291 0.258 1.1254529 0.684 0.059 0.100 0.586 0.616 0.429 1.4384530 5530 0.779 0.023 0.052 0.449 0.300 0.267 1.1254531 0.527 0.011 0.030 0.358 0.108 0.133 0.8134532 0.557 0.018 0.042 0.425 0.260 0.231 1.1254533 0.937 0.457 0.372 1.229 0.785 0.571 0.9164534 5534 0.669 0.017 0.040 0.427 0.208 0.214 0.9694535 5235 0.799 0.024 0.052 0.454 0.344 0.323 1.0634536 0.434 0.017 0.040 0.423 0.171 0.176 0.9694537 0.359 0.010 0.028 0.346 0.095 0.116 0.8134538 5538 0.806 0.194 0.202 0.958 0.661 0.481 1.3754539 0.670 0.013 0.035 0.369 0.175 0.200 0.8754572 5572 0.701 0.008 0.032 0.239 0.299 0.266 1.1254573 1.054 0.016 0.059 0.268 0.654 0.476 1.3754574 5274 0.919 0.020 0.053 0.376 0.654 0.476 1.3754575 0.645 0.014 0.033 0.437 0.232 0.232 1.0006488 5288 0.426 0.011 0.044 0.250 0.152 0.152 1.0006489 5289 0.440 0.108 0.144 1.250 0.108 0.144 1.2506402 1.250 0.083 0.098 0.845 0.412 0.347 1.1886407 1.680 0.088 0.104 0.844 1.311 0.807 1.625

    6436

    0.741 0.159 0.268 0.594 0.422 0.386 1.0946437 0.879 0.210 0.336 0.625 0.799 0.532 1.5006530 0.810 0.032 0.082 0.395 0.315 0.315 1.0006531 0.573 0.023 0.056 0.411 0.132 0.175 0.7506532 1.090 0.039 0.084 0.465 0.616 0.493 1.2506540 0.628 0.312 0.284 1.099 0.034 0.068 0.5006901 1.387 0.042 0.106 0.396 0.709 0.540 1.3136902 1.227 0.034 0.084 0.409 0.520 0.438 1.1886903 0.361 0.013 0.029 0.448 0.109 0.125 0.8756904 0.726 0.072 0.118 0.612 0.519 0.377 1.3756905 1.414 0.026 0.089 0.297 1.167 0.718 1.6256906 2.051 0.058 0.161 0.358 2.195 1.171 1.8456907 1.441 0.031 0.077 0.402 1.263 0.777 1.6256929 0.557 0.018 0.042 0.425 0.260 0.231 1.1256930 0.779 0.023 0.052 0.449 0.300 0.267 1.1256931 0.527 0.011 0.030 0.358 0.108 0.133 0.8136932 0.684 0.059 0.100 0.586 0.616 0.429 1.438

    6933 0.670 0.013 0.035 0.369 0.175 0.200 0.8756934 0.669 0.017 0.040 0.427 0.208 0.214 0.9696935 0.843 0.024 0.053 0.451 0.343 0.323 1.0656939 1.845 0.085 0.225 0.375 0.932 0.746 1.2506984 1.079 0.021 0.056 0.367 0.676 0.492 1.3756985 0.805 0.017 0.040 0.413 0.254 0.254 1.0006986 2.237 0.104 0.277 0.375 1.658 1.106 1.5006987 0.746 0.056 0.084 0.662 0.648 0.471 1.3756988 0.946 0.019 0.075 0.250 0.285 0.285 1.0008521/22/23 8.924 1.967 2.420 0.812 22.530 8.190 2.7508542 5.238 1.192 1.362 0.875 5.040 3.250 1.5508561/62 12.170 2.680 3.298 0.812 56.940 15.184 3.7508571 1.563 0.135 0.154 0.875 1.487 0.820 1.8138591 8.415 1.729 2.128 0.812 21.701 8.070 2.869

    Tubing

    Minor Axis Ma jor Axis

    S hape Area Ix S x Cx Iy S y Cy

    230 0.308 0.050 0.100 0.500 0.095 0.126 0.750233B(294)* 1.021 0.052 0.133 0.390 0.146 0.223 0.655283(295)* 1.412 0.072 0.184 0.390 0.385 0.426 0.905280 0.373 0.064 0.128 0. 500 0. 193 0. 193 1. 000436E 0.655 0.029 0.078 0.370 0.087 0.140 0.6224830(830) 0.726 0.096 0.192 0.500 0.241 0.297 0.8136423(423) 1.555 0.201 0.321 0.625 0.201 0.321 0.6256424(424) 3.430 0.445 0.712 0.625 2.153 1.566 1.3756427(427) 1.926 0.208 0.303 0.687 0.496 0.409 0.789

    6430(430) 0.726 0.096 0.192 0.500 0.241 0.297 0.8136434 13340.930 0.237 0.379 0.625 0.851 0.619 1.3756435 0.871 0.210 0.337 0. 625 0. 710 0. 516 1. 3756458(458) 1.110 0.177 0.258 0.687 0.529 0.508 1.0426459(459) 1.030 0.201 0.322 0.687 0.708 0.679 1.0418571* 1.563 0.135 0.154 0.875 1.487 0.820 1.873

    * Aluminum, for use with sta inless s teel posts Tubing T6 tem per

    HANDRAILS

    y

    CARLSTADT POSTS

    x

    y

    x

    y

    x x

    y

    Minor Axis Ma jor AxisRa iling Number Area Ix S x Cx Iy S y Cy

    1130 0.874 0.227 0.236 0.962 0.295 0.311 0.9501132 1232 1.245 0.632 0.500 1.263 0.717 0.574 1.2501133 2.414 0.416 0.583 0.714 0.970 0.619 1.5661134 1.980 0.296 0.300 0.988 1.022 0.817 1.2501135 1.632 1.910 1.030 1.855 1.947 1.113 1.7501136 2.250 1.488 1.488 1.000 9.196 2.821 3.2601154 1.442 1.105 0.721 1.532 1.268 0.845 1.5001155 1.638 1.875 1.024 1.831 1.989 1.136 1.7501430 0.501 0.142 0.154 0.927 0.183 0.192 0.9501432 1452 0.643 0.358 0.280 1.280 0.395 0.316 1.2501433 1453 0.712 0.630 0.386 1.632 0.643 0.429 1.5001472 1473 0.909 1.570 0.867 1.811 1.520 0.762 2.0001230 0.766 0.202 0.223 0.907 0.278 0.292 0.950

    1231 0.980 0.518 0.409 1.177 0.585 0.468 1.2501233 1333 1.442 1.160 0.743 1.568 1.229 0.819 1.5001235 2.360 2.704 1.471 1.838 2.772 1.584 1.7501330 0.840 0.236 0.262 0.901 0.324 0.340 0.9501332 1.245 0.632 0.500 1.263 0.717 0.574 1.2508662 11. 062 3.954 3. 954 1. 000 30.152 9.420 3. 2011141 4. 353 6.068 4. 106 1. 478 2.314 1.851 1.2501142 6.828 10.206 5.449 1.873 5.121 4.097 1.2501143 7.199 12.497 6.598 1.894 6.735 4.898 1.375

    Unless designated as T6 temper, all aluminum alloy is in the T52 temper.

