Green Energy Choices, full slide pack

32
Lead authors: Edgar Hertwich, Thomas Gibon, Sangwon Suh, Jacqueline Aloisi de Larderel, Joe Bergesen

Transcript of Green Energy Choices, full slide pack

Page 1: Green Energy Choices, full slide pack

Lead authors:Edgar Hertwich, Thomas Gibon, Sangwon Suh, Jacqueline Aloisi de Larderel, Joe Bergesen

Page 2: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Content

1. Background2. Results3. Technology summary4. Main findings

2

©chungking/Shutterstock

Page 3: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Background

3

Page 4: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Low‐Carbon Electricity and COP21

Source : http://unsdsn.org/wp‐content/uploads/2015/03/Key‐Elements‐for‐Success‐at‐COP21.pdf

4

Page 5: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

IPCC: A near‐complete shift to low‐carbon energy sources is required for any stabilization target

2.6°C 2.2°C 1.9°C 1.6°C

Important electricity increases in almost all IPCC scenarios resulting from wide implementation of low‐carbon technologies

Source: IPCC AR5 (2014)

5

Page 6: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Challenge

• Electricity currently accounts for 25% of GHG emissions

• Massive investments in new energy technologies are required to achieve a stabilization of CO2concentrations

• Low‐carbon technologies may have unforeseen consequences on the ecosystems, human health or resources

• Informed decisions are required in selecting the right mix of low‐carbon technologies  Would the chosen low‐carbon

technologies be optimal forachieving 2°C objective?

 0

 10

 20

 30

 40

 50

 60

2012 2020 2030 2040 2050

GtCO2

Technologies

CCS 13%Power generation efficiency and fuel switching 1%End‐use fuel switching 10%End‐use fuel and electricity efficiency 38%Nuclear 8%2DS

Baseline emissions 56 Gt

BLUE Map emissions 14 Gt

Source: IEA Energy Technology Perspectives 2015 (2015)

6

Page 7: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

What are environmental, health and resource use implications of a massive expansion of low‐carbon 

electricity?

7

350 000 wind turbines would be required to provide 12%

electricity in 2050. An offshore wind turbine 

with this capacity uses 1200 tons of steel. 

How much pollution results from these wind turbines?

350 000 wind turbines would be required to provide 12%

electricity in 2050. An offshore wind turbine 

with this capacity uses 1200 tons of steel. 

How much pollution results from these wind turbines?

3.2 million premature deaths in 2010 from outdoor 

air pollution caused by particulate matter from 

combustion.

Do power plants with CCS produce less particulate emissions than power plants without CCS?

3.2 million premature deaths in 2010 from outdoor 

air pollution caused by particulate matter from 

combustion.

Do power plants with CCS produce less particulate emissions than power plants without CCS?

A typical photovoltaic power plant produces 0.3 kWh per 

m2 per day. It requires copper for cables, aluminum for frames, and 

energy‐intensive manufacturing of semiconductors.

Do PV panels have high material implications?

A typical photovoltaic power plant produces 0.3 kWh per 

m2 per day. It requires copper for cables, aluminum for frames, and 

energy‐intensive manufacturing of semiconductors.

Do PV panels have high material implications?

©visual_k/Freeiłqges©Richie Chan/Shutterstock © Ranglen/Shutterstock

Page 8: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production8

• Coal and gas with and without CO2 capture and storage (CCS), 

• Photovoltaic power, • Concentrated solar power, 

• Hydropower, • Geothermal,• Wind power.

Nine electricitytechnologies

• Damage on ecosystems• ecotoxicity,• eutrophication,• acidification…

• Damage on human health• particulate matter,• human toxicity…

• Resource use• iron, copper, aluminium, cement,

• energy, water and land

Impactcategories

• Extraction of rawmaterials,

• Fuel supply chain,• Production of powerplants,

• Transportation• Operation,• Maintenance,• Decommissioning.

