GRID 2 - NTU Singapore

20
GRID 2.0

Transcript of GRID 2 - NTU Singapore

Page 1: GRID 2 - NTU Singapore

GRID 2.0

Page 2: GRID 2 - NTU Singapore

BACKGROUND .................................................................................

Electricity Grid in Singapore ...................................................... Grid Modernisation: Global Status.............................................

SMART GRID .....................................................................................

BenefitsofaSmartGrid............................................................

SmartGridIndex.......................................................................

GRID OF THE FUTURE: SMART GRID 2.0 ......................................

BenefitsofSmartGrid2.0toSingapore....................................

KeyTechnologicalBuildingBlocksofSmartGrid2.0................

CONCLUDING REMARKS ................................................................

REFERENCES ...................................................................................

3

6

7

8

8

10

13

15

15

18

19

Grid 2.0 | Pg 2

CONTENTS

Page 3: GRID 2 - NTU Singapore

BACKGROUNDElectricityisthemostversatileformofenergyandisaccessedbymorethan5billionpeoplearoundtheworldthroughaseriesoftried-and-testedtechnologies.Themajorityoftheworld’selectricitydistributionsystem,whichiscalledthe‘grid’,waserectedwhenenergydemandwasmoderatelysized.Upgradeshavebeenmadetomeetincreasingdemand;however,thegridstilloperatesthewayitdidalmostacenturyago.Itisunidirectional,whereenergyflowsfromthecentralpowerplantstoend-users,andhasasurpluscapacitytoensurereliability.Theworldnetelectricitygenerationisforecastedtoreach36.5trillionkilowatt-hour(kWh)by2040;representinganincreaseof69%from21.6 trillion kWh in2012 (ref:www.eia.gov).Electrical energycontinues tobe the fastest-growingsourceofend-useenergysupplyglobally,displacingpetroleum-basedfuelsinhouseholds,industries,andeventransportation.

Thegridhasbeenamajorconsumeroffossilfuels,emitterofgreenhousegases,andoftenlackscompatibilitywithdistributedorrenewableenergysources.Asaresult,itisasystemwithalargeenvironmentalfootprintandthereforehasmanyopportunitiesforefficiencyenhancement.Overtime,therehasbeenasignificantshiftinthemethodofelectricitygeneration,transmission,distributionandconsumption.Powergridsarechallengedwiththeneedforradicalchangespromotedbytheneed to reduce theemissions fromelectricity supply, to replaceandupgradeageing resourcesandtoreapefficienciesfromapplicationofadvancedinformationandcommunicationtechnologies(ICTs).Movingtowardsthesegoalsleadsustowardsthe‘SmartGrid.’ASmartGriddoesnothaveanysingledefinition.ButacommonconsensusisthatSmartGridsaregridsthataretransparent,seamless, and allow instantaneous bi-directional flow of the energy information system, whichenables the power industry to efficiently manage the delivery of energy and empowers theconsumers tohavemorecommandover their energydecisions.ASmartGrid incorporates thebenefitsofadvancedcommunicationsandinformationtechnologiestodeliverreal-timeinformationandenablesthenear-instantaneousbalanceofsupplyanddemandontheelectricalgrid.Inshort,aSmartgridiscapableofhostingmultiplesolutionsthatempowercustomers,improvethecapacityof the transmission lines&distributionsystems,provide real-time informationaswellaspricingbetween theutility&clients,and integrate reasonable levelsofutilisation for renewableenergysources.

Manycountrieshaverealisedthebenefitsofdeployingsmartgridsystems.Somehavegonefurthertoembarkonvisualisingthenextevolutionofthegrid,i.e.SmartGrid2.0.Thisnewparadigmingridsystemsaimstoenablecompletedecarbonisationofelectricitysupplywhilemaintainingoverallsystemreliabilityandresilience.ItwillleveragethemajoradvancesinICTincludingdatasciences,artificial intelligence, and 5G communications to deliver a fully digital grid. Figure 1 shows thetransitionoftheconventionalgridtoSmartGrid2.0.

Page 4: GRID 2 - NTU Singapore

Figure 1. Conventional Grid vs Smart Grid vs Smart Grid 2.0. Smart Grid enables bi-directional information flow (red dotted line), Smart Grid 2.0 enables bi-directional flow of both energy and information (blue arrows)

Grid 2.0 | Pg 4

Page 5: GRID 2 - NTU Singapore

Thebroadoverviewofcharacteristicsofconventionalgrid,SmartGridandSmartGrid2.0aresummarisedinTable1below:

Characteristics Conventional Grid Smart Grid Smart Grid 2.0

Generation Fossilfuelbasedgeneration

Readytoaccommodatemoderateshareofgenerationfromrenewable sources -<5-15%

Capabletoaccommodatelargershareofrenewableresources(15%-25%)

Distributed Generation Integration and Storage

Dominatedbycentralgeneration

Openfordistributedgeneration with additionalcomponents

All-in-onecomponentsreadyforseamlessintegrationofdistributedgeneration and energy storage