    The values of these elements of sections are approximate andwhile they

    have been ascertained with carethey cannot be guaranteed.

    Se e p. 129 for properties of Connectorailpipe and reinforcing ba rs.

    GLASS RAILING SECTIONS

    http://www.juliusblum.com/http://jb_drawings/4400/4488.pdfhttp://jb_drawings/4400/4488.pdfhttp://jb_drawings/6500/6501.PDFhttp://jb_drawings/6500/6502.PDFhttp://jb_drawings/6500/6503.pdfhttp://jb_drawings/6500/6511.PDFhttp://jb_drawings/6500/6511.PDFhttp://jb_drawings/6500/6512.PDFhttp://jb_drawings/6500/6512.PDFhttp://jb_drawings/4400/4416.pdfhttp://jb_drawings/4400/4428.PDFhttp://jb_drawings/4400/4429.PDFhttp://jb_drawings/4400/4435.PDFhttp://jb_drawings/4400/4441.pdfhttp://jb_drawings/4500/4529.PDFhttp://jb_drawings/4500/4530.pdfhttp://jb_drawings/5500/5530.pdfhttp://jb_drawings/4500/4531.pdfhttp://jb_drawings/4500/4532.PDFhttp://jb_drawings/4500/4533.pdfhttp://jb_drawings/4500/4534.pdfhttp://jb_drawings/5500/5534.pdfhttp://jb_drawings/4500/4535.pdfhttp://jb_drawings/5200/5235.pdfhttp://jb_drawings/4500/4536.PDFhttp://jb_drawings/4500/4537.PDFhttp://jb_drawings/4500/4538.PDFhttp://jb_drawings/5500/5538.PDFhttp://jb_drawings/4500/4539.pdfhttp://jb_drawings/4500/4572.PDFhttp://jb_drawings/5500/5572.PDFhttp://jb_drawings/4500/4573.PDFhttp://jb_drawings/4500/4574.pdfhttp://jb_drawings/5200/5274.pdfhttp://jb_drawings/4500/4575.pdfhttp://jb_drawings/6400/6488.PDFhttp://jb_drawings/6400/6488.PDFhttp://jb_drawings/5200/5288.pdfhttp://jb_drawings/5200/5288.pdfhttp://jb_drawings/6400/6489.PDFhttp://jb_drawings/6400/6489.PDFhttp://jb_drawings/5200/5289.PDFhttp://jb_drawings/5200/5289.PDFhttp://jb_drawings/6400/6402.PDFhttp://jb_drawings/6400/6407.PDFhttp://jb_drawings/6400/6436.PDFhttp://jb_drawings/6400/6436.PDFhttp://jb_drawings/6400/6437.PDFhttp://jb_drawings/6400/6437.PDFhttp://jb_drawings/6500/6530.PDFhttp://jb_drawings/6500/6531.PDFhttp://jb_drawings/6500/6532.PDFhttp://jb_drawings/6500/6540.PDFhttp://jb_drawings/6900/6901.PDFhttp://jb_drawings/6900/6902.PDFhttp://jb_drawings/6900/6903.PDFhttp://jb_drawings/6900/6904.PDFhttp://jb_drawings/6900/6905.pdfhttp://jb_drawings/6900/6906.pdfhttp://jb_drawings/6900/6907.PDFhttp://jb_drawings/6900/6929.pdfhttp://jb_drawings/6900/6930.pdfhttp://jb_drawings/6900/6931.PDFhttp://jb_drawings/6900/6932.PDFhttp://jb_drawings/6900/6933.pdfhttp://jb_drawings/6900/6934.pdfhttp://jb_drawings/6900/6935.pdfhttp://jb_drawings/6900/6939.PDFhttp://jb_drawings/6900/6984.PDFhttp://jb_drawings/6900/6985.PDFhttp://jb_drawings/6900/6986.pdfhttp://jb_drawings/6900/6987.pdfhttp://jb_drawings/6900/6988.PDFhttp://jb_drawings/8500/8521.PDFhttp://jb_drawings/8500/8522.PDFhttp://jb_drawings/8500/8523.PDFhttp://jb_drawings/8500/8542.PDFhttp://jb_drawings/8500/8561.PDFhttp://jb_drawings/8500/8562.PDFhttp://jb_drawings/8500/8571.PDFhttp://jb_drawings/8500/8591.PDFhttp://jb_drawings/0200/230.PDFhttp://jb_drawings/0200/230.PDFhttp://jb_drawings/0200/233-B.PDFhttp://jb_drawings/0200/294.pdfhttp://jb_drawings/0200/238.pdfhttp://jb_drawings/0200/295.pdfhttp://jb_drawings/0200/280.PDFhttp://jb_drawings/0200/280.PDFhttp://jb_drawings/0400/436-E.PDFhttp://jb_drawings/0400/436-E.PDFhttp://jb_drawings/4800/4830.PDFhttp://jb_drawings/0800/830.PDFhttp://jb_drawings/0800/830.PDFhttp://jb_drawings/6400/6423.PDFhttp://jb_drawings/0400/423.PDFhttp://jb_drawings/6400/6424.PDFhttp://jb_drawings/0400/424.PDFhttp://jb_drawings/6400/6427.PDFhttp://jb_drawings/0400/427.PDFhttp://jb_drawings/6400/6430.PDFhttp://jb_drawings/0400/430.PDFhttp://jb_drawings/6400/6434.pdfhttp://jb_drawings/6400/6434.pdfhttp://jb_drawings/1300/1334.PDFhttp://jb_drawings/1300/1334.PDFhttp://jb_drawings/6400/6435.pdfhttp://jb_drawings/6400/6435.pdfhttp://jb_drawings/6400/6458.PDFhttp://jb_drawings/0400/458.PDFhttp://jb_drawings/6400/6459.PDFhttp://jb_drawings/0400/459.PDFhttp://jb_drawings/8500/8571.PDFhttp://jb_drawings/1100/1130.pdfhttp://jb_drawings/1100/1132.PDFhttp://jb_drawings/1200/1232.PDFhttp://jb_drawings/1100/1133.pdfhttp://jb_drawings/1100/1134.pdfhttp://jb_drawings/1100/1135.PDFhttp://jb_drawings/1100/1136.PDFhttp://jb_drawings/1100/1154.PDFhttp://jb_drawings/1100/1155.PDFhttp://jb_drawings/1400/1430.PDFhttp://jb_drawings/1400/1432.PDFhttp://jb_drawings/1400/1452.PDFhttp://jb_drawings/1400/1433.PDFhttp://jb_drawings/1400/1453.PDFhttp://jb_drawings/1400/1472.PDFhttp://jb_drawings/1400