Life cycleperspective

Assessment Approach and Method

Page 9: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Supporting: Assessment Approach and Method

• Life cycle inventories onlyfrom reviewed data

• Data collection by a panel of 20 independentexperts

• Harmonized and coordinated

Scientific data

• Baseline• Business‐as‐usual• Continuousinvestments in fossil technologies

• No CCS• BLUE Map• Renewable deployment• Phasing out of fossil fuel plants without CCS

Scenarios

• Vintage capital modelling2010‐2050

• The total impact on a given year is the sum ofthe impacts from theplants• built,• in operation,• repowered,• decommissioned

• …that exact year

Time series

Page 10: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Results

10

Page 11: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Human Health Impacts(DALY*/TWh)

16

32 25 28 26 29

87 97

410

290

420

310 32

0

240

310

260

110

10 22 25 15 4

0

100

200

300

400

500

600

Trou

gh

Tow

er

CdT

e gr

ound

CdT

e ro

of

CIG

S g

roun

d

CIG

S ro

of

Pol

y-S

i gro

und

Pol

y-S

i roo

f

Sup

ercr

itica

l with

CC

S

Sup

ercr

itica

l with

out C

CS

Exi

stin

g co

al w

ith C

CS

Exi

stin

g co

al w

ithou

t CC

S

IGC

C w

ith C

CS

IGC

C w

ithou

t CC

S

Nat

ural

gas

with

CC

S

Nat

ural

gas

with

out C

CS

Res

ervo

ir 1

Res

ervo

ir 2

Offs

hore

con

vent

iona

l, G

B fo

unda

tion

Offs

hore

con

vent

iona

l, st

eel f

ound

atio

n

Ons

hore

con

vent

iona

l

Bin

ary

(Wai

rake

i)

Concentrated solar power Photovoltaics Coal Natural gas Hydro Wind Geothermal

human toxicity/ RER/ (H) ionising radiation/ RER/ (H) ozone depletion/ GLO/ (H) particulate matter formation/ RER/ (H) photochemical oxidant formation/ RER/ (H)

11

*DALY = «Disability Adjusted Life Years»

Page 12: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Pollution of Ecosystems(species‐year/TWh)

4

13

2.7

3.1 7.

3

7.8

15 16

68

44

71

46

57

42

57

44

7,7

0.6 1.5

1.6

1.0

0.3

0

10

20

30

40

50

60

70

80

90

100

Trou

gh

Tow

er

CdT

e gr

ound

CdT

e ro

of

CIG

S g

roun

d

CIG

S ro

of

Pol

y-S

i gro

und

Pol

y-S

i roo

f

Sup

ercr

itica

l with

CC

S

Sup

ercr

itica

l with

out C

CS

Exi

stin

g co

al w

ith C

CS

Exi

stin

g co

al w

ithou

t CC

S

IGC

C w

ith C

CS

IGC

C w

ithou

t CC

S

Nat

ural

gas

with

CC

S

Nat

ural

gas

with

out C

CS

Res

ervo

ir 1

Res

ervo

ir 2

Offs

hore

con

vent

iona

l, G

B fo

unda

tion

Offs

hore

con

vent

iona

l, st

eel f

ound

atio

n

Ons

hore

con

vent

iona

l

Bin

ary

(Wai

rake

i)

Concentrated solar power Photovoltaics Coal Natural gas Hydro Wind Geothermal

freshwater ecotoxicity/ RER/ (H) freshwater eutrophication/ RER/ (H) marine ecotoxicity/ RER/ (H) terrestrial acidification/ RER/ (H) terrestrial ecotoxicity/ RER/ (H)

12

Page 13: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Land Occupation (m2a/MWh)

13

19

11

0.5

11

0.5

12

3

26

19

28

2023

17

0.2 0.2

12

84

0.3 0.3 0.3 2

0

10

20

30

40

50

60

70

80

90

100

Trou

gh

Tow

er

CdT

e gr

ound

CdT

e ro

of

CIG

S g

roun

d

CIG

S ro

of

Pol

y-S

i gro

und

Pol

y-S

i roo

f

Sup

ercr

itica

l with

CC

S

Sup

ercr

itica

l with

out C

CS

Exi

stin

g co

al w

ith C

CS

Exi

stin

g co

al w

ithou

t CC

S

IGC

C w

ith C

CS

IGC

C w

ithou

t CC

S

Nat

ural

gas

with

CC

S

Nat

ural

gas

with

out C

CS

Res

ervo

ir (P

ascu

a 2.