Infrastructure Noninteractive,energyinefficientinfrastructure

Smartmeteringsystems&advancedcontrols

AllfeaturesofSmartGrid+Smartenergyrouters,advancedpowerelectronics in distribution networktomakeitenergyandspaceefficientandIntegrated

Communication Manual communication

Twowaydataflow/digitalcommunicationbyusingadvancedICT

Twowayflowofenergyandinformation,energyinternet

Consumer Participation

Nil Informed,involvedandactiveconsumers-demandresponseand distributed energy resources

AllfeaturesofSmartGrid+Consumerscangenerateand route energy through energy internet

Resilience Vulnerable to natural disasters and maliciousacts

Resilient to attacks and natural disasters with rapid restoration

AllfeaturesofSmartGrid+Can route energy betweencomponentsto sustain the operation during natural disaster or maliciousattacks

Reliability Breaker trips to preventfurtherdamage

Automatedmeteringanticipates issues and minimizesimpact

Fullyautomated,self-healing and resilient systemandadaptivelycontrolled response andmanagementtodisturbances

Table 1. Characteristics of a Conventional Grid, Smart Grid & the Future Grid

Grid 2.0 | Pg 5

Page 6: GRID 2 - NTU Singapore

Electricity Grid in SingaporeTheelectricitygridinSingaporeisoneofthemostreliableandrobustintheworldwithintelligentcomponents installed in numerous segments of the generation and transmission network. Thetransmission&distributionnetworkofSingaporecomprisesof400kV,230kV,66kV,22kVand6.6kVsystemswithcablesspanningmorethan15,000kilometres.TheuniquenessofSingapore’spowersystemisthatitispartiallysmart,andthetransmission&distributionsystemisundergroundtoalargeextent.Network lossesarereported tobeonlyaround3%.Figure2 illustrates thecurrentstateoftheSingaporeelectricitygrid.

Figure 2. Singapore electricity grid

ThegridperformanceofSingapore in termsof interruption indicators suchasSystemAverageInterruptionDurationIndex1(SAIDI)andSystemAverageInterruptionFrequencyIndex2(SAIFI)areoneofthelowest,withlessthan16secondsofaveragedisruptiontimepercustomerin2017.Figure3showsthe6-yearperformanceoftheSingaporegridfortheseindices.

Figure 3. Singapore SAIDI & SAIFI__________________________1 SAIDI is theaverageoutageduration for each customer served, and ismeasured in units of time.SAIDI= (sumof all customerinterruptionduration)/(totalnumberofcustomersserved)2SAIFIistheaveragenumberoftimesanaveragecustomerwouldexperience.SAIFI=(totalnumberofcustomerinterruptions)/(totalnumberofcustomersserved)

Grid 2.0 | Pg 6

Page 7: GRID 2 - NTU Singapore

Grid Modernisation: Global StatusSingaporehassetforthtodevelopcost-competitiveenergysolutionstoimproveenergyefficiency,reducecarbonemissionsandbroadenenergyoptions.TwokeystrategiesinSingapore’sEnergyTransition includethe increasedfocusonnaturalgas includingLNGanddeploymentofat least350MWofsolarenergyby2020.TheEnergyMarketAuthority(EMA)hasalsointroducedtrialsonelectrificationoftransportation,utility-scaleenergystoragesystems(ESS),andhasimplementedtheopenelectricitymarketforallcustomerstobuyelectricityfromaretaileroftheirchoice.TheUnitedKingdomhas takenrapidstrides inchanging itsgenerationmix fromfossil fuels to renewables.Electricitycapacity fromrenewableshas increaseddramatically from less than6.7%generationin2009to33%in2018.Renewableelectricitycapacity(onshore&offshorewind,solarPV,hydroandbiomass)was45GWinthefirstquarterof2019.Regardingsmartgrids,theUKhasmadesignificantprogressto-dateindeployingsmartgridsandhasmadeaconsiderableinvestmentinsmartgridresearch&demonstrationprojects.

TheUnitedStatesalsoaimsto fasten themodernisationandrevolutionof thecountry’selectrictransmissionanddistributionsystemsundertheSmartGridInvestmentGrantprogram.Over$8billionininvestmentshavebeenmadetowardssmartgridrolloutbetween2010and2015.Over50%oftheinvestmentwasmadeinadvancedmeteringinfrastructure(AMI).AsofDecember2016,72millionsmartmeterunitshadbeen installed in theUSandby2020, theyareaiming for thisnumbertogoupto90million.IntheUSaswellastheEuropeanUnion,smartmetershavebeendeployed inmore than50%of themarket.Germanyplans to increase investment insmartgridinfrastructureto$23.6billionbetween2016and2026.Itaimsfor100%deploymentofsmartmetersby2032.Besidessmartmeters,Germanyalsoplanstoinvestinotheradvancegridinfrastructuresegments.Overthenextfewyears,thecountryintendstoinvest$14.1billioninadvancedsensors,communications and software for its distribution grid and in battery storage. Investmentwill beundertakenby the country’s four largest utilities –RWE,E.On,EnBW,andVattenfall – aswellas thenumerousmunicipal utilities.France’senergy landscapehasbeen changing steadily fordecades.Initially,itwasdominatedbycoalandeventuallybyoil,however,itwentthroughaserioustransformationinthe1970swiththelarge-scaledevelopmentofnuclearenergy,andagaininthe1990swiththeincreasinguseofnaturalgas.Today,itisundergoingatransitionwiththedevelopmentofrenewableenergiesandtheimplementationofpoliciesaimedatreducinggreenhousegas(GHG)emissions.Moreover,Francehasalsocontinuedtoinvestinfuturegridtechnologyandby2016itrosefrom13thpositiontothe10thpositioninaworldSmartGridinfrastructuremarketestimatedtobeworth65.42billionUSDin2021.