/1473.pdfhttp://jb_drawings/1200/1230.PDFhttp://jb_drawings/1200/1231.PDFhttp://jb_drawings/1200/1233.PDFhttp://jb_drawings/1300/1333.PDFhttp://jb_drawings/1200/1235.PDFhttp://jb_drawings/1300/1330.PDFhttp://jb_drawings/1300/1332.PDFhttp://jb_drawings/8600/8662.PDFhttp://jb_drawings/1100/1141.pdfhttp://jb_drawings/1100/1142.PDFhttp://jb_drawings/1100/1143.PDFhttp://www.juliusblum.com/http://jb_drawings/1100/1143.PDFhttp://jb_drawings/1100/1142.PDFhttp://jb_drawings/1100/1141.pdfhttp://jb_drawings/8600/8662.PDFhttp://jb_drawings/1300/1332.PDFhttp://jb_drawings/1300/1330.PDFhttp://jb_drawings/1300/1333.PDFhttp://jb_drawings/1200/1235.PDFhttp://jb_drawings/1200/1233.PDFhttp://jb_drawings/1200/1231.PDFhttp://jb_drawings/1200/1230.PDFhttp://jb_drawings/1400/1473.pdfhttp://jb_drawings/1400/1472.PDFhttp://jb_drawings/1400/1453.PDFhttp://jb_drawings/1400/1433.PDFhttp://jb_drawings/1400/1452.PDFhttp://jb_drawings/1400/1432.PDFhttp://jb_drawings/1400/1430.PDFhttp://jb_drawings/1200/1232.PDFhttp://jb_drawings/1100/1155.PDFhttp://jb_drawings/1100/1154.PDFhttp://jb_drawings/1100/1136.PDFhttp://jb_drawings/1100/1135.PDFhttp://jb_drawings/1100/1134.pdfhttp://jb_drawings/1100/1133.pdfhttp://jb_drawings/1100/1132.PDFhttp://jb_drawings/1100/1130.pdfhttp://jb_drawings/8500/8571.PDFhttp://jb_drawings/6400/6459.PDFhttp://jb_drawings/6400/6458.PDFhttp://jb_drawings/6400/6435.pdfhttp://jb_drawings/6400/6434.pdfhttp://jb_drawings/6400/6430.PDFhttp://jb_drawings/6400/6427.PDFhttp://jb_drawings/6400/6424.PDFhttp://jb_drawings/6400/6423.PDFhttp://jb_drawings/1300/1334.PDFhttp://jb_drawings/0800/830.PDFhttp://jb_drawings/4800/4830.PDFhttp://jb_drawings/0400/459.PDFhttp://jb_drawings/0400/458.PDFhttp://jb_drawings/0400/430.PDFhttp://jb_drawings/0400/427.PDFhttp://jb_drawings/0400/424.PDFhttp://jb_drawings/0400/423.PDFhttp://jb_drawings/0400/436-E.PDFhttp://jb_drawings/0200/280.PDFhttp://jb_drawings/0200/238.pdfhttp://jb_drawings/0200/295.pdfhttp://jb_drawings/0200/294.pdfhttp://jb_drawings/0200/233-B.PDFhttp://jb_drawings/0200/230.PDFhttp://jb_drawings/8500/8591.PDFhttp://jb_drawings/8500/8562.PDFhttp://jb_drawings/8500/8523.PDFhttp://jb_drawings/8500/8522.PDFhttp://jb_drawings/8500/8571.PDFhttp://jb_drawings/8500/8561.PDFhttp://jb_drawings/8500/8542.PDFhttp://jb_drawings/8500/8521.PDFhttp://jb_drawings/6900/6988.PDFhttp://jb_drawings/6900/6987.pdfhttp://jb_drawings/6900/6986.pdfhttp://jb_drawings/6900/6985.PDFhttp://jb_drawings/6900/6984.PDFhttp://jb_drawings/6900/6939.PDFhttp://jb_drawings/6900/6935.pdfhttp://jb_drawings/6900/6934.pdfhttp://jb_drawings/6900/6933.pdfhttp://jb_drawings/6900/6932.PDFhttp://jb_drawings/6900/6931.PDFhttp://jb_drawings/6900/6930.pdfhttp://jb_drawings/6900/6929.pdfhttp://jb_drawings/6900/6907.PDFhttp://jb_drawings/6900/6906.pdfhttp://jb_drawings/6900/6905.pdfhttp://jb_drawings/6900/6904.PDFhttp://jb_drawings/6900/6903.PDFhttp://jb_drawings/6900/6902.PDFhttp://jb_drawings/6900/6901.PDFhttp://jb_drawings/6500/6540.PDFhttp://jb_drawings/6500/6532.PDFhttp://jb_drawings/6500/6531.PDFhttp://jb_drawings/6500/6530.PDFhttp://jb_drawings/6400/6437.PDFhttp://jb_drawings/6400/6436.PDFhttp://jb_drawings/6400/6407.PDFhttp://jb_drawings/6400/6402.PDFhttp://jb_drawings/6400/6489.PDFhttp://jb_drawings/6400/6488.PDFhttp://jb_drawings/5200/5289.PDFhttp://jb_drawings/5200/5288.pdfhttp://jb_drawings/5200/5274.pdfhttp://jb_drawings/5200/5235.pdfhttp://jb_drawings/5500/5572.PDFhttp://jb_drawings/5500/5538.PDFhttp://jb_drawings/5500/5534.pdfhttp://jb_drawings/4500/4575.pdfhttp://jb_drawings/4500/4574.pdfhttp://jb_drawings/4500/4573.PDFhttp://jb_drawings/4500/4572.PDFhttp://jb_drawings/4500/4539.pdfhttp://jb_drawings/4500/4538.PDFhttp://jb_drawings/4500/4537.PDFhttp://jb_drawings/4500/4536.PDFhttp://jb_drawings/4500/4535.pdfhttp://jb_drawings/4500/4534.pdfhttp://jb_drawings/4500/4533.pdfhttp://jb_drawings/4500/4532.PDFhttp://jb_drawings/4500/4531.pdfhttp://jb_drawings/5500/5530.pdfhttp://jb_drawings/4500/4530.pdfhttp://jb_drawings/4500/4529.PDFhttp://jb_drawings/4400/4441.pdfhttp://jb_drawings/4400/4435.PDFhttp://jb_drawings/4400/4429.PDFhttp://jb_drawings/4400/4428.PDFhttp://jb_drawings/4400/4416.pdfhttp://jb_drawings/6500/6512.PDFhttp://jb_drawings/6500/6511.PDFhttp://jb_drawings/6500/6503.pdfhttp://jb_drawings/6500/6502.PDFhttp://jb_drawings/6500/6501.PDFhttp://jb_drawings/4400/4488.pdf
  • 8/12/2019 Guardrail Design