2)

Res

ervo

ir (B

aker

2)

Offs

hore

con

vent

iona

l, G

B fo

unda

tion

Offs

hore

con

vent

iona

l, st

eel f

ound

atio

n

Ons

hore

con

vent

iona

l

Bin

ary

(Wai

rake

i)

Concentrated solar power Photovoltaics Coal Natural gas Hydro Wind Geothermal

13

Page 14: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Mineral Resources(kg/MWh)

0

2

4

6

8

10

12

14

16

0

1

2

3

4

5

6

7

8

9

Trou

gh

Tow

er

CdT

e gr

ound

CdT

e ro

of

CIG

S g

roun

d

CIG

S ro

of

Pol

y-S

i gro

und

Pol

y-S

i roo

f

Sup

ercr

itica

l with

CC

S

Sup

ercr

itica

l with

out C

CS

Exi

stin

g co

al w

ith C

CS

Exi

stin

g co

al w

ithou

t CC

S

IGC

C w

ith C

CS

IGC

C w

ithou

t CC

S

Nat

ural

gas

with

CC

S

Nat

ural

gas

with

out C

CS

Res

ervo

ir (P

ascu

a 2.

2)

Res

ervo

ir (B

aker

2)

Offs

hore

con

vent

iona

l, G

B fo

unda

tion

Offs

hore

con

vent

iona

l, st

eel f

ound

atio

n

Ons

hore

con

vent

iona

l

Bin

ary

(Wai

rake

i)

Concentratedsolar power

Photovoltaics Coal Natural gas Hydropower Wind power Geothermal

Non

-ren

ewab

le e

nerg

y (M

J/kW

h)

Aluminium Copper Iron Cement Non-renewable energy

14

Page 15: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Technology Summary

15

Page 16: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Wind power

•Very low GHG emissions (++)

Climate change

•Reduced exposure to particulate matter(++)•Reduced human toxicity (‐‐)

Human Health

•Collision fatalities of birds and bats  (+=)•Reduced ecotoxicity and eutrophication (=‐)

Ecosystems

• Increased consumption of bulk metals ( +=)• Low water use (==)• Low direct land use (==)

Resources

Key (##)First symbol(+) high agreement among studies  (=) moderate agreement  (‐) low agreementSecond symbol(+) robust evidence (many studies)  (=) medium evidence  (‐) limited evidence

16

©Jeff Adkins

Page 17: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Low‐impact projects:• Good wind conditions and

grid connections reducechallenge of matchingsupply and demand

• Siting and operationalmeasures can limit bird andbat collision fatalities

• Recycling of wind turbinescan reduce pollutionimpacts

Wind power

17

©Jeff Adkins

Page 18: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Photovoltaics

• Low carbon (==)

Climate

• Low particulate matter emissions (+=)• Low human toxicity (if proper recycling, =‐)

Human health

• Low eutrophication and ecotoxicity (+‐)

Ecosystem health

•High metal use (balance of system, module, +=)

•High direct land use for ground‐based systems (++)

Resources

Key (##)First symbol(+) high agreement among studies  (=) moderate agreement  (‐) low agreementSecond symbol(+) robust evidence (many studies)  (=) medium evidence  (‐) limited evidence

©ElenaElisseeva/Shutterstock

18

Page 19: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Low‐impact projects:• Using clean energy for

manufacturing of PVpanels can substantiallyreduce impacts

• Recycling of PV panelscan preserve criticalmetals and contain toxicmetals

• Significant potential forroof‐mounted PV panels

Photovoltaics

19

©ElenaElisseeva/Shutterstock

Page 20: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Concentrating solar power

• Low GHG emissions (==)

Climate Change

• Low particular matter exposure (+=)• Low human toxicity (=‐)

Human Health

• Potential toxicity of heat transfer fluids (+=)• Low ecotoxicity and eutrophication (+‐)

Ecosystems

• High water consumption, unless air cooled (++)• High land use (++)• High cement use (power tower, +‐)

Resources

Key (##)First symbol(+) high agreement among studies  (=) moderate agreement  (‐) low agreementSecond symbol(+) robust evidence (many studies)  (=) medium evidence  (‐) limited evidence