Smart-meterdeploymenthasadvancedsignificantlyinthelastfewyearsinseveralkeycountries.Chinaismovingtowardsfulldeploymentand,Spain,JapanandFrancearereadytoaccomplishfullrolloutsinthecomingfewyears.ProgressinIndiaandSoutheastAsiahasbeenslow,butthereareplansonpapertoachieveasignificantadvancementby2025.Thesedevelopmentsareindicativethattheglobalfocushasshiftedfromthetraditionalelectricitymodeltoonewheremulti-energyandsmartenergysystemsareconsideredaspartofthegridtoo,affectingthewayweviewthesmartgrid.

Page 8: GRID 2 - NTU Singapore

SMART GRIDSmartGrids are considered to be synonymouswith electricity supply networks that use digitalcommunicationstechnologythattransformselectricitysupplybyallowingbetterenergydeliveryandenablingconsumerstohavemoresayoverenergydecisions.SmartGridsinvolvethedeploymentof“smarthardware”includingsmartmeters(AdvancedMeteringInfrastructure)anddistributiondevicessuchasautomaticvoltageregulators.ThedeploymentofsuchAdvancedMeteringInfrastructureisexpectedtobeaccelerated,duetoincreasedaffordabilityofdevices.Giventheirfamiliarformandfunctionality,smartmetersenabletheveryfirstnon-threateningsteptowardsmigrationtoasmartergrid.Smart controlsandAdvancedMetering Infrastructureprovidehigh resolutiondataregardingflowofpower.TheSmartGridmakesthegridsmarterandwouldgenerateefficienciesinelectricpowerdistribution.Thisnetworkwillconsistofdetection,measurementandcontroldeviceswith two-way information exchange between parties. This gives energy stakeholders real timeupdatesaboutthenetworkcondition,enablingthemtotakeinstantaneousactiontocorrectthegrid.Ultimately,itaimstoempowercustomers,improvethetransmissionlinesanddistributionsystems,provideinformationandaccuratepricingforconsumers&suppliers,andcapitaliseonrenewableenergy sources.

Benefits of a Smart GridThemainforcedrivingthedevelopmentofthenewpowersystemsistherequirementtofeedtherisingdemandforelectricitywhilereducingcarbonemissions,withoutcompromisingthereliabilityofelectricitysuppliesonwhicheconomiesheavilylean.WithdevelopingeconomiessuchasASEAN,China, India,andothersembarkingonhigher levelsofeconomicgrowth, theSmartGridhasacrucialroletoplayinoffsettingcarbonemissionswhilefeedingsucheconomieswiththeenergyneededforcontinuousgrowth.

The key benefits of a smart grid can be summarised as:

Meeting our Energy Needs: Globalenergyconsumption in2018 increasedatnearly twice theaverage rateofgrowthsince2010,drivenbya robustglobaleconomyandhigherheatingandcoolingneedsinsomepartsoftheworldasillustratedinFigure4(IEA).Thistrendisexpectedtocontinueintothefutureascountriesdemandmoreenergytopowertheireconomiesespeciallytheemergingeconomies.

Figure 4. Annual Change in Global Primary Energy Demand, 2011 - 2018 (Adapted from the International Energy Agency)

Grid 2.0 | Pg 8

Page 9: GRID 2 - NTU Singapore

Theincreaseddemandforenergytraditionallywouldresultingreatercarbonemissions.ThemajorbenefitofaSmartGridisthatitwillenableustomeetthisrisingdemandforenergywhilereducingcarbonemissionswithoutcompromisingonthereliabilityofelectricitysupplyreliability,amajorkeyforalleconomies.

Energy Efficiency: Energyefficiencymaybeviewedasthemostamenable,sustainableandcost-efficientwayofreducinggreenhousegasemissions.Energyefficiencyimprovementsdonotusuallyrequirealargeoverhaulofexistinginfrastructurewhichcanbeveryexpensive.SmartGridshavethepotentialtobeacheapyetsignificantsourceofcostsavingsforenergystakeholders,makingitmorepalatable for stakeholders toembarkon theseprojects.TheSmartGridenhancedwithnetworkmonitoringandcontrolfeatureswillenabletransmissionanddistributiongridstorunmoresmoothly,enhancingcapacityandimprovingreliabilityleadingtoenergyefficiency.