    3/8

    BENDING MOMENTS AND STRESSESDetermination of bending moments and stress in structural railing

    memb ers follows c onventiona l eng ineering des ign proce dures. The

    resisting momentcalculated from the Section Modulus (S, which

    eq uals I/C) and Allowable Design Stress(fs)must eq ual the Applied

    Bending M oment(M).

    This trans late s into railing formulas as desc ribed be low .

    RAILS: Connections betw een posts a nd rails a re assumed to b e freeto pivot. Distribution of loa ds through multiple s pans decrea ses ma xi-

    mum bending mome nt in horizonta l members. The effec t of d ifferent

    numbers of s pans may b e taken into ac count by varying the Bending

    Mom ent Constant(K). Calculation of Unit Stress(f) a nd Length of

    Span(L) are a cc omplished by using the follow ing formulas :

    1. For uniform vertica l or horizonta l loa ds (w):

    2. For conc entrated loa ds (F) applied a t mid spa n:

    Note: Values of K are defined ba sed on the maximum bending moment developedunder various numbers of spans.

    POSTS: Po sts ac t a s vertica l cantilever bea ms in resisting horizontalthrust applied at the top rail. Bending moment produced by horizontal

    thrust normally co ntrols des ign a nd pos t spa cing may b e c alculated

    using the following equations.

    1. For uniform horizonta l loa ding (w):

    2. For conc entrated horizontal loa ding (Fh):

    When conc entrated load ing is spec ified, the horizontal load on the top

    rail is d istributed am ong s everal posts a djac ent to the point of loa ding.

    The load distribution is a function of the relative stiffness of pos t a nd

    top rail and of the number of spans in the railing. For a straight run ofrailing it may b e c alculated with the aid of the grap h on pa ge 130. This

    ca lculation will show what proportion (P f) of the total loa d a ny one pos t

    ma y ha ve to sus tain. To the extent tha t it is less than 100%, it w ill jus-

    tify the us e o f lighte r and more ec onomica l construction. The follow ingeq uation applies:

    ENGINEERING DATA RAILING FORMULAS

    J ULIUS BLUM & CO., INC.800 526 6293 www.juliusblum.com

    FAX 201 438 6003

    INTERNALLY REINFORCED POSTSThe load -ca rrying ca pac ity of a pos t w ith reinforcing insert is limited

    the a llow ab le fibre stress at o ne of three points.

    1. The post a t the top of the insert, above w hich it is not reinforced

    2. The insert at its ba se, a t the highest point of its atta chment to t

    supporting structure.3. The post at the same point of attachment.

    The lowes t of thes e three load ing limits c ontrols d es ign for the c om

    bined po st a nd reinforcing inse rt.

    1. Post at top of insert:

    At the point of conta ct betw een the railing post and the reinforci

    insert, the d eflection of eac h is a ssumed to b e the same b ut the resi

    ing force of each is a function of its Moment of Inert ia(I) a

    Mod ulus of Elasticity (E). The res ultant c omb ined Reaction Fact

    (Fr) at the top of the insert is dete rmined a s follow s:

    Er and Ir refer to the reinforcing insertEp and Ip refer to the post

    The load ing limits fo r points 2 a nd 3 a re then de termined as follow s

    2. Insert a t base:

    Moment in insert: M= P (h h1)Fibre stress in insert:

    f=M

    Sr=

    P Fr h1Sr

    Loading limit: P=fs SrFr h1

    K = 8 for one or two spansK = 9.5 for three or more

    spa ns of a continuous rail

    M = S fM

    =

    w 12 L2

    K

    f=w 12 L2

    S K

    L=f K S

    w12

    M = S fM=F L

    K

    f=F LS K

    L=S K f

    F

    I

    C fs= S fs = M

    M= P h P = w 12 L M= S f

    f=w 12 L h

    SL=

    S fw 12 h

    M= P h P= Fh Pf

    f=Fh h Pf

    S

    Moment in post (top of insert): M= P h h1( )

    Fibre stress in post (top of insert):

    f=M

    S

    =P h h1( )

    SLoading limit: P=

    fs Sh h1

    Fr =h

    2 h1 0.167

    +

    Ep Ip3 Er Ir

    + 0.333

    Insert

    Floor

    Point ofattachment

    h

    h1

    P

    K = 4 for one span

    K = 5 for two or more spans

    of a continuous rail

    http://www.juliusblum.com/http://www.juliusblum.com/
  • 8/12/2019 Guardrail Design

    4/8

    ENGINEERING DATA RAILING FORMULASJuliusBlum&Co.Inc.

    JULIUS BLUM & CO., INC. 800 526 6293 www.juliusblum.com

    FAX 201 438 6003

    3. P o st a t b a s e:

    Moment in pos t:

    Fibre stress in post:

    Loading limit:

    6

    f =M

    Sp

    =P h Fr h1( )[ ]

    Sp

    P=fs Sp

    h Fr h1( )

    COMBINED HANDRAIL SECTIONSWhen two se ctions of the same meta l are comb ined by b eing fas tened

    together to form a handrail (e.g. a steel moulding mounted on a steel

    cha nnel), the s ections develop the sa me de flection under load but ac t

    independently about their respective neutral axes.

    Ia and lb are the moments o f inertia of the two sec tions. S ince the

    Section Modulus(S ) eq uals IC, the c ombined va lue for S of the twosections would be:

    In the railing formulas, substitute the above equation for the value

    of S w henever comb ined se ctions of the sa me material are used.