20

©Ethan Miller/Getty Images

Page 21: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Low‐impact projects:• Uses heat storage to

produce electricity in theevening and night, therebyavoiding backup power

• Siting avoiding sensitivehabitat

• Good management of heattransfer cycle

Concentrating solar power

21

©Ethan Miller/Getty Images

Page 22: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Hydropower

• Low fossil carbon (++)•High biogenic carbon from tropical dams (==)

Climate

• Low air pollution impacts (=‐)• Population displacement (+‐)

Human health

•Riparian habitat change (++)

Ecosystem health

•Water use (evaporation, +‐)•High land use for reservoirs (+=)•High cement use (tower only, +‐)

Resources

Key (##)First symbol(+) high agreement among studies  (=) moderate agreement  (‐) low agreementSecond symbol(+) robust evidence (many studies)  (=) medium evidence  (‐) limited evidence

22

Page 23: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Low‐impact projects:• Environmental streamflow and other mitigatingmeasures can reduceecological impact

• Ensure high powerdensity to limit biogenicmethane emissions

Hydropower

23

Page 24: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Geothermal power

• Low carbon (==)

Climate

• Low particulate matter (+=)• Low human toxicity (=‐)

Human health

•Concern about heat transfer fluid (+=)• Low eutrophication and ecotoxicity (+‐)

Ecosystem health

•High water use (maintenance, ++)•High land use (++)•High cement use (tower only, +‐)

Resources

Key (##)First symbol(+) high agreement among studies  (=) moderate agreement  (‐) low agreementSecond symbol(+) robust evidence (many studies)  (=) medium evidence  (‐) limited evidence

24

©istockphoto.com

Page 25: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Geothermal power

Low‐impact projects: • Treatment and reinjection of geofluids

• Mitigation of site‐specific impacts

25

©istockphoto.com

Page 26: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Coal and natural gas power, with CO2 capture and storage

• Low GHG (++)• Substantial fugitive methane emissions (==)• Concern about CO2 leakage (‐=)

Climate

• Solvent related emissions (==)• High particulate matter (==)• High human toxicity (=‐)

Human health

• High eutrophication (mining, ++)• Ecotoxicity (+=)

Ecosystem health

• Increased fossil fuel consumption (++)• Limited CO2 storage (++)

Resources

Key (##)First symbol(+) high agreement among studies  (=) moderate agreement  (‐) low agreementSecond symbol(+) robust evidence (many studies)  (=) medium evidence  (‐) limited evidence

26

©Reuters

Page 27: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Low‐impact projects:• Significant potential toreduce emissions in fuelproduction and transport

• Geologic factorsimportant for pollutionlevel of fuels

• Sourcing fuels from low‐polluting sites isimportant

Coal and natural gas power, with CO2 capture and storage

27

©Reuters

Page 28: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Main findings

28

Page 29: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Impacts from electricity generation under IEA Blue Map vs business as usual scenarios

29

Page 30: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

Comparison of technologies and impacts

30

Page 31: Green Energy Choices, full slide pack

Green  Energy  Choices  The Benefits, Risks and Trade‐offs of Low‐Carbon Technologies for Electricity Production

From the life cycle perspective, the GHG emissions of electricity produced from renewablesources are less than 6% of those generated by coal or 10% by natural gas.

Using solar, wind, hydro and geothermal power instead of fossil fuels reduces greenhouse gasemissions and other pollution impacts on human health and ecosystems. Impacts are reducedby a factor of 3‐10.

Human health impacts from renewable energy electricity production are only 10‐30% of thosefrom the state‐of‐the‐art fossil fuel power.

Natural‐gas combined cycle plants, wind power, and roof‐mounted solar power systems havelow land use requirements, while coal fired power plants and ground‐mounted solar powerrequire larger areas of land.

Site‐specific environmental impacts, such as the ecological impacts of coalmines, hydropowerdams and wind turbine installations, vary greatly, depending on the significance of the speciesand habitats affected and may be mitigated or offset by proper site selection and planning.

CO2 capture and storage can reduce greenhouse gas emissions by 50‐75%, at the expense ofincreasing other types of pollution by 5‐80%.

31

Page 32: Green Energy Choices, full slide pack

For more information please visit:www.unep.org/resourcepanel