Integrating Renewable Energy: Incorporating renewable energy into the grid will help offsetcarbonemissions.Byintroducingrenewableenergysourcessuchassolarandwindenergy,theworldopens itself to theopportunitiesof limitlesscleanenergy.Oncefullydeployed,economieswouldreceiveunlimitedpoweratalmostzerocosttotheenvironment,whichisawin-winsituationfortheseeconomiesandtheworld.Thecurrentgridhoweverfacesamajordifficultyintheformofrenewableintermittency.Theamountofrenewableenergyavailablechangeswithchangesintheweather.Whenacloudcoversthesun,solarpanelsarerendereduseless.Whenthewindstopsblowing,windturbinesfailtoturn.Asmartgridwithenergystorageelementshelpstoalleviatetheseproblemsandachieveanidealscenarioofuninterruptedpowersupply.

Enable the Adoption of Electric Vehicles: Theadventofenvironmentalchallengeshascausedcar manufacturers to rethink their car models & design. It’s a well-known fact that cars are amajor source of environmental pollutants. In response to global environmental awareness, carmanufacturersareturningtoelectriccarsasasolution.Ifnotplannedproperly,theproliferationofchargingstationshasthepotentialtooverloadthedistributionnetwork,thusdestabilisingthegrid.The smart grid can streamline theEVchargingbyproviding sophisticated control systemsandcommunicationnetworks,whichnotonlypreventsasuddenincreaseddemandforelectricityinthegridbutalsohelptoshapethetotalgriddemandprofile.

Figure 5. Electric Vehicles Charging in Singapore (Image credit: The Straits Times Online, Singapore Press Holdings, 28-Sep-2017

ST Photo: Joyce Fang)

Grid 2.0 | Pg 9

Page 10: GRID 2 - NTU Singapore

Enable better Energy Management, Outage Management & Grid Reliability: Thesmartgridwillfacilitatetherapidgrowthofsmartmeters,whichcantrackuser’selectricityusageovertime.Thesemetersare importantprecursors insmootheningpeakdemandandachievingenergyefficiency,whicharecrucial forenergymanagementstakeholders.Currentmetersarenotable toprovideinformationonthesamelevelassmartmetersandhenceunabletoachievetheaforementionedoutcomes. Smart Grids can enable better energymanagement, better tracking andmonitoringof devices, predictive maintenance and cost savings with lifetime extension of existing gridinfrastructure.

Smart Grid IndexIn2019,theSPGroupconductedacomprehensivesurveytodevelopaSmartGridIndex(SGI).Thestudycovered75majorutilitiesover35countriesglobally.Thisindexservedasausefulreferenceguide tobenchmark theSPGroupagainst other utilitiesworldwide. It alsohighlighted thebestpracticesofeachutilityandprovidedrecommendationsonpossibleareasofimprovement.

BasedonthedefinitionsofsmartgridbyaEuropeanUnionCommissionTaskForceandaU.S.DepartmentofEnergySmartGridTaskForcecommissionedforthesubject,SPPowerGrididentifiedkeydimensionsofaSmartGrid,anddevelopedaframeworkthatguidesSmartGriddevelopmenttodelivervaluetocustomers.ThekeydimensionsareillustratedinFigure6:

Figure 6. Seven Dimensions of a Smart Grid

Grid 2.0 | Pg 10

Page 11: GRID 2 - NTU Singapore

Using this SGI framework, utilities can track development progress, and set targets for furtherimprovementtoalignwiththefutureenergylandscapeandcustomers’expectations.TheSGIisconstructedtonotonlymeasurethesystems&processesimplementedbutalsotheoutcomesthatdeliversustainability,reliabilityandsatisfactiontothecustomers.Bybenchmarkingtheseresults,bestpracticesfromindividualutilitiescanbeidentified,sharedandacteduponinworkingtowardsasmartergrid.TheresultsofthisbenchmarkingarepresentedinTable2.

Benchmarking Results 2019

Rank Country Utility Score (%) Best Practices

1 United States of America (USA)

PacificGas&ElectricCompany(PG&E)

93 • Data Analytics• DER Integration• Green Energy• Security• Monitoring&

Control

2 United Kingdom (U.K.)

UnitedKingdomPowerNetworks(UKPN)

89 • Monitoring&Control

• Data Analytics• Green Energy• Security

3 United States of America (USA)

SouthernCaliforniaEdison(SCE) 88 • DER Integration• Data Analytics • Green Energy• Security