    COMBINED SECTIONS OF DISSIMILAR MATERIALS

    To c ompute the load ing o f comb ined s ec tions o f dissimilar ma terials(e.g . a bronze hand rail mounted on a stee l channel) ca lculations involve

    the determination of the relative portion of the load carried by each

    section. The load distribution is a function o f the relative s tiffness of the

    two sec tions, w hich is determined b y the Mom ents of Inert ia(I) andtheir Mod uli of Elasticity(E). The d istribution of the tota l load be tween

    two sec tions is determined a s follow s:

    Individua l ca lculation to de termine the fibre stress for each mater-

    ial, using the load portion of each section, will then determine which

    sec tion c ontrols des ign; na mely, the sec tion g iving the less er result(see exa mple 6 on pag e 128).

    DEFLECTION CONSIDERATIONSExcessive deflection of a railing under load, even though it meets

    strength req uirements, w ill give the us er a feeling o f insec urity a nd ma y

    ca use tripping o r stumbling.

    Lateral deflection of posts or vertical deflection of horizontal rails

    under load are computed as followsthese formulas must beused with caution:

    For posts without reinforcing insert:

    For posts with reinforcing insert of similar or dissimilar material:

    Where Ep and Ip apply to postEr and Ir a pply to reinforcing insert

    For rails (concentrated load, F):

    where K = 48 for simple sp an

    66 for two o r more spans, load on end spa n87 for three or more spans, load on intermediate span

    For rails (uniform load, w):

    There a re few , if any, regulations or co de requirements limiting deflec -

    tion in a railing but AS TM has put forth the follow ing criteria rega rding

    Maximum Allowable Deflection (max) in their specifica tion E985.

    For horizontal load at midspan:

    For horizontal load at top of post:

    For vertical load at midspan:

    In many instances , the a nchorage of the railing to the floor, tread orfas cia is subject to a d eg ree of rota tion which will ad d a n indete rminate

    amount to the deflection on the post and rail. Anchorage and sup-porting structure must be as secure and rigid as possible.

    max= L 96

    max= h 12

    max= h 24+ L 96

    =5 w 12 L4

    384 E I for simple spans

    =w 12 L4

    145 E I for two or more spans

    =F L3

    K E I

    =P h h1( )

    3

    3 Ep Ip+

    P h3 h h1( )3[ ]

    3 Ep Ip( )+ Er Ir( )[ ]

    =P h3

    3 E Ior

    w 12 L h3

    3 E I

    A

    B

    cxa

    cxbxb

    xa

    y

    y

    S teel handrail withsteel channel

    (Cma x is either C a or C b ,

    whichever is greater)S= Ia+ Ib

    Cmax

    Load Carried by A =Total Load

    1+Eb IbEa Ia

    Load Carried by B = Total Load Total Load Carried by A

    M= P h Fr h1( )[ ]

    http://www.juliusblum.com/http://www.juliusblum.com/
  • 8/12/2019 Guardrail Design

    5/8

    ENGINEERING DATA EXAMPLE PROBLEMS AND SOLUTIONS

    J ULIUS BLUM & CO., INC.800 526 6293 www.juliusblum.com

    FAX 201 438 6003

    These sa mple problems d emonstrate how engineering d ata providedby Julius Blum & Co. Inc. ca n be used to ob tain solutions to prac ti-cal handrail design problems. Problems are solved by equating the

    maximum bending moment resulting from applied loading to the

    resisting mome nt determined from ge ometrical sec tion properties a nd

    allow ab le s tress . This method ca n be used to ob tain solutions for mostinstallation and loading conditions.

    EXAMPLE 1:DETERMINE MAXIMUM POST SPACINGREQUIREMENTS:

    Uniform load, w = 50 lb./ft.Railing height, h = 38 in.

    MATERIAL SPECIFIED:Post: #423 a luminum, 6063-T52Allowable stress, fs = 12,600 psi (refer to pa ge 123);

    Se ction modulus, S = .321 in3 (refer to page 124).

    DETERMINE:Maximum post spacing (simple span), L (in)Resisting bending moment, M(resisting)= fs SApplied bending moment, M(applied)= w/12 L hM(resisting)must eq ual M(applied)

    EXAMPLE 2:DETERMINE REQUIRED SECTION MODULUS OF POSTREQUIREMENTS:

    Concentrated load, F = 200 lbs.Railing height, h = 42 in.

    MATERIAL SPECIFIED:Post: S teel tubingallow ab le stress, f s = 16,800 psi (refer to pa ge 123).

    DETERMINE:Section modulus, S, and s elect a suitable sec tionResisting bending moment, M(resisting)= fs SApplied bending moment, M(applied)= F hM(resisting)must eq ual M(applied)

    fs S= F h

    S

    =

    F h

    fs

    S=200 42

    16,800

    S= 0.500 in3

    fs S= w / 1 2 L h

    L=fs S

    w 12 h

    L=12,600 .321

    50 12 38L= 25.60 in

    EXAMPLE 3:DETERMINE MAXIMUM SPAN FOR HANDRAIL MOULDINGCONCENTRATED LOADREQUIREMENTS:

    Concentrated load, F = 200 lbs.

    MATERIAL SPECIFIED:Handrail moulding: #6489 ,112" O.D. bronze tubingfs = 14,500 psi; S x = .144 in3

    The railing w ill be insta lled w ith more than tw o c ons ec utive sp an

    therefore the Bend ing Moment C ons tant, K = 5 (refer to pa ge 125).

    DETERMINE:Maximum span for handrail moulding, L (in)

    EXAMPLE 4:DETERMINE MAXIMUM SPAN FOR A COMBINED HANDRASECTION USING SECTIONS OF THE SAME METALREQUIREMENTS:

    Concentrated load, F = 200 lbs.MATERIALS SPECIFIED:

    Handrail moulding: #6932 ,a luminum, 6063-T52

    fs = 12,600 psi; Ixa = .059 in4; C xa = .586 inSupport channel: 2" 12" 18" a luminum channelfs = 12,600 psi; Ixb = .006 in4; C xb = .369 in

    Cma x = .586 in (grea ter of C xa vs. Cxb)

    The railing w ill be insta lled w ith more than tw o c ons ec utive sp antherefore the Bend ing Moment C ons tant, K = 5 (refer to pa ge 125).