34 Singapore (SG) SPGroup(SP) 66 • Supply Reliability• Customer

Empowerment&Satisfaction

52 Thailand (THA) Metropolitan Energy Authority (MEA)

54 • N/A

57 Malaysia (MY) TenagaNasionalBerhad(TNB) 52 • CustomerEmpowerment&Satisfaction

Table 2. The Singapore Grid Benchmarked Against Grids Worldwide

Ingeneral,USutilitiesfarebetterthanEuropeanutilitiesandbothareaheadofAsianutilities.ThiscouldpossiblybeattributedtothefactthatUSandEuropeanutilitieshavebeenfacingdisruptionintheir industryandregulatoryinterventionearlierthanAsianutilities.PG&EofUSforexample,isstronginareasof(i)Monitoring&Control,(ii)DataAnalytics,(iii)DERIntegration,(iv)GreenEnergy,and(v)Security.Incomparison,theSPGroupisstronginsupplyreliabilityandcustomerempowerment&satisfactionwithroomforimprovementsinotherareas.NotfarbehindSingaporeareitsneighbourssuchasMalaysiaandThailand.Singaporewasranked34th(score:66%)amongst75utilitiessurveyed.Thailandwas ranked52nd (score:54%),whileMalaysia ranked the lowestwithascoreof52%.ThisindicatesthatSingaporehastheopportunitytoreviewitsstrategyandinvestmentsintheSmartGridtosupportitsobjectivesofsustainability,affordability,andreliabilityofitspowersupplynetwork.

Grid 2.0 | Pg 11

Page 12: GRID 2 - NTU Singapore

GRID OF THE FUTURE: SMART GRID 2.0WhiletheSmartGridinjectsintelligenceintothecurrentpowergrid,theSmartGrid2.0isenvisionedtobeatechnologyleapthatwillusherintheInternetofEnergy,realisingbi-directionalenergyandinformationflows,andleveraginguponbreakthroughsmadeinpowerelectronicstoenableactivenetworkmanagement.Replacement of theanalogpower-line transformersof todaywithpowerelectronicscomponentswillgreatlyfacilitateintelligentandremotenetworkmanagementandwillcreateopportunitiesforminiaturisationofthepowergridcomponents(e.g.substations)supportinginitiativesofgreaterlandutilisationandpotentiallyhousingsomeofthecomponentsofthepowergridatremoteundergroundlocations.Thenextgenerationpowergridisbeingexploredglobally,withtheUSallocatingUS$3.4billiontodevelop“PowerGrid2.0”.Theresearcheffortsaremainlyfocusedonadvancedpowerelectronicstechnology,installationofsmartmeters,andbroadbandtechnologyacrossgridsystemstoenabletheuseofrenewableintegration,intelligentbi-directionalpowerflowandensureasecureandstablegridunderdisasterslikehurricanes.InEurope,largeindustrial corporations are partnering with the government to enable utilitiesmove beyond theSmartGridwhichiscomprisedofautomatedmeteringinfrastructure(AMI),andtowardsGrid2.0.ThefocusofGrid2.0isonDistributionAutomation(DA)andAMI.TheobjectiveofDAhereistomakeaself-healing,digitallycontrollednetworkforreliableelectricpowerdelivery.

TheUnitedStatesDepartmentofEnergy(DOE)statesthatafuturegridwouldbeafacile,cost-effectiveelectricitysystemateverypointthatcanmatchthedemandforrenewableenergywith:

• Vastimprovementsincleanenergycapacity• Allconsumersbeingabletoaccesstheelectricitymarket• Solutionsthatfitallimaginablescenarios• Energy&InformationExchange• Reliability,Resiliency&Security(Cyber&Physical)

Figure 7. Smart Grid 2.0 Application Domains(Figure is adapted and reproduced from Schneider Electric)

Grid 2.0 | Pg 12

Page 13: GRID 2 - NTU Singapore

ThegridofthefutureshouldbedesignedtoadapttoavarietyofoperatingenvironmentsandUseCases(Figure7).Forexample,inenvironmentswhereusersarenot(orcannot)beconnectedtothecentralgrid,thelocalmicrogridwouldnothaveacushiontoabsorbmassiveswingsinsupplyanddemand.Thus,itsdesignneedstohaveanaddedbufferofstorageandsinksthatcanensurethe necessary frequency and voltage modulation, together withAI capabilities for self-healing.TheUseCases themselves can be divided into two broad categories: those involving a singletransactingentity suchas resort islands,militarybases,ports,etc.and those involvingmultipletransactingentities,e.g.aruralcommunity.Thelatterwouldalsorequirethegridtoaccommodatetransactional capabilities. In central grid-tied environments, the challenge first and foremost isthatofgridarchitecture,i.e.whetheritscentralisedordecentralised.Atraditionalnetworkwouldbemorecentralisedinitsdesign,withafewlargediscretepowerstationsassupplypoints,andamultitudeof demandpoints, i.e. customers. This set-up reliesona very stronghigh voltagetransmission grid that connects large power stations with the distribution areas. However withtheincreasingprevalenceofdistributedgeneration(e.g.solarphotovoltaics)andenergystorageoptions,itcreatesopportunitiesforsupplyanddemandpointstobeco-located,thusreducingtherelianceonthecentralgrid.Thiswouldleadtoincreasedemphasisonthelowandmediumvoltagedistributionnetwork,asopposedtothehigh-voltagetransmissionnetwork.Thisneedwillbefurtherexacerbatedbytherapidpenetrationofelectricvehiclesandtheassociatedcharginginfrastructure.