    DETERMINE:Maximum span for combined handrail section, L (in)

    Resisting bending moment, M(resisting)= fsIxa+ Ixb

    Cmax

    Applied bending moment, M(applied)=F L

    K

    M(resisting)must equal M(applied)

    fsIxa+ Ixb

    Cmax

    =

    F LK

    L=fs Ixa+ Ixb( ) K

    F Cmax

    L=12,600 .059 + .006( ) 5. 0

    200 .586= 35 in

    Resisting bending moment, M(resisting)= fs S

    Applied bending moment, M(applied)=F L

    K

    M(resisting)must equal M(applied)

    fs S= F LK

    L=fs S K

    F

    L=14,500 .144 5. 0

    200= 52.2 in

    http://www.juliusblum.com/http://jb_drawings/0400/423.PDFhttp://jb_drawings/6400/6489.PDFhttp://jb_drawings/6400/6489.PDFhttp://jb_drawings/6900/6932.PDFhttp://jb_drawings/6900/6932.PDFhttp://www.juliusblum.com/http://jb_drawings/0400/423.PDFhttp://jb_drawings/6900/6932.PDFhttp://jb_drawings/6400/6489.PDF
  • 8/12/2019 Guardrail Design

    6/8

    EXAMPLE 5: CONCENTRATED LOADLOAD DISTRIBUTION AMONG POSTSDESCRIPTION:Ra iling for an a ir termina l publicareaheavy pedestrian traffic is

    expected.REQUIREMENTS:Loading, F = 300 lbs.Railing height = 42" at platforms;34" at s tairsPost height, h: Posts are fasciamounted; top of post a ttac hment is2" be low wa lking s urfac e. Thereforepos t height is railing he ight p lus 2" .Maximum opening to be no morethan 4"; 12 or more spans be tween pos ts.MATERIALS SPECIFIED:

    Handrail moulding: #6901, a luminum 6063-T52fs = 9,700 psi; E = 10 106; Iy = .709 in4; S y = .540 in3Intermediate posts: #430,aluminum 6063-T6fs = 15,200 psi; E = 10 106; Ix = .241 in4; S x = .297 in3

    End posts: 212" 212" 316" sq uare aluminum 6061-T6 tubingfs = 19,500 psi; E = 10 106; S = 1.247 in3

    DETERMINE:S tructural c ompliance of propose d cons truction.1. Stress at base of end posts (end pos ts are dissimilar from inter-

    mediate poststhey ha ve to resist 100% of horizontal loa d):

    (19,500 psi allowable)

    2. Stress at base of intermediate posts at platform(L= 4 in, h = 44 in.):A. Stiffness ratio:

    B. Load proportion factor: (see g raph, p. 130) = .230C. Load per post: 300 .230 = 69 lb.D. Stress at base of post:

    (15,200 psi allowable)

    3. Stress at base of intermediate post at stairs(L= 4 in, h = 36 in.):A. Stiffness ratio:

    B. Load proportion factor: (see g raph, p. 130) = .238C. Load per post: 300 .238 = 73.5 lb.D. Stress at base of post:

    (15,200 psi allowable)

    4. Stress on handrail at mid-span:

    (9,700 psi allowable)Railing meets structural designers requirements.

    f =Fh LS K

    =300 4.540 5

    = 444 psi

    f=P h

    S=

    73.5 36.297

    = 8,909 psi

    R=Er Ir

    L

    Ep Iph

    =.709 364 .241

    = 26.47

    f =P h

    S =

    69 44.297

    = 10, 222 psi

    R = Er IrL

    Ep Iph

    = .709 444 .241

    = 32.36

    f=P h

    S=

    300 441.247

    = 10,585 psi

    ENGINEERING DATA EXAMPLE PROBLEMS AND SOLUTIONSJuliusBlum&Co.Inc.

    JULIUS BLUM & CO., INC. 800 526 6293 www.juliusblum.com

    FAX 201 438 60038

    EXAMPLE 6: UNIFORMLY DISTRIBUTED LOADCOMBINED HANDRAIL SECTION OF DISSIMILAR MATERIALSDESCRIPTION:Stair ra i l ing of s teel balusters ,mounted b etwee n steel channel top

    and b ottom rails, a ttached to s qua resteel posts, with a b ronze handrail.REQUIREMENTS:Loading, w = 50 lb./ft., horizonta land vertical.Railing height, h = 34" at sta ir,42" at landings .Post spacing, L = 40" ; 3 ormore spans in ea ch run.MATERIALS SPECIFIED:

    Handrail moulding: #4530 , bronze C38500fs = 9,700 psi; Ix = .023 in4; C x = .444 in.; E = 14 106 psiPosts: 112" 112" .140" structural steel tubingfs = 27,700 psi; S = .316 in3

    Sub-rails:112" 12" 18" ste el (C1010) cha nnel top and bottom:fs = 16,800 psi; Ix = .005 in4; C x = .250 in.; E = 29 106 psi

    DETERMINE:Structural co mplianc e of proposed construction1. Stress at base of post:

    (27,700 psi allowable)2. Stress on rail:

    Since ly of both bronze(b) and steel(s) sections is greater than Ix,vertical load controls design.A. Total load:

    B. Load per foot on bronze, wb:

    C. Load per foot on steel, ws:

    D. Stress on bronze, fsb:

    E. Stress on steel, fss:

    Design meets cod e structural req uirements.Note:Resista nce to vertical loa ding of upper and low er steel channels is add itive.Therefore the value of Ixs is doubled. The a dditiona l resista nce to vertica l loa d b ythe truss ac tion of the ba lusters ha s not be en co nsidered, making the result of thecalculation more conservative.

    fss =ws 12 L

    2 CmaxIxs K

    =23.69

    12 402 .444

    2 .005 9.5

    = 14, 763 psi 16,800 psi allowable( )

    fsb=

    wb 12 L2 Cmax

    Ixb K =

    26.3112 40

    2 .444

    .023 9. 5

    = 7,128 psi 9,700 psi allowable( )

    ws= w wbws= 50 26.31 = 23.69 lb ft

    wb= w 1+Es 2 Ixs

    Eb Ixb

    wb= 50 1+29 106 2 .005

    14 106 .023

    = 26.31 lb ft

    w 12 L=50 40

    12

    = 167 lb

    M

    S=

    w 12 L hS

    At s ta irs:

    At landings :

    50 40 3412 .316

    = 17,932 psi

    50 40 4212 .316

    = 22,152 psi

    http://jb_drawings/6900/6901.PDFhttp://jb_drawings/0400/430.PDFhttp://jb_drawings/0400/430.PDFhttp://www.juliusblum.com/http://jb_drawings/4500/4530.pdfhttp://www.juliusblum.com/http://jb_drawings/0400/430.PDFhttp://jb_drawings/4500/4530.pdfhttp://jb_drawings/6900/6901.PDF
  • 8/12/2019 Guardrail Design

    7/8

    CONNECTORAIL TEST RESULTS112" Aluminum and S tainles s S teel PipeSingle Span

    ENGINEERING DATA CONNECTORAIL SYSTEM DATA

    J ULIUS BLUM & CO., INC.800 526 6293 www.juliusblum.com

    FAX 201 438 6003

    MECHANICAL PROPERTIESModulus o f

    Allowa ble Minimum Ela stic ityMat erial S tres s (ps i) Yield (ps i) (ps i 106)

    Aluminum*

    6061-T6 19,500 35,000 10.06063-T52 pipe 11,300 16,000 10.06063-T832 pipe 24,800 35,000 10.0Red Bra ss C23000 11,000 18,000 17.0Stainless Type 304 30,000 55,000 28.0

    *Aluminum Ass ociation S pecifications for Aluminum Structures. America n Iron &Stee l Institute S tainless Stee l Cold-Formed Structural Design Manual.

    SECTION PROPERTIESConnectorail Pipe (Aluminum, Bronze, Stainless)NominalS ize S ched. OD Wall Area I S

    114" 10 1.660" .109" .531 .161 .193114" 40 1.660" .140" .669 .195 .235114" 40 1.660" .146" .695 .201 .242112" 5 1.900" .062" .375 .158 .166112" 10 1.900" .109" .614 .247 .260112" 40 1.900" .145" .800 .310 .326112" 40 1.900" .150" .825 .318 .335

    Connectorail Reinforcing Bars (6061-T6)Nominal

    No. S ched. Size OD Area I S

    7292/7295 10 112" 1.667" 2.183 .379 .4557192 10 114" 1.427" 1.599 .204 .2857292/7295 10 112" 1.667" 2.183 .379 .4557492 40 114" 1.328" 1.452 .168 .2477592/7595 40 112" 1.585" 1.973 .310 .3919392** 5 112" 1.750" .615 .205 .239

    ** Tubing w ith .120" w all, type 304 Sta inles s S tee l

    .344"

    .388"

    .496"

    .565"

    .739"

    1.368"

    .000"

    .000"

    .000"

    .000"

    .047"

    .488"

    .547"

    .669"

    .845"

    .998"

    1.189"

    1.654"

    1.990"

    .000"

    .000"

    .000"

    .000"

    .000"

    .151"

    .656"

    1.466"

    1.818"

    2.214"

    2.483"

    2.984"

    3.464"

    4.510"

    .000"

    .000"

    .000"

    .000"

    .000"

    .047"

    .406"

    1.021"

    1.317"

    1.594"

    1.882"

    2.178"

    2.488"

    2.775"

    3.080"

    3.424"

    3.754"

    4.213"

    .000"

    .000"

    .000"

    .000"

    .000"

    .000"

    .000"

    .000"

    .000"

    .031"

    .192"

    .867"

    1.120"

    1.395"

    1.728"

    1.992"

    2.563"

    2.972"

    4.176"

    5.591"

    .025"

    .040"

    .128"

    .205"

    .322"

    .652"

    .994"

    1.726"

    2.886"

    1.389"

    1.659"

    1.926"

    2.206"

    2.601"

    2.811"

    3.122"

    3.484"

    3.860"

    4.267"

    .000"

    .000"

    .000"

    .000"

    .000"

    .000"

    .000"

    .000"

    .146"

    .391"

    1.724"

    2.122"

    2.537"

    2.849"

    3.211"

    3.603"

    4.278"

    4.868"

    .000"

    .000"

    .000"

    .000"

    .000"

    .000"

    .109"

    .266"

    1.006"

    1.160"

    1.369"

    1.633"

    2.131"

    2.270"

    2.765"

    3.880"

    .036

    .056

    .080

    .112

    .238

    .452

    430 lbs. 440 lbs. 470 lbs. 700 lbs. 350 lbs. 590 lbs . 490 lbs . 340 lbs.0.2% Specified

    Permanent set load

    Defl

    ection

    Permanent

    Set

    Defl

    ection

    Permanent

    Set

    Defl

    ection

    Permanent

    Set

    Defl

    ection

    Permanent

    Set

    Defl

    ection

    Permanent

    Set

    Defl

    ection

    Permanent

    Set

    Defl

    ection

    Permanent

    Set

    Defl

    ection

    Permanent

    Set

    RAIL P OS T

    S pan (L) or Height (h) 57" 75" 96" 96" 96" 42" w/24" re-bar 42" w/24" re-bar 42" w/24" re-b

    S chedule 10 40 10 40 5 10 40 5

    Alloy and Temper 6063-T52 6063-T52 6063-T832 6063-T832 Type 304 6063-T832 6063-T832 Type 304

    NOTE ON WELDED PIPE RAILINGS

    An important consideration for welded pipe railings is the effect

    welding heat on the structural properties of aluminum handrail pip

    For examp le, extruded pipe of a luminum a lloy 6063-T52 has an allow

    able design stress of 11,300 psi. After welding, the allowable stre

    must be reduced to 8,000 psi within 1" o f the we ld. S ince ma ximu

    bending moment ge nerally oc curs at points of s upport or atta chme

    the reduced s tress w ill often co ntrol des ign. This c onsidera tion do

    not a pply to non-welded Connectorail.

    LOADING TABLES

    The va lues tab ulate d in the follow ing p ag e a pply to insta llations fab

    cated and erected in accordance w ith Connectorailspecificatio

    and using Connectorailco mponents exclusively. Cha rt values ha

    bee n determined b y as suming tha t reinforcing inserts are included w

    fascia mounted railings and with railings set into the floor, exce

    where no insert is indicated.

    For these ta bles, various pos t heights have b een se lected a rbitrar

    Values of maximum post spacing for other post heights can be inte

    polated eas ily.When Connectorailposts a re surface mounted on floors, trea

    or stringers, using a floor flang e, the entire bending moment of the po

    is transferred to the reinforcing insert and the allowable post loadi

    has to be co mputed a cc ordingly. The a llow ab le load w ill be d ete

    mined by the resisting moment of the reinforcing insert alone or th

    unreinforced po st a bo ve the insert (h h1), w hichever is les s.

    Load (P)

    200 lbs.

    250 lbs.

    300 lbs.

    350 lbs.

    400 lbs.

    450 lbs.

    500 lbs.

    550 lbs.

    600 lbs.

    650 lbs.

    700 lbs.