AlltheaboveUseCaseswouldrequiregridbidirectionalityinordertoaccommodaterapidintra-daychangesinflowpatterns,anupdatedgridarchitecturetoallowmultipleagentstotransactwitheachotheronalevelplayingfield,andplatformstofacilitatethesetransactions.Bidirectionalitycanbeintroducedbyreplacingtheanalogtransformersinsmartgridswithpowerelectronicsbasedsolidstatetransformers(SST).Additionally,softwareandcommunicationplatformssuchasadvanceddistribution systemsand solutions suchasDistributedEnergyResourceManagementSystems(DERMS)wouldalsoberequired.Indevelopingcountries,theimplementationoftheSmartGridwould be different from that in developed countries. Countries without an established grid canbuildaSmartGridfromthegetgoinsteadofmakingmodificationstoexistinginfrastructure.TheefficienciesthattheSmartGridwouldcreatecansolveavarietyofproblemssuchasinsufficientsupplytomeetdemandandelectricitytheftmanagement.Giventhatseveraldevelopingcountriesarereliantoncoalforpower,thesmartgridwouldalsooffermanyopportunitiesintheformofcarbonsavings.SmartGrid2.0ishenceacompleteshiftfromboththepreviousgenerationofhardandsoftgridcomponentstoitsmoderniseddigitalversionforenablingbetterintegrationofrenewableenergyresources, facilitating two-way power and information flow,more active consumer participation,improving quality of service and resilience of grids in a varied and challenging environment. Itwillbesmarter,detectingexcessiveamountsofenergyandredirectingittopreventthegridfromshuttingdown.Itcanfreelyreceiveenergyfromanywhereandofferimprovedresilienceintheeventof disruptions. It allows two-way communication between the consumer and theutility, creatingmore options& possibilities for consumers. Furthermore, it will leverage upon advancement ofpowerelectronicstomakedistributionnetworksmoreefficientintermsofbothenergyandspaceoccupied,andexplorethepossibilitiesforhousingsomeofthecomponentsofthepowergridatremoteundergroundlocations.

Themodernizationofsoftcomponentsinvolvesadvanceddigitalinformationandtelecommunicationtechnologies:fromlast-generationbusinessintelligence(BI)reportingsolutions(analytics)ofutilitiestothereal-timeandpredictiveanalytics.TheadvancedITofferings includeconsumerbehaviouranalytics, time-of-use-pricing analytics, cloud-based solutions andmost importantly the InternetofEnergy.The InternetofEnergy intends to link thedistributedgeneration,energystorageandloadstobuildagridwithseamlessinformation&powerexchange.Thedisruptivechangeinhardcomponentsinvolvesthegridinfrastructureitselfonthedistributiontransformerandtheintroductionofnewcontrolandcommunicationtechnologies.

Grid 2.0 | Pg 13

Page 14: GRID 2 - NTU Singapore

Benefits of Smart Grid 2.0 to SingaporeSingapore’schallengesbeingmarkedlydifferentfromthoseintheUSAandEuropewouldrequireadifferentapproach.Feed-in-tariffs,microgrids,naturaldisastersandtransmissionoverhundredsof kilometres do not feature as top challenges to theSingapore power grid. Singaporewouldhoweverfaceachallengeofdeployingandintegratingrenewablesintoitspowersystem–mainlyinadistributedform.Besidesrenewables,thetwootherleversofdecarbonisationinvolveatransitiontoelectricmobilityandafocusonenergyefficiencysolutions.Ensuringoperationalstabilityandreliabilitywillhoweverrequireadata-centricapproach–anabilitytocaptureutilizationpatternsviasensors,toanalysedisparatedatastreamswithArtificialIntelligencealgorithms,andtoengendercorrectiveaction forsystemstabilityandreliability. Thekeydrivers forSingapore’s transition toSmartGrid2.0arethusdecarbonisation,decentralisation,anddigitalisation.

Singapore’s Smart Grid 2.0 focus would naturally concentrate on the distribution network andaddresschallengesthatareuniquetothisCity-State,ametropolissituatedinthetropics.Besidesthecoolingload,morethan60%ofSingapore’semissionsemanatefromitsindustrialactivitieswithsignificantcontributionsfrompetrochemicalindustries.

Althoughthepossiblearchitecturesoffuturegridsarestillemerging,Singapore’sprioritiesincludecleanenergygeneration,energyefficiency,andgridresilience.Initiativestosupporttheseincludepower generation from natural gas and potentially hydrogen in the future, deployment of solarcellscoupledwithenergystorage,buildingand industrialenergyefficiency,andelectrificationoftransport.InkeepingwiththeSmartNationvision,SmartGrid2.0offersanunparalleledopportunitytoleveragedigitaltechnologies,artificialintelligence,anddataanalyticstoleveragethefullpotentialofdigitalizationtodelivertheoutcomesofsustainablegrowth,withenergysecurityandaffordability.

Page 15: GRID 2 - NTU Singapore

Key Technological Building Blocks of Smart Grid 2.0Eachstepforanescalationingridmaturityisfacilitatedbythedeploymentofkeyenhancementsinthehardware,softwareandcommunicationslayers.Thekeytechnologiesneededfromeachlayerare illustrated in Figure 8.

Hardware Layer:

ThemainchangeinherentinthetransitionfromaconventionalgridtotheSmartGridistheoverlayofInformation&CommunicationsTechnology(ICT)onthepowergrid,coupledwithprogressiveintroduction of multi-energy distributed resources and stationary storage assets. The greatertransformationofthehardwarelayerhoweverwouldbeintheshifttoSmartGrid2.0viaSolidStateTransformers(SSTs).AnSSTisagatheringofhigh-poweredsemiconductors,conventionalhigh-frequency transformersandcontrol circuitrywhichprovidesadvancedflexible control forpowerdistributionandiscapableofreroutingpowerfrompointtopointviathebestroute.

SomeoftheseveralsignificantadvantagesofSSTsoverconventionaltransformersareasfollows:

• Massivelydeductfromthesizeandweightofeachindividualtransformer,thusreducingtheoveralllandfootprintofdistributionsubstationsandmakingitpossibletohousekeycomponentsinundergroundremotelocations

• Improvepowerquality• Provideefficientelectricityroutingviacommunicationbetweengridcomponents• Allowtwo-waypowerflow• Facilitateactiveandeasierchangeinvoltageandfrequencylevels,whenrequired• Supportearlyidentificationofsystemproblemsmomentarilyandsustainedpower

restoration and routing • Facilitatefulldigitalcontrol,therebyenablingpowergriddigitalisation

Software Layer:

Therearevariousaspectsoftransformationinthesoftwarelayer(seeFigure9):

• Radical shift in software architecture from server to cloud based computing, with thecapacitytosupportsystem-wideenergytransactionoptimisationalgorithms

• Capacitytomanageoptimaldispatchinmulti-energysystemsatalocalorneighbourhoodlevel,viaSMES(SmartMulti-EnergySystems)software.Thissoftware,whichintegratesmultipleenergyvectorsofelectricity,gas,andheat,determinesanoptimalfusionofenergychoicescomprisingdistributedgeneration(e.g.Roof-installedPVpanels),powerstoragekits,demandresponseoptions&meetingresidualdemandviathegrid

• Managinggridstabilityandreliabilityattheoverallnetworklevel,usingDERMSsoftware.Itcomprisesseverallayersofenergymanagementresourcesolutions.Firstly,itincludesmodelsandalgorithmsthatfacilitateoutagemanagement,grantingself-healingcapabilitiestothegrid.Secondly,itfacilitatesafundamentalshiftfromahierarchicalgridarchitecturetoonethatisheterarchical,therebyallowingamultitudeofdistributed“agents”(e.g.solarplants,storagekits,electricvehicles,largeequipment,etc.)totransactwithoneanother.Finally,itincorporatesplatformstofacilitatetransactionsbetweenthese“agents”.

Grid 2.0 | Pg 15

Page 16: GRID 2 - NTU Singapore

Inshort,DERMSenablesgridoperatorstomanagedistributedenergyresourcesinfrontofandbehind themeter. The complete viewof grid conditions facilitatesbetter coordinationbetweensystem operators, aggregators and owners, thereby transforming a conventional grid into anAdvancedDistributionManagementSystem(ADMS).Thecompleteviewofgridconditionsfacilitatesbettercoordinationbetweensystemoperators,aggregatorsandowners, thereby transformingaconventionalgridintoanAdvancedDistributionManagementSystem(ADMS).

Figure 8. Key Technologies Needed to Drive Singapore Future Grid

Grid 2.0 | Pg 16

Page 17: GRID 2 - NTU Singapore

Figure 9. Distributed Energy Resource Management System (DERMS)

Communications Layer:

Secure, reliable & fast wireless communication has to be embedded within the hardware andsoftwarelayerstoenablethefuturegrid.Thecoordinationofworkbetweentheselayersisreliantonthislayer.TheadvancednetworktechniquesandcontrolsundertheInternetofEnergywouldbecapableofanticipatingthefuturestateofpowersystemsandmakerelevantintelligentdecisionsontheirown.Anticipationoffuturestates,healthofpowersystemandintelligentdecisionmakingcouldresultinagridwithlowermaintenancecostandhigherreliability.

The Internet-of-Things (IoT) enablesmeters, sensors, appliances, home control systems to beinterconnected using ethernet or wireless technologies. IoT devices connected to the Internetenablingthemtosendandreceivedata,areanimportanttechnologicalplatformofthefuturegrid.Advances in connectivity such as 5G, would enable rapid transmission of data between theseelements to perform grid operations and optimise functions in transmission, distribution, andintegration of renewables and the charging of electric vehicles. Block-chain technology wouldthenaddalayerofsecurity inenergytradingandrelatedtransactionsfacilitatedbytheinternet.CyberphysicalsystemsincludingIoTscoupledwithnetworkedcommunicationsareintegralpartsofthefuturegridandwillusherinanewopportunitiesforanempoweredconsumer+producer;or“prosumer”whomayparticipatedirectlyinelectricitygeneration(i.e.withsolarpanels),electricitysupplytothegrid,electricitytradingandconsumption.