    ALUMINUM STAINLESS

    BRONZE

    http://www.juliusblum.com/http://jb_drawings/7200/7292.PDFhttp://jb_drawings/7200/7295.PDFhttp://jb_drawings/7100/7192.PDFhttp://jb_drawings/7200/7292.PDFhttp://jb_drawings/7200/7295.PDFhttp://jb_drawings/7400/7492.PDFhttp://jb_drawings/7500/7592.PDFhttp://jb_drawings/7500/7595.PDFhttp://jb_drawings/9300/9392.PDFhttp://www.juliusblum.com/http://jb_drawings/9300/9392.PDFhttp://jb_drawings/7500/7595.PDFhttp://jb_drawings/7500/7592.PDFhttp://jb_drawings/7400/7492.PDFhttp://jb_drawings/7100/7192.PDFhttp://jb_drawings/7200/7292.PDFhttp://jb_drawings/7200/7295.PDFhttp://jb_drawings/7200/7295.PDFhttp://jb_drawings/7200/7292.PDF
  • 8/12/2019 Guardrail Design

    8/8

    ENGINEERING DATAJuliusBlum&Co.Inc.

    JULIUS BLUM & CO., INC. 800 526 6293 www.juliusblum.com

    FAX 201 438 60030

    Maximum Allowable SpansHandrailBa sed on be nding s tress in rail.

    Load: 50 lbs. per foot1 o r 2 s pa ns 3 o r mo re spa ns

    Aluminum 6063-T52

    114" S ch. 10 65" 71"114" S ch. 40 71" 78"

    112" S ch. 10 75" 82"

    112" S ch. 40 84" 92"

    If it is des ired to use longe r rail spa ns tha n allow ed by the limits

    a bo ve, a lloy 6063-T832 pipe s hould be used . Allow ab le rail span for

    6063-T832 pipe is usua lly g reate r than a llow ab le po st s pa cing.

    Bronze (Red Bras s) C23000114" S ch. 40 70" 77"

    112" S ch. 40 83" 90"

    Stainless Steel Type 304112" S ch. 5 98" 107"

    CONNECTORAIL LOAD TABLESMaximum Allowable SpansPost SpacingBa sed on bending stress in post a nd insertLoad: 50 lbs. per foot, a pplied horizonta lly a t top rail

    P ost Ma teria l P os t No 15" insert 25" insertP ipe size height (h) insert h1 = 9" h1 = 12" h1 = 19"

    Aluminum 30" 38" 55" 64" 85"6063-T832 34" 34" 46" 52" 73"

    114" S ch. 10 38" 30" 40" 44" 61"

    42" 27" 35" 38" 50"

    46" 25" 31" 34" 43"

    Aluminum 30" 47" 67" 78" 89"6063-T832 34" 41" 56" 64" 77"

    114" S ch. 40 38" 37" 48" 54" 67"

    42" 33" 42" 47" 59"

    46" 30" 38" 41" 52"

    Aluminum 30" 52" 74" 86" 126"6063-T832 34" 46" 62" 70" 108"

    112" S ch. 10 38" 41" 53" 60" 81"

    42" 37" 47" 52" 67"46" 34" 42" 46" 57"

    Aluminum 30" 65" 92" 108" 131"6063-T832 34" 57" 78" 88" 112"

    112" S ch. 40 38" 51" 67" 75" 98"

    42" 46" 59" 65" 84"46" 42" 52" 57" 72"

    Bronze (Red Brass) 30" 21" 30" 34"C23000 34" 18" 25" 31"

    114" S ch. 40 38" 16" 21" 28"

    42" 15" 19" 26"46" 13" 17" 23"

    Bronze (Red Brass) 30" 29" 41" 51"C23000 34" 25" 34" 46"

    112" S ch. 40 38" 23" 30" 42"

    42" 21" 26" 37"46" 19" 23" 32"

    P os t No 26" insertheight (h) insert h1 = 18" h1 = 20"

    Stainless Steel 30" 40" 83" 85"Type 304 34" 35" 71" 73"

    112" S ch. 5 38" 32" 62" 64"

    42" 29" 50" 54"

    46" 26" 43" 46"

    ALUMINUM STAINLESS

    BRONZE

    The g raph b elow is us ed to d etermine railing loa d d istribution. It ha sbeen determined by computer analysis and confirmed by laboratorytes t. The formula us ed in dete rmining the g raph a ss umes tha t all pos tsare of identical material and section.

    The S tiffness (k) of a rail or po st is:

    (see page 123 for definition of s ymbo ls)The S tiffness Ra tio (R) is de termined as :

    The S tiffness Ra tio is then plotted on the g raph to ob tain a LoadProportion Factor (P f). When the load proportion fac tor has bee n dete r-mined, it is multiplied by the to tal loa d to dete rmine the load one po stmust s ustain.

    If one or both ends of the railing are free standing, the end loadedcondition must be as sumed. If both ends of the run are laterally brac edby a change in direction or attachment to a firm structure, the centerload ed load proportion factor may b e used.

    NOTE: If end posts differ from intermediate posts in strength, the load dis-tribution pattern becomes indeterminate and end posts should then be designedto carry 100% of the concentrated load. Intermediate posts may then bedesigned to the center loaded condition.

    In single span railings, each post must be designed to carry the full

    concentrated load. When posts and rails are of identical material andsection (as in pipe railing), and post spacing varies between 3 and 6feet w hile pos t height is b etw een 30 and 42 inches , load distribution isfairly uniform. In this situation, the greatest proportion of a concen-trated load ca rried b y any post ca n be estimated as follow s:

    End posts : Intermedia te posts :2 span ra iling P f = 0.85 2 s pa n ra iling P f = 0.653 or more spans P f = 0.82 3 or more spans P f = 0.60Thus, if a 200 lb c onc entrated loa d is sp ec ified for a pipe railing,

    ac tual design load to be applied a t the top of the end po st is .82 200lb (164 lb) while d esign load to b e a pplied to intermedia te po sts is .60 200 lb (120 lb). If railing posts are reinforced, the load proportion fac-tor for posts is a bout 3 percentag e points higher.

    R=krkp

    kr =E I

    L for the rail

    kp=E I

    h for the post

    LOAD DISTRIBUTION CONSIDERATIONS

    0.1 1.00.5 5.0 10 50 100 500 1000

    STIFFNESS RATIO (R) k railk post

    0.2

    0.1

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    LOAD

    PROPORTION

    FACTOR

    (Pf)

    A

    B

    C

    D

    E

    F

    G

    H

    M

    J

    KL

    http://www.juliusblum.com/http://www.juliusblum.com/