Grid 2.0 | Pg 17

Page 18: GRID 2 - NTU Singapore

CONCLUDING REMARKSSmartGrid2.0isthefutureofpowergrids.ThefunctionalperformanceoftheSmartGrid2.0offerssignificantbenefitsovertheSmartGridtechnologiesunderdeploymentinmanypartsoftheworld.ItinterconnectselectricityandITinfrastructuretobringtogetherallusers,i.e.producers,operators,marketers,consumers,etc.sothatthereisanefficientbalancebetweendemandandsupplyoveraprogressivelycomplicatedyetcomprehensivenetwork.Building the InternetofEnergywillbethesolutiontonumerousenergychallengesrelatedtotheimplementationoftheinfrastructureforthefulldeploymentoftherenewableenergyproduction,whiletheprogressinpowerelectronics,energystorage,communications,control,datacentresand internet technologyaretheenablerswhichwillimplementtheconceptsuccessfullyinthenearfuture.

Over the years, Singapore has piloted smart grid technologies and has focused extensively inmakingSingapore’sgridsoneofthemoststableintheworld.Singaporehassetforthtodevelopcost-competitiveenergysolutionstoimproveitsenergyefficiency,reduceitscarbonemissionsandbroaden itsenergyoptions.ThisEnergyTransitionwillneeda transition toanewgenerationofelectricitydistribution,SmartGrid2.0thatwilltransformtheelectricpowergridintoaninteroperablenetwork integrating information and communication technologies with the power-deliveryinfrastructure,enablingtwo-wayflowsofenergyandcommunications.

Forsmartgridstodevelopandbeimplemented,weneedtoplanandestablishstrategicR&Dinkey focusareasaheadof discussing itsmethodology.ThegoalsofR&Dshouldbe todevelopcommercially viablemicrogrids,developingaself-healingelectricdistributiongrid,andenablinghighpenetrationofdistributedenergyresources(DERs).

Page 19: GRID 2 - NTU Singapore

REFERENCES1. ABB (2017, July 7). NC State says solid state transformers are ready. Retrieved

from http://www04.abb.com/global/usabb/usabb045.nsf!OpenDatabase&db=/g l o b a l / u s a b b / u s a b b 0 4 9 . n s f & v = 1A6E&e=u s&u r l = / g l o b a l / s e i t p / s e i t p 2 0 2 .nsf/0/5D0535CF2A6C122E8525815600584F04!OpenDocument

2. ABB(2014,Apri;14).ABBBackgroundInformation:SmartGrids.

3. Au,B.S.,&Sim,K.M.(n.d.).SMARTGRIDINDEX“HOWSMARTISYOURGRID?”

4. CDL(2017,April6).CDLISSUESTHEFIRSTGREENBONDBYASINGAPORECOMPANY.Retrievedfromhttps://www.cdl.com.sg/images/press_release/20170406.pdf

5. HowSmartGridsCouldTransformtheDevelopingWorld.(n.d.).RetrievedOctober10,2019,from https://www.theatlantic.com/sponsored/siemens-2014/how-smart-grids-could-transform-the-developing-world/171/.

6. Panda,S.K.,Tseng,K.J.,&Jadhav,N.Y.(2011).SmartGridTechnologyPrimer:ASummary.Retrieved from https://www.nccs.gov.sg/docs/default-source/default-document-library/smart-grid-technology-primer-a-summary.pdf

7. SPGroup.(n.d.).Billing.Retrievedfromhttps://www.spgroup.com.sg/what-we-do/billing

8. Tan,C. (2019,January9).SP launches38high-speedchargingpoints forelectricvehicles.Retrieved from https://www.straitstimes.com/singapore/transport/sp-launches-38-high-speed-charging-points-for-electric-vehicles

9. MinistryofFinanceSingapore(2012).PublicPrivatePartnershipHandbook.

10. Neo,E.(2018,February28).ChangiAirportpassengerstopaynewlevytofunddevelopmentsincludingT5.Retrievedfromhttps://www.channelnewsasia.com/news/singapore/changi-airport-new-fee-t5-terminal-5-passengers-9999526

11. WorldBank.(n.d.).Electricity:uncoveringvaluethroughdigitaltransformation.Retrievedfromhttp://reports.weforum.org/digital-transformation/electricity-an-industry-ready-for-digitization/

Grid 2.0 | Pg 19

Page 20: GRID 2 - NTU Singapore

CleanTech One (CTO) 1 CleanTech Loop, #06-04Singapore 637141 [email protected] | www.erian.ntu.edu.sg